RU2715890C1 - Способ закрепления тензорезистора на поверхности детали - Google Patents

Способ закрепления тензорезистора на поверхности детали Download PDF

Info

Publication number
RU2715890C1
RU2715890C1 RU2019117399A RU2019117399A RU2715890C1 RU 2715890 C1 RU2715890 C1 RU 2715890C1 RU 2019117399 A RU2019117399 A RU 2019117399A RU 2019117399 A RU2019117399 A RU 2019117399A RU 2715890 C1 RU2715890 C1 RU 2715890C1
Authority
RU
Russia
Prior art keywords
strain gauge
adhesive
glue
electrocorundum
fixing
Prior art date
Application number
RU2019117399A
Other languages
English (en)
Inventor
Сергей Петрович Иванов
Владимир Степанович Кожевников
Людмила Павловна Краснослободцева
Original Assignee
Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") filed Critical Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО")
Priority to RU2019117399A priority Critical patent/RU2715890C1/ru
Application granted granted Critical
Publication of RU2715890C1 publication Critical patent/RU2715890C1/ru

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/28Measuring arrangements characterised by the use of electric or magnetic techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Изобретение относится к измерительной технике, а именно к способам монтажа тензорезисторов на объектах детали, которые имеют кривизну и сложную геометрическую форму, и может быть использовано при испытаниях высоконагруженных материалов и конструкций, в частности лопаток газотурбинного двигателя. Способ закрепления тензорезистора на поверхности детали включает нанесение клея на основе эпоксидных олигомеров на рабочие поверхности детали и тензорезистора, установку тензорезистора на клей, полимеризацию и отверждение клея при термообработке под давлением, нанесение влагозащитного покрытия и его термообработку, в качестве влагозащитного покрытия используют стеклошифон, пропитанный гелем на основе фенолформальдегидной смолы, а в качестве клея используют модифицированный электрокорундом клей на основе эпоксидных олигомеров, перед нанесением клея рабочие поверхности детали и/или тензорезистора подвергают пескоструйной обработке смесью электрокорунда и твердого ангидрида и очищают с использованием нефраса и ацетона, нанесение клея на рабочие поверхности производят в два этапа, сначала нанесение грунтовочного, а затем основного слоев и последующую их сушку после нанесения каждого слоя, при этом полимеризацию и отверждение клея производят перед нанесением стеклошифона, а нанесенный на тензорезистор стеклошифон подвергают термообработке при температуре 100-180°С в течение 2-3 часов. Техническим результатом является снижение погрешности измерения и повышение стойкости закрепления тензорезистора на поверхности детали. 5 з.п. ф-лы.

Description

Изобретение относится к измерительной технике, а именно к способам монтажа тензорезисторов на объектах детали, которых имеют кривизну и сложную геометрическую форму и может быть использовано при испытаниях высоконагруженных материалов и конструкций, в частности, лопаток газотурбинного двигателя.
Известен способ закрепления тензорезистора на детали, включающий нанесение слоя клея на деталь, закрепление тензорезистора, обезжиривание поверхности активным реагентом, нанесение на поверхность подслоя клея, его подсушивание на воздухе, нанесение водостойкого покрытия в виде слоя герметика из битума, сырой резины и смазки и выдержку детали с тензорезистором до перехода герметика в резиноподобное состояние.
/SU №1762114 А1 МПК G01В 7/18 Опубликовано 15.09.92 г./ /1/
Тензорезистор, закрепленный на детали известным способом обладает повышенной надежностью работы в условиях повышенной влажности. Однако при использования тензорезистора, закрепленного на испытываемой детали известным способом, наблюдаются значительные погрешности измерений связанные с проскальзованием датчика относительно детали по клеевому слою. Другим недостатком датчика является незначительная стойкость и отрывы датчика при вращении, в случае его использования при испытании лопаток газотурбинного двигателя.
Наиболее близким по технической сущности и достигаемому результату является известный способ закрепления тензорезистора на поверхности детали, включающий нанесения клея на основе эпоксидных олигомеров на рабочие поверхности детали и тензорезистора, установку тензорезистора на клей, полимеризацию и отверждение клея при термообработке под давлением, нанесение влагозащитного покрытия и его термообработку.
/SU №1004750 МПК G01В 7/18 Опубликовано 15.03.83 г./ /2/
Установленный на поверхности детали тензорезистор, вследствие завершения процесса полимеризации и отверждения клея при термообработке, обладает значительно меньшим проскальзыванием датчика относительно детали, что позволяет снизить погрешность измерения. Вместе с тем известный способ не позволяет значимо повысить стойкость датчика на отрыв при вращении, например: в случае использования его при испытании лопаток газотурбинного двигателя.
Задача изобретение повышение эффективности (монтажа) закрепления тензорезистора на поверхности детали.
Ожидаемый технический результат снижение погрешности измерения и повышение стойкости закрепления тензорезистора на поверхности детали.
Ожидаемый технический результат достигается тем, что в известном способе закрепления тензорезистора на поверхности детали, включающем нанесение клея на основе эпоксидных олигомеров на рабочие поверхности детали и тензорезистора, установку тензорезистора на клей, полимеризацию и отверждение клея при термообработке под давлением, нанесение влагозащитного покрытия и его термообработку, по предложению, в качестве влагозащитного покрытия используют стеклошифон, пропитанный гелем на основе фенолформальдегидной смолы, а в качестве клея используют модифицированный электрокорундом клей на основе эпоксидных олигомеров, перед нанесением клея рабочие поверхности детали и/или терморезистора подвергают пескоструйной обработке смесью электрокорунда и твердого ангидрида и очищают с использованием нефраса и ацетона, нанесение клея на рабочие поверхности производят в два этапа, сначала нанесение грунтовочного, а затем основного слоев и последующую их сушку после нанесения каждого слоя, при этом полимеризацию и отверждение клея производят перед нанесением стеклошифона, а нанесенный на терморезистор стеклошифон подвергают термообработке при температуре 100…180°С в течение 2-3 часов. Смесь для пескоструйной обработки оптимально содержит, масс %: электрокорунд 70 - 90 и твердый ангидрид 10-30. В качестве твердого ангидрида в смеси используют малеиновый ангидрид или диангидрид. В качестве клея модифицированного электрокорундом используют клей составленный на основе смеси эпоксидированной новолачной смолы, эпоксидированной смолы на основе резорцина, диангидрида бензофенонтетракарбоновой кислоты, электрокорунда и 1,3 диоксолана. Для полимеризации и отверждения клей термообрабатывают при температуре 170-225°С течение 1,5…2,0 часа. В предложенном изобретении в качестве влагозащитного покрытия используют стеклошифон, пропитанный гелем на основе фенолформальдегидной смолы. Разработанные новые поколения связующих на основе жидких резольных фенолформальдегидных олигомеров обладают комплексом повышенных физико-химических и технологических свойств. Стеклошифон (тонкая стеклоткань) обработанный гелем на основе фенолформальдегидной смолы и подвергнутый термической обработке, для завершения отверждения связующего (геля), при температуре 100…180°С в течение 2-3 часов, образует полимер типа «стеклотекстолит». Образующийся полимер обладает высокими механическими свойствами соответственно пределом прочности: на изгиб - 530…590 МПа; растяжение - 360…420 МПа; сжатие - 270…330 МПа. Такие механические свойства позволяют значительно повысить стойкость датчика к отрыву при испытаниях.
По предложению предусмотрено, что рабочие поверхности детали и/или терморезистора, каждую отдельно (обе вместе), подвергают пескоструйной обработке смесью электрокорунда и твердого ангидрида и очищают с использованием нефраса и ацетона. Такая обработка позволяет получить требуемую шероховатость поверхностей, а также удержать на рабочих поверхностях, вследствие развития адгезионных процессов, части микрокристаллов электрокорунда. Наличие микрокристаллов в месте склеивания датчика и детали препятствует проскальзыванию их относительно друг друга, что значительно уменьшает погрешность отклика тензорезистора на деформацию детали.
Пескоструйную обработку предпочтительно производят смесью электрокорунда и твердого ангидрида, содержащей соответственно, масс %: электрокорунд 70-90 и твердый ангидрид 10-30. Твердый ангидрид в смеси проявляет кислотные свойства, а, следовательно, способствует очистке и обезвоживанию поверхности. При содержании в смеси менее 10% твердого ангидрида эффект очистки и обезвоживания поверхности незначителен. Увеличение содержания ангидрида в смеси более 30% является излишним, так как эффект очистки и обезвоживания поверхности не увеличивается. В качестве твердого ангидрида в смеси могут использоваться любые ангидриды. По предложению, для рассматриваемых условий например: в случае использования тензорезистора при испытании лопаток газотурбинного двигателя, предусмотрено использование малеинового ангидрида и (или) диангидрида бензофенонтетракарбоновой кислоты, а в качестве обезжиривающих очищающих материалов нефраса и ацетона.
Для закрепления на поверхности детали тензорезистора может использоваться широкий круг клеев на основе эпоксидных олигомеров. Особенностью предложения является то, что полимеризацию и отверждение клея производят при термообработке, перед нанесением водозащитного слоя. Опытным путем было установлено, что наилучшие результаты закрепления тензорезистора на детали получены при использовании клея модифицированного электрокорундом составленного на основе смеси эпоксидированной новолачной смолы, эпоксидированной смолы на основе резорцина, диангидрида бензофенонтетракарбоновой кислоты, электрокорунда и 1,3 диоксолана. Для полимеризации и отверждения такого клея между деталью и наклеенным на нее терморезистором разработан специальный режим термообработки. Клей термообрабатывают, нагревают и выдерживают при температуре 170-225°С течение 1,5…2,0 часа.
Клей на рабочие поверхности наносят в два этапа, сначала образуют грунтовочный, а затем основной слой и производят предварительную сушку после нанесения каждого слоя. Полученный опытным путем клей позволяет значительно сократить время предварительной сушки слоев и позволяет начинать термообработку для полимеризации и отверждения уже через 10 минут предварительной сушки.
Пример.
Закрепление тензорезистора на поверхности детали сборочной единицы (например: лопатки газотурбинного двигателя) испытывали на тензорезисторах ВАВ120-ЗАА250(9) (фольговый константан на полииамидной подложке). После разметки на поверхности детали мест расположения тензорезисторов, поверхность детали, не подлежащую обработке, закрывали, например, скотчем. При наличии криволинейных поверхностей для лучшего прилегания скотч подогревали.
Открытые поверхности лопатки обдували смесью: 80% электрокорунда и 20% малеинового ангидрида фракцией F100 (100 мкм). Смесь подавали под углом 30° к горизонтали на расстоянии от сопла до поверхности 150-200 мм под напором воздуха Рвоз=5 кгс/см2. Продолжительность обработки 40 с. Поверхность тензорезистора не подвергали пескоструйной обработке. Для приклеивания тензорезисторов использовали подготовленный клей содержащий: эпоксидированную новолачную смолу 11%, эпоксидированную смолу на основе резорцина 3%, диангидрид бензофенонтетракарбоновой кислоты - 11%, электрокорунд 0,8% и 1,3 диоксолан остальное. Перед нанесением первого грунтовочного слоя на поверхность лопатки и тензорезистора подвергали обезжиривающей очищающей обработке нефрасом и ацетоном. После подсушивания грунтовочного слоя в течении 3 минут наносили основной слой клея на грунтовочный слой. После выдержки на воздухе 5 мин тензорезистор прижимали к поверхности лопатки и с помощью ленты, резины, прижимной пластины и зажима создавали давление на тензорезистор. Наличие приведенного набора компонентов в клее обеспечивает надежное приклеивание тензорезистора, без учета конкретного состава, который в рамках приведенного примера является случайным. Предложенный способ допускает и другие процентные содержания компонентов в клее.
Не позднее чем через 10 минут после начала подсушивания грунтовочного слоя деталь с приклеенным тензорезистором помещали в электрическую печь, где их подвергали термообработке для полимеризации и и отверждения клея по режиму: нагрев и выдержка при температуре 170°С течение 60 минут и выдержка при температуре 225°С в течение 60 минут. После остывания вместе с печью, деталь с приклеенным тензорезистором, освобождали от зажима и на поверхность датчика наносили гель на основе фенолформальдегидной смолы и специально подготовленная стеклоткань (стеклошифон), которую подвергали термической обработке, для завершения отверждения связующего (геля), при температуре 180°С в течение 2,0 часов, до образования полимера типа «стеклотекстолит».
Сравнительные испытания качества наклейки тензорезисторов по известному и предлагаемому способам осуществляли на измерительной консольной балке равного сопротивления, которая обладает эталонной относительной упругой деформацией при ее изгибе. На измерительную консольную балку равного сопротивления длиной 0,5 м и толщиной 0,01 м по известному и предлагаемому способам наклеивали тензорезисторы ВАВ120-ЗАА250(9) с длиной базы 3 мм сопротивлением RO=120 Ом. Тензорезисторы подключали к компенсационным мостовым измерительным схемам с температурной компенсацией. После подключения тензорезисторов, осуществляли изгиб балки посредством дискретного смещения ее свободного конца от 0 до 25 мм, и с помощью датчиков проводили измерение относительной упругой деформации.
Полученные результаты показали, что отклонение измеренной относительной упругой деформации от эталонной для измерительной консольной балки равного сопротивления вычисленной по формуле:
Е=(h
Figure 00000001
μ)/I2 где h - толщина балки;
Figure 00000001
μ - величина прогиба свободного конца балки; I - длина балки, для предложенного способа закрепления при смещении ее свободного конца на 25 мм, не превышает Е=1,2%,а для датчика приклеенного по известному способу Е=4,4%.
Для испытания надежности способов закрепления тензорезистора на поверхности детали на «отрыв», на газотурбинном двигателе проводили испытания 30 датчиков закрепленных по известной и 30 тензорезиторах по предлагаемой технологии. В результате испытаний в 12 случаях (≈40%) наблюдались нарушения условий закрепления датчиков, закрепленных по известной технологии и 6 случаев (≈20%) по предложенной технологии.
Применение предложенного способа закрепления тензорезистора позволяет повысить точность измерений, снизить погрешности измерения, повысить стойкость и надежность закрепленных тензорезисторов на поверхности детали.

Claims (7)

1. Способ закрепления тензорезистора на поверхности детали, включающий нанесение клея на основе эпоксидных олигомеров на рабочие поверхности детали и тензорезистора, установку тензорезистора на клей, полимеризацию и отверждение клея при термообработке под давлением, нанесение влагозащитного покрытия и его термообработку, отличающийся тем, что в качестве влагозащитного покрытия используют стеклошифон, пропитанный гелем на основе фенолформальдегидной смолы, а в качестве клея используют модифицированный электрокорундом клей на основе эпоксидных олигомеров, перед нанесением клея рабочие поверхности детали и/или тензорезистора подвергают пескоструйной обработке смесью электрокорунда и твердого ангидрида и очищают с использованием нефраса и ацетона, нанесение клея на рабочие поверхности производят в два этапа, сначала нанесение грунтовочного, а затем основного слоев и последующую их сушку после нанесения каждого слоя, при этом полимеризацию и отверждение клея производят перед нанесением стеклошифона, а нанесенный на тензорезистор стеклошифон подвергают термообработке при температуре 100…180°С в течение 2-3 часов.
2. Способ закрепления тензорезистора по п. 1, отличающийся тем, что смесь для пескоструйной обработки содержит электрокорунд и твердый ангидрид при соотношении, мас.%:
Электрокорунд 70-90 Твердый ангидрид 10-30
3. Способ закрепления тензорезистора по п. 2, отличающийся тем, что в смеси в качестве твердого ангидрида используют малеиновый ангидрид.
4. Способ закрепления тензорезистора по п. 2, отличающийся тем, что в качестве твердого ангидрида используют диангидрид бензофенонтетракарбоновой кислоты.
5. Способ закрепления тензорезистора по п. 1, отличающийся тем, что в качестве клея модифицированного электрокорундом используют клей, составленный на основе смеси эпоксидированной новолачной смолы, эпоксидированной смолы на основе резорцина, диангидрида бензофенонтетракарбоновой кислоты, электрокорунда и 1,3 диоксолана.
6. Способ закрепления тензорезистора по п. 1, отличающийся тем, что для полимеризации и отверждения клей термообрабатывают при температуре 170-225°С в течение 1,5…2,0 часа.
RU2019117399A 2019-06-05 2019-06-05 Способ закрепления тензорезистора на поверхности детали RU2715890C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019117399A RU2715890C1 (ru) 2019-06-05 2019-06-05 Способ закрепления тензорезистора на поверхности детали

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019117399A RU2715890C1 (ru) 2019-06-05 2019-06-05 Способ закрепления тензорезистора на поверхности детали

Publications (1)

Publication Number Publication Date
RU2715890C1 true RU2715890C1 (ru) 2020-03-04

Family

ID=69768249

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019117399A RU2715890C1 (ru) 2019-06-05 2019-06-05 Способ закрепления тензорезистора на поверхности детали

Country Status (1)

Country Link
RU (1) RU2715890C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807089C1 (ru) * 2022-11-10 2023-11-09 Александр Александрович Цывин Способ наклейки тензорезисторов на внутреннюю поверхность цилиндрического упругого элемента

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1004750A1 (ru) * 1980-03-19 1983-03-15 Предприятие П/Я А-7544 Способ закреплени тензорезисторов
SU1249315A1 (ru) * 1984-06-22 1986-08-07 Всесоюзный Дважды Ордена Трудового Красного Знамени Теплотехнический Научно-Исследовательский Институт Им.Ф.Э.Дзержинского Способ закреплени тензорезистора на детали
SU1762114A1 (ru) * 1990-08-21 1992-09-15 Московское научно-производственное объединение "Измеритель" Способ закреплени тензорезистора на детали
WO2014094702A2 (de) * 2012-12-21 2014-06-26 Thiele Gmbh & Co. Kg Montageverfahren für einen dehnmessstreifen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1004750A1 (ru) * 1980-03-19 1983-03-15 Предприятие П/Я А-7544 Способ закреплени тензорезисторов
SU1249315A1 (ru) * 1984-06-22 1986-08-07 Всесоюзный Дважды Ордена Трудового Красного Знамени Теплотехнический Научно-Исследовательский Институт Им.Ф.Э.Дзержинского Способ закреплени тензорезистора на детали
SU1762114A1 (ru) * 1990-08-21 1992-09-15 Московское научно-производственное объединение "Измеритель" Способ закреплени тензорезистора на детали
WO2014094702A2 (de) * 2012-12-21 2014-06-26 Thiele Gmbh & Co. Kg Montageverfahren für einen dehnmessstreifen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2807089C1 (ru) * 2022-11-10 2023-11-09 Александр Александрович Цывин Способ наклейки тензорезисторов на внутреннюю поверхность цилиндрического упругого элемента

Similar Documents

Publication Publication Date Title
KR101544954B1 (ko) 내크랙성 에폭시 도막의 형성 방법 및 상기 방법에 적절한 페인트 조성물
Loh et al. Modelling anomalous moisture uptake, swelling and thermal characteristics of a rubber toughened epoxy adhesive
US6391959B1 (en) Phenolic resin composition for fiber-reinforced composite material, prepreg for fiber-reinforced composite material, and process for producing prepreg for fiber-reinforced composite material
KR102271026B1 (ko) 다층구조를 가지는 하드코팅 필름 및 이를 포함하는 폴리이미드 필름
JP2005214969A (ja) 力計測セルの変形可能な本体へのひずみゲージの接着技術
Baker A summary of work on applications of advanced fibre composites at the Aeronautical Research Laboratories, Australia
RU2715890C1 (ru) Способ закрепления тензорезистора на поверхности детали
Ferguson et al. Elastic modulus variation due to moisture absorption and permanent changes upon redrying in an epoxy based underfill
Watson et al. Fracture properties of adhesive joints under mechanical stresses
Sciolti et al. Effect of thermo-hygrometric exposure on FRP, natural stone and their adhesive interface
Rudawska et al. The effect of environmental ageing at lower and sub-zero temperatures on the adhesive joint strength
Gomatam et al. Effects of various adherend surface treatments on fatigue behavior of joints bonded with a silver-filled electronically conductive adhesive
RU2698554C1 (ru) Способ установки тензорезисторов
Zanni-Deffarges et al. Evaluation of adhesive shear modulus in a torsional joint: influence of ageing
Liu et al. Effects of moisture content on lap-shear, bending, and tensile strength of lap-jointed and finger-jointed southern pine using phenol resorcinol formaldehyde and melamine urea formaldehyde
Croll et al. Variability of pipe coating pull-off adhesion measurements on cylindrical steel pipelines
Sugiman et al. Effect of adhesive layer thickness on the shear strength of adhesively bonded steel joints in wet environment
JP2011191274A (ja) 接着剤の劣化度評価方法
Bauer et al. Determination of the stresses and properties of polymer coatings
Sura et al. Indentation test for adhesion measurement of polyimide films
Jiao et al. Effect of thermal residual stress on the measurement of the adhesion between polyimide and underfill using an asymmetric double cantilever beam specimen
Marra Caraterização termomecânica de adesivos estruturais a altas temperaturas
EP4286486A1 (en) Methods of applying bond primer compositions for bonded aerospace structures
KR100893983B1 (ko) 다이 접착 필름과 그 수지 조성물
Hwang et al. Effects of thermoplastic resin content of anisotropic conductive films on the pressure cooker test reliability of anisotropic conductive film flip-chip assembly