RU2715717C1 - КРИСТАЛЛИЧЕСКИЕ ПОЛИМОРФЫ МОНОГИДРАТЫ 8-ХЛОР-11-(4-МЕТИЛ-1-ПИПЕРАЗИНИЛ)-5Н-ДИБЕНЗО[b,e][1,4]ДИАЗЕПИНА (КЛОЗАПИНА) - Google Patents

КРИСТАЛЛИЧЕСКИЕ ПОЛИМОРФЫ МОНОГИДРАТЫ 8-ХЛОР-11-(4-МЕТИЛ-1-ПИПЕРАЗИНИЛ)-5Н-ДИБЕНЗО[b,e][1,4]ДИАЗЕПИНА (КЛОЗАПИНА) Download PDF

Info

Publication number
RU2715717C1
RU2715717C1 RU2018146755A RU2018146755A RU2715717C1 RU 2715717 C1 RU2715717 C1 RU 2715717C1 RU 2018146755 A RU2018146755 A RU 2018146755A RU 2018146755 A RU2018146755 A RU 2018146755A RU 2715717 C1 RU2715717 C1 RU 2715717C1
Authority
RU
Russia
Prior art keywords
monohydrate
dibenzo
chloro
diazepine
piperazinyl
Prior art date
Application number
RU2018146755A
Other languages
English (en)
Inventor
Андрей Петрович Лянгус
Original Assignee
Акционерное общество "Органика"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Органика" filed Critical Акционерное общество "Органика"
Priority to RU2018146755A priority Critical patent/RU2715717C1/ru
Application granted granted Critical
Publication of RU2715717C1 publication Critical patent/RU2715717C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/551Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having two nitrogen atoms, e.g. dilazep
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Psychiatry (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Изобретение относится к кристаллическому моногидрату клозапина формулы (I), в частности к его полиморфам 1 и 2, способам их получения и фармацевтической композиции на их основе. Технический результат: получены новые полиморфы кристаллических моногидратов формулы (I), обладающие меньшей токсичностью по сравнению с клозапином. 6 н.п. ф-лы, 6 ил., 1 табл., 2 пр.

Description

Изобретение относится к органической и медицинской химии, а именно к кристаллическому гидрату клозапина формулы (I) и твердой фармацевтической композиции на его основе. Технический результат: получен кристаллический гидрат формулы (I), обладающий меньшей токсичностью и предпочтительнее при получении лекарственного продукта на его основе.
Figure 00000001
Сольваты являются соединениями, образованными в результате сольватации, которая представляет собой комбинацию молекул растворителя с молекулами или ионами растворенного вещества. Сольватация представляет собой взаимодействие растворенного вещества с растворителем, которое приводит к стабилизации молекул растворенного вещества в растворе. Сольватация может также относиться к сольватированному состоянию, где ион в растворе образует комплекс с молекулами растворителя. Растворитель производит растворение. Растворителями могут быть газы, жидкости или твердые вещества. Если растворителем является твердое вещество, тогда могут быть растворены газы, жидкости и твердые вещества. Примерами жидкости в твердом веществе являются, например, ртуть в золоте с образованием амальгамы. Сольваты и особенно твердые сольваты могут иметь различные и четко выраженные физические свойства, такие как различные профили растворимости, различная термодинамическая стабильность, различный режим кристаллизации, различная фильтрационная способность, различные температуры плавления и/или различные пики дифракции рентгеновских лучей. Различие в физических свойствах разных сольватов и их полиморфных форм является следствием различной ориентации и межмолекулярных взаимодействий соседних молекул в твердом веществе. Полиморфные формы соединений или сольватов можно различать по дифракции рентгеновских лучей и другими методами, такими как инфракрасная спектроскопия или рамановская спектроскопия, например.
Гидрат является сольватом, содержащим воду. Согласно изобретению термин "гидрат соединения (I)" включает все водные сольваты соединения (I), где вода присутствует в любом соотношении к соединению (I). Однако, как признают специалисты в данной области, нельзя предугадать присутствие новых твердых сольватов известного химического соединения. Нельзя предусмотреть существование кристаллических фаз (гидраты или сольваты). Кроме того, нельзя определить условия, при которых имеет место кристаллизация для достижения конкретной формы и характеристики полиморфных форм и сольватов. Поскольку свойства, такие как растворимость и стабильность, и, следовательно, пригодность к использованию и хранению каждого полиморфа и сольвата, могут изменяться, наличие полиморфов является важным для обеспечения фармацевтических препаратов с повышенной стабильностью при хранении или прогнозируемыми профилями растворимости.
В настоящее время известны следующие сольваты клозапина (1): моногидрат (Т.J. Petcher and Н.-Р. Weber, J. Chem. Soc., Perkin Trans. 2, 1976, DOI: 10.1039/P29760001415, 1415-1420.), дибромид (J.P. Fillers and S.W. Hawkinson, Acta Crystallogr., Sect. B: Struct. Sci., 1982, 38, 1750-1753.), 3,5-динитробензоат, малеат и 2-гидроксибензоат (М. Kaur, J.P. Jasinski, H.S. Yathirajan, C.N. Kavitha and C. Glidewell, Acta Crystallogr., Sect. E: CrystComm, 2015, 71, 406-413.), сольват с метанолом (Verma, V; Bannigan, P; Lusi, M; Crowley, CM; Hudson, S; Hodnett, BK; Davern, P CrystEngComm 2018, 20, 31, 1-32)DOI: 10.1039/C8CE00663F.
В качестве прототипа выбран моногидрат клозапина (Verma, V; Bannigan, Р; Lusi, М; Crowley, CM; Hudson, S; Hodnett, BK; Davern, P The Heterogeneous Crystallization of a Novel Solvate of Clozapine Base in the presence of Excipients CrystEngComm 2018, 20, 31, 1-32; DOI: 10.1039/C8CE00663F) от которого отличаются моногидрат полиморфа 1 и моногидрат полиморфа 2 по представленным дериватограммам и по фармакологическим свойствам от фармакопейного клозапина.
Задача настоящего изобретения состояла в предоставлении новых твердых форм 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина (соединение (I)). В частности, задача изобретения состояла в предоставлении новых кристаллических твердых форм соединения (I). Которые имеют благоприятный профиль характеристик или являются пригодными для получения соединения. В частности, задача изобретения состояла в предоставлении новых кристаллических твердых форм соединения (I), имеющих такие благоприятные свойства, которые делают применение соединения (I) в качестве фармацевтически активного соединения более выгодным.
В частности, задача изобретения состояла в предоставлении новых кристаллических твердых форм соединения (I), имеющих благоприятные свойства относительно стабильности, растворимости, технологических свойств, гигроскопичности, текучести, фильтрационной способности или скорости кристаллизации.
Задачи изобретения были решены посредством следующих вариантов осуществления изобретения.
Один из вариантов осуществления настоящего изобретения относится к гидрату 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина. В одном из вариантов осуществления настоящего изобретения гидратом является моногидрат. Другой вариант осуществления настоящего изобретения относится к моногидрату 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина и его полиморфу 2 и любой их смеси.
В контексте настоящего изобретения, полиморф, полиморфная форма, сольват и т.д. всегда относится к полиморфу, полиморфной форме или сольвату 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина (I). Термины "полиморф", "форма" и "фаза" могут быть использованы в данном описании взаимозаменяемо. Безводные и свободные от растворителя формы, а также гидраты настоящего изобретения были получены, как изложено в Примерах, представленных ниже.
Описание фигур
На фиг. 1 представлена картина дифракции рентгеновских лучей 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина (I), полученная в трансмиссионном режиме с CuKα1-излучением при комнатной температуре (ось х: дифракционный угол 2 тета (2θ) [°]; ось у: относительная интенсивность [% самого высокого отражения]).
На фиг. 2 представлена TGA термограмма соединения (I).
На фиг. 3 представлена картина дифракции рентгеновских лучей моногидрата полиморфа 1 соединения (I), полученная в трансмиссионном режиме с CuKα1-излучением при комнатной температуре (ось х: дифракционный угол 2 тета (2θ) [°]; ось у: относительная интенсивность [% самого интенсивного отражения]).
На фиг. 4 представлена TGA термограмма моногидрата полиморфа 1 соединения (I).
На фиг. 5 представлена картина дифракции рентгеновских лучей моногидрата полиморфа 2 соединения (I), полученная в трансмиссионном режиме с CuKα1-излучением при комнатной температуре (ось х: дифракционный угол 2 тета (2θ) [°]; ось у: относительная интенсивность [% самого интенсивного отражения]).
На фиг. 6 представлена TGA термограмма моногидрата полиморфа 2 соединения (I).
Одним вариантом осуществления настоящего изобретения является кристаллический гидрат полиморфа 1 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина (I). Другим вариантом осуществления настоящего изобретения является кристаллический гидрат полиморфа 1 соединения (I), где гидрат содержит приблизительно 5,2-5,4% воды (масс/масс). Другим вариантом осуществления настоящего изобретения является гидрат, где гидрат содержит 1,0 - 1,05 молекул воды на молекулу 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина (I). Другим вариантом осуществления настоящего изобретения является гидрат полиморфа 1, где гидрат содержит 1 молекулу воды на молекулу 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина (I).
Кристаллический гидрат полиморфа 1, содержащий 1,0-1,05 молекул воды на молекулу, в данном описании называют "моногидрат", и он является вариантом осуществления настоящего изобретения.
Другим вариантом осуществления настоящего изобретения является гидрат полиморфа 2, содержание воды которого составляет 5,2-5,4% воды (масс/масс). В другом варианте осуществления гидрат полиморфа 2 содержит приблизительно 1,0-1,05 молекулы воды. Кристаллическая структура гидрата остается, даже если дигидрат сушат. Содержание воды в выделенном продукте зависит от условий сушки, используемых в течение обработки гидрата после кристаллизации.
В одном варианте осуществления изобретения моногидрат полиморфа 1 имеет свойство проявлять по меньшей мере характеристическое отражение рентгеновского излучения, фиксированное на рентгеновской порошковой дифрактограмме при использовании CuKα1-излучения, при 7,7±0,2 градусах 2 тета.
В другом варианте осуществления изобретения моногидрат полиморфа 1 имеет свойство проявлять по меньшей мере характеристические отражения рентгеновского излучения, фиксированные на рентгеновской порошковой дифрактограмме при использовании CuKα1-излучения, при 10,48, 10,84, 13,44, 13,94, 17,86, 18,36, 20,96, 23,14, 24,00 и 33,00 градусах 2 тета ± 0,2 градуса 2 тета (фиг. 3).
В другом варианте осуществления изобретения моногидрат полиморфа 2 имеет свойство проявлять по меньшей мере характеристические отражения рентгеновского излучения, фиксированные на рентгеновской порошковой дифрактограмме при использовании CuKα1-излучения, при 10.48, 10.84, 12.04, 13.92, 17.84, 20.94, 23.16, 23.96, 32.86 и 33.04 градусах 2 тета ± 0,2 градуса 2 тета (фиг. 5).
В другом варианте осуществления изобретения моногидрат может также характеризоваться картиной рентгеновской порошковой дифракции, по существу такой картиной, которая представлена на фиг. 1, которая была получена при использовании CuKα1-излучения в трансмиссионном режиме, где интенсивности отражений, показанные на фигуре, а также интенсивности отражений, указанные выше, не заданы заранее, а могут изменяться.
Моногидрат полиморфа 1 также может характеризоваться TGA-диаграммой, представленной на фиг. 4. При нагревании моногидрата в сухой среде, значительная потеря массы начинается уже при слегка повышенной температуре и заканчивается при температуре приблизительно 110°С. В данном примере диаграмма показывает потерю массы 0,57 мг воды, соответствующую 5,2% масс. воды, которая означает, что данный образец потерял приблизительно 1 моль воды на моль соединения (I) при нагревании.
Моногидрат полиморфа 2 также может характеризоваться TGA-диаграммой, представленной на фиг. 6. При нагревании моногидрата в сухой среде, значительная потеря массы начинается уже при слегка повышенной температуре и заканчивается при температуре приблизительно 110°С. В данном примере диаграмма показывает потерю массы 0,57 мг воды, соответствующую 5,2% масс. воды, которая означает, что данный образец потерял приблизительно 1 моль воды на моль соединения (I) при нагревании.
Моногидрат полиморфа 1
Другой аспект настоящего изобретения относится к моногидрату полиморфа 1 соединения (I), который имеет свойство проявлять по меньшей мере характеристические отражения рентгеновских лучей, фиксированные на рентгеновской порошковой дифрактограмме при использовании CuKα1-излучения, при
10,48,
10,84,
13,44,
13,94,
17,86,
18,36,
20,96,
23,14,
24,00 и
33,00 градусах 2 тета ± 0,2 градуса 2 тета.
В другом аспекте моногидрат полиморфа 1 имеет свойство проявлять по меньшей мере характеристические отражения рентгеновских лучей, фиксированные на рентгеновской порошковой дифрактограмме при использовании CuKα1-излучения.
В другом варианте осуществления изобретения моногидрат полиморфа 1 может также характеризоваться картиной дифракции рентгеновских лучей, по существу такой картиной, как представленная на фиг. 3. Картина была получена при использовании CuKα1-излучения в трансмиссионном режиме, где интенсивности отражений, изображенные на фигуре, а также интенсивности отражений, установленные выше, не являются необходимым предварительным условием, а могут изменяться.
В следующем аспекте изобретение относится к моногидрату полиморфа 2 соединения (I), который отличается от моногидрата полиморфа 1, может быть получен прямо из соединения (I).
Моногидрат полиморфа 2
Другой аспект настоящего изобретения относится к моногидрату полиморфа 2 соединения (I), который имеет свойство проявлять по меньшей мере характеристические отражения рентгеновских лучей, фиксированные на рентгеновской порошковой дифрактограмме при использовании CuKα1-излучения, при
10.48,
10.84,
12.04,
13.92,
17.84,
20.94,
23.16,
23.96,
32.86 и
33.04 градусах 2 тета ± 0,2 градуса 2 тета.
В другом аспекте моногидрат полиморфа 1 имеет свойство проявлять по меньшей мере характеристические отражения рентгеновских лучей, фиксированные на рентгеновской порошковой дифрактограмме при использовании CuKα1-излучения.
В другом варианте осуществления изобретения моногидрат полиморфа 1 может также характеризоваться картиной дифракции рентгеновских лучей, по существу такой картиной, как представленная на фиг. 5. Картина была получена при использовании CuKα1-излучения в трансмиссионном режиме, где интенсивности отражений, изображенные на фигуре, а также интенсивности отражений, установленные выше, не являются необходимым предварительным условием, а могут изменяться.
Другой аспект настоящего изобретения относится к использованию гидрата полиморфа 1 либо гидрата полиморфа 2 или смеси полиморфных форм 1 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина (I) согласно настоящему изобретению в качестве фармацевтическогопрепарата или лекарственного средства.
В одном варианте осуществления изобретение относится к применению полиморфной формы, выбранной из полиморфных форм моногидрата 1 и 2 или смеси этих форм, содержащих по меньшей мере одну из полиморфных форм моногидрата 1 и 2, в качестве фармацевтического препарата или лекарственного средства.
Следующий аспект настоящего изобретения относится к твердой фармацевтической композиции, содержащей по меньшей мере одну полиморфную форму моногидрата 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина (I) согласно настоящему изобретению, особенно форму, выбранную из полиморфных форм моногидрата 1 или 2 и один или более фармацевтически приемлемых наполнителей, т.е. неактивных веществ, таких как разбавители и другие вспомогательные средства.
В одном варианте осуществления изобретения фармацевтическая композиция содержит одну из полиморфных форм моногидрата 1 или 2.
Другой аспект настоящего изобретения относится к применению полиморфной формы или смеси полиморфных форм моногидрата 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина (I) согласно настоящему изобретению в качестве фармацевтического препарата или лекарственного средства в комбинации с одним или более другими фармакологически активными ингредиентами, которые оказывают, например, благоприятные воздействия на нарушения метаболизма или расстройства, часто ассоциированные с ними. Примерами таких составов являются:
Состав на одну сублингвальную таблетку клозапина 7 мг.
Гидрат полиморфа 1 7 мг
Кислота янтарная 5 мг
Глицин 35 мг
Сорбит 23 мг
ПВП (поливинилпирролидон) 15 мг
Крахмал картофельный 10 мг
Твин 80 (полисорбат 80) 2 мг
Стеарат магния 1 мг
Тальк 2 мг
Итого: 100 мг
Средняя масса таблетки - от 90 до 110 мг (100 мг + 10%).
Другим аспектом изобретения является изменение скорости высвобождения основного вещества в фармакопейном тесте «Растворение».
Все три вида таблеток, полученных из трех разных кристаллических форм, распадались в течение 1 мин. Никаких существенных различий в скорости распада таблеток не замечено. Однако, таблетки, из кристаллических полиморфных форм моногидрата 1 или 2, полученных перекристаллизацией из изопропанола, содержащего 30 и 40% воды соответственно, уже через 5 мин показали в растворе максимальную концентрацию, которая не изменялась на протяжении 45 мин. В таблетках из фармакопейной субстанции (1), клозапин выходил в раствор постепенно, обеспечив максимальную концентрацию только после 30 мин.
Результаты исследования позволили сделать предположение о возможном различии в фармакологической активности кристаллических форм клозапина, полученных по разной технологии. Кристаллизационная вода значительно увеличивает скорость растворения клозапина в биожидкостях, что, в свою очередь, может увеличить биодоступность и, вероятно, эффективность.
Другим аспектом изобретения является оценка острой токсичности кристаллических форм клозапина:
фармакопейная субстанция (1)LD50=225,1 мг/кг
моногидрат полиморфа 1(1) LD50=271,5 мг/кг
моногидрат полиморфа 2(1) LD50=282,8 мг/кг,
что свидетельствует об изменении токсикологических свойств объектов настоящего изобретения.
Другим аспектом изобретения является изменение клинических признаков нарушения здоровья у животных, получавших в токсических дозах кристаллические формы клозапина.
Клинические признаки нарушения здоровья у животных после однократного внутрижелудочного введения образцов клозапина различной модификации в дозах 100, 200 и 400 мг/кг представлены в таблице 1.
Перед гибелью у части животных наблюдались следующие клинические признаки нарушения здоровья: клонические судороги, эрекция хвоста.
Figure 00000002
Figure 00000003
Figure 00000004
Примеры
Следующие примеры иллюстрируют образование моногидратов полиморфов согласно настоящему изобретению в качестве примера.
Если не указано иное, сушку осуществляли во всех экспериментах, касающихся образования и созревания кристаллов, описанных ниже, в течение ночи при пониженном давлении (приблизительно <10 мбар) при 40°С. Гидраты полиморфов 1 и 2, были идентифицированы и охарактеризованы посредством картины XRPD (дифракционная картина рассеяния рентгеновских лучей).
1) Образование моногидрата полиморфа 1 (C20H19ClN4O, MW=344,83)
В смеси 70 мл изопропанола и 30 мл воды при 80°С растворяли 10 г 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина (I) охлаждали до 20°С и затем до 2-8°С, в течение 20 часов, обеспечивая кристаллизацию моногидрата полиморфа 1. Полученный осадок выделяли посредством фильтрования, промывали охлажденной до 10°С смесью изопропанол/вода (7:3) и сушили в вакууме при 10 мбар и 40°С и затем
3 суток на воздухе при температуре 20-25°С. Получали 7,9 г моногидрата полиморфа 1.
2) Образование моногидрата полиморфа 2 (C20H19ClN4O, MW=344,83)
В смеси 60 мл изопропанола и 40 мл воды при 80°С растворяли 10 г 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина (I) охлаждали до 20°С и затем до 2-8°С, в течение 20 часов, обеспечивая кристаллизацию моногидрата полиморфа 2. Полученный осадок выделяли посредством фильтрования, промывали охлажденной до 10°С смесью изопропанол/вода (6:4) и сушили в вакууме при 10 мбар и 40°С и затем 3 суток на воздухе при температуре 20-25°С. Получали 8,2 г моногидрата полиморфа 2.
Аналитические методы и условия процедуры
Рентгеновская порошковая дифрактометрия (XRPD) Все определения дифракции рентгеновских лучей осуществляли посредством дифрактометра Shimadzu XRD-6000 в трансмиссионном режиме, используя CuKα1-излучение (длина волны составляет 1,54060 Ангстрем). Для порошковой дифракции при комнатной температуре использовали линейные позиционно-чувствительные детекторы. Рентгеновскую порошковую дифрактометрию осуществляли при комнатной температуре.
На фигурах представлены полученные рентгеновские порошковые дифрактограммы:
8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,е][1,4]диазепина (I) (Фиг. 1);
моногидрат полиморфа 1 (I) (Фиг. 3);
моногидрата полиморфа 2 (I) (Фиг. 5);
Углы 2θ (2 тета) определены в ° (градус). Определенные 2θ (2 тета) углы в ° (градус) были обоснованы с потенциальной дисперсией (отклонением) ± 0,6 градуса 2 тета.
Термогравиметрический анализ (TGA)
Все измерения TGA осуществляли с использованием прибора NETZSCH STA 449 F1 (модуль DSC822e/700/l09/414935/0025). Условия измерений: материал тигля - окись алюминия, атмосфера съемки - аргон, скорость потока 80 мл/мин, скорость нагрева 10°С/мин, температурный диапазон от 30 до 230°С. Навеска образца - 3 мг. Температуру и тепловой поток калибровали с использованием пика плавления ссылочного индия.
Список литературы
1. Petcher Т. J. and Weber H.-P., Conformations of Some Semi-rigid Neuroleptic Drugs. Part 1. Crystal Structures of Loxapine, Clozapine, and HUF-2046 Monohydrate {2-Chloro-11-(4-methylpiperazin-l-yl)dibenzo[b,f][1,4]oxazepine, 8-Chloro-11-(4-methylpiperazin-l-yl)dibenzo[b,e][1,4]diazepine, and 2-Chloro-11-(4-methylpiperazin-1-yl)dibenzo[b,e][I,4]diazepine Monohydrate) J. Chem. Soc., Perkin Trans. 2, 1976; DOI: 10.1039/P29760001415,1415-1420.).
2. Fillers J.P. and Hawkinson S.W., The Structure of 8-Chloro-11-(4-methyl-l-piperazinyl)-5H-dibenzo[b,e][1,4]diazepine Dihydrobromide, Clozapine Dihydrobromide Acta Crystallogr., Sect. B: Struct. Sci., 1982, 38,1750-1753.); DOI: 10.1107/S0567740882007109.
3. Kaur M., Jasinski J.P., Yathirajan H.S., Kavitha C.N. and Glidewell C, The crystal structures of three clozapinium salts: different molecular configurations, and supramolecular assembly in one, two and three dimensions. Acta Crystallogr., Sect. E: CrystComm, 2015, 71,406-413; doi: 10.1107/S205698901500554X.
Verma V, Bannigan P, Lusi M, Crowley CM, Hudson S, Hodnett BK, Davern P The Heterogeneous Crystallization of a Novel Solvate of Clozapine Base in the presence of Excipients CrystEngComm, 2018, 20, 31, 1-32; DOI: 10.1039/C8CE00663F (прототип).

Claims (10)

1. Кристаллический моногидрат полиморфа 1, содержащий 1 молекулу воды на молекулу 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,e][1,4]диазепина формулы I
Figure 00000005
характеризующийся отражением рентгеновского излучения, фиксированным на рентгеновской порошковой дифрактограмме при использовании CuKα1-излучения (длина волны 1,54056Å) при 10,48, 10,84, 13,44, 13,94, 17,86, 18,36, 20,96, 23,14, 24,00 и 33,00 градусах 2 тета ± 0,2 градуса 2 тета.
2. Кристаллический моногидрат полиморфа 2, содержащий 1 молекулу воды на молекулу 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,e][1,4]диазепина формулы I
Figure 00000005
характеризующийся отражением рентгеновского излучения, фиксированным на рентгеновской порошковой дифрактограмме при использовании CuKα1-излучения (длина волны 1,54056Å) при 10,48, 10,84, 12,04, 13,92, 17,84, 20,94, 23,16, 23,96, 32,86 и 33,04 градусах 2 тета ± 0,2 градуса 2 тета.
3. Способ получения моногидрата полиморфа 1 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,e][1,4]диазепина формулы I по п. 1, включающий растворение 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,e][1,4]диазепина (I) в смеси изопропанол/вода (7:3) при 80°C; охлаждение полученного раствора до 20°С и затем до 2 - 8°С в течение 20 часов; выделение полученного осадка посредством фильтрования; промывку выделенного осадка охлажденной до 10°С смесью изопропанол/вода (7:3); сушку в вакууме при давлении 10 мбар и температуре 40°С; сушку на воздухе в течение 3-х суток при температуре 20 - 25°С.
4. Способ получения моногидрата полиморфа 2 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,e][1,4]диазепина формулы I по п. 2, включающий растворение 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,e][1,4]диазепина (I) в смеси изопропанол/вода (3:2) при 80°, охлаждение до 20°С и затем до 2 - 8°С, в течение 20 часов; выделение полученного осадка посредством фильтрования; промывку выделенного осадка охлажденной до 10°С смесью изопропанол/вода (3:2), сушку в вакууме при давлении 10 мбар и температуре 40°С; сушку на воздухе в течение 3 суток при температуре 20 - 25°С.
5. Применение кристаллических моногидратов полиморфов по любому из пп. 1, 2 в качестве активного ингредиента фармацевтической композиции для снижения токсичности 8-хлор-11-(4-метил-1-пиперазинил)-5Н-дибензо[b,e][1,4]диазепина формулы I.
6. Фармацевтическая композиция для введения млекопитающим в дозах от 0,1 мг/кг до 100 мг/кг, содержащая в качестве активного ингредиента кристаллический моногидрат полиморфа по любому из пп. 1, 2 и фармацевтически приемлемый носитель.
RU2018146755A 2018-12-27 2018-12-27 КРИСТАЛЛИЧЕСКИЕ ПОЛИМОРФЫ МОНОГИДРАТЫ 8-ХЛОР-11-(4-МЕТИЛ-1-ПИПЕРАЗИНИЛ)-5Н-ДИБЕНЗО[b,e][1,4]ДИАЗЕПИНА (КЛОЗАПИНА) RU2715717C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018146755A RU2715717C1 (ru) 2018-12-27 2018-12-27 КРИСТАЛЛИЧЕСКИЕ ПОЛИМОРФЫ МОНОГИДРАТЫ 8-ХЛОР-11-(4-МЕТИЛ-1-ПИПЕРАЗИНИЛ)-5Н-ДИБЕНЗО[b,e][1,4]ДИАЗЕПИНА (КЛОЗАПИНА)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018146755A RU2715717C1 (ru) 2018-12-27 2018-12-27 КРИСТАЛЛИЧЕСКИЕ ПОЛИМОРФЫ МОНОГИДРАТЫ 8-ХЛОР-11-(4-МЕТИЛ-1-ПИПЕРАЗИНИЛ)-5Н-ДИБЕНЗО[b,e][1,4]ДИАЗЕПИНА (КЛОЗАПИНА)

Publications (1)

Publication Number Publication Date
RU2715717C1 true RU2715717C1 (ru) 2020-03-03

Family

ID=69768215

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018146755A RU2715717C1 (ru) 2018-12-27 2018-12-27 КРИСТАЛЛИЧЕСКИЕ ПОЛИМОРФЫ МОНОГИДРАТЫ 8-ХЛОР-11-(4-МЕТИЛ-1-ПИПЕРАЗИНИЛ)-5Н-ДИБЕНЗО[b,e][1,4]ДИАЗЕПИНА (КЛОЗАПИНА)

Country Status (1)

Country Link
RU (1) RU2715717C1 (ru)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2624229C2 (ru) * 2015-12-21 2017-07-03 Общество С Ограниченной Ответственностью "Валента-Интеллект" Таблетки клозапина с замедленным высвобождением и способ их получения

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2624229C2 (ru) * 2015-12-21 2017-07-03 Общество С Ограниченной Ответственностью "Валента-Интеллект" Таблетки клозапина с замедленным высвобождением и способ их получения

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Mino R. Caira, Crystalline Polymorphism of Organic Compounds, Topics in Current Chemistry, т. 198, стр.163-208, 1998. *
Mino R. Caira, Crystalline Polymorphism of Organic Compounds, Topics in Current Chemistry, т. 198, стр.163-208, 1998. Petcher and Н.-Р. Weber, Conformations of Some Semi-rigid Neuroleptic Drugs. Part 1. Crystal Structures of Loxapine, Clozapine, and HUF-2046 Monohydrate { 2- Chloro-I 1 -(4-methylpiperazin-l -yl)dibenzo[b,f] [I,4]oxazepine, 8-Chloro- 1 I -(4-methylpiperazin-l -yl)dibenzo[b,e] [I,4]diazepine, and 2-Chloro-I 1 - (4-methylpiperazin-I -yl)dibenzo[b,e] [I,4]diazepine Monohydrate), J. Chem. Soc., Perkin Trans. 2, 1976, 1415-1420. *
Petcher and Н.-Р. Weber, Conformations of Some Semi-rigid Neuroleptic Drugs. Part 1. Crystal Structures of Loxapine, Clozapine, and HUF-2046 Monohydrate { 2- Chloro-I 1 -(4-methylpiperazin-l -yl)dibenzo[b,f] [I,4]oxazepine, 8-Chloro- 1 I -(4-methylpiperazin-l -yl)dibenzo[b,e] [I,4]diazepine, and 2-Chloro-I 1 - (4-methylpiperazin-I -yl)dibenzo[b,e] [I,4]diazepine Monohydrate), J. Chem. Soc., Perkin Trans. 2, 1976, 1415-1420. *
Verma, V; Bannigan, Р; Lusi, М; Crowley, CM; Hudson, S; Hodnett, BK; Davern, P The Heterogeneous Crystallization of a Novel Solvate of Clozapine Base in the presence of Excipients CrystEngComm 2018, 20, 31, 1-32. *

Similar Documents

Publication Publication Date Title
ES2530090T3 (es) Sólido de gamma-carbolinas fusionadas con heterociclo sustituido
US20240140985A1 (en) Salts and crystal forms of gaba-a positive allosteric modulator
JP6537591B2 (ja) c−Met阻害剤の結晶性フリー塩基またはそれらの結晶性酸性塩、およびそれらの製造方法および用途
KR20190093651A (ko) ((5-(3-클로로페닐)-3-하이드록시피리딘-2-카보닐)아미노)아세트산의 신규한 결정질 형태 및 이의 제조 방법
KR20120052381A (ko) 프라수그렐 염의 결정형
BRPI1009006B1 (pt) Forma Polimórfica de 6-(1H-imidazol-1-il)-2-fenil-quinazolina, seu processo de preparação, formulação e composição farmacêutica
CN111278808A (zh) 2-(5-(4-(2-吗啉代乙氧基)苯基)吡啶-2-基)-n-苄基乙酰胺的固体形式
RU2715717C1 (ru) КРИСТАЛЛИЧЕСКИЕ ПОЛИМОРФЫ МОНОГИДРАТЫ 8-ХЛОР-11-(4-МЕТИЛ-1-ПИПЕРАЗИНИЛ)-5Н-ДИБЕНЗО[b,e][1,4]ДИАЗЕПИНА (КЛОЗАПИНА)
JP7152122B2 (ja) エダラボン塩
CN111527089B (zh) Acalabrutinib的新晶型及其制备方法和用途
US10604521B2 (en) Crystalline forms of PLX3397 hydrochloride, processes for preparation and use thereof
US20220281879A1 (en) Salt and crystal forms of an activin receptor-like kinase inhibitor
JP2023521985A (ja) S-ピンドロールの有機酸付加塩
AU2017342239B2 (en) Crystalline forms of 4-(2-((1R,2R)-2-hydroxycyclohexylamino) benzothiazol-6-yloxy)-N-methylpicolinamide
US20150119398A1 (en) Form 2 polymorph of 7-(tert-butyl-d9)-3-(2,5-difluorophenyl)-6-((1-methyl-1h-1,2,4-triazol-5-yl)methoxy)-[1,2,4]triazolo[4,3-b]pyridazine
ES2809556T3 (es) Azina orbital-fumarato, hidrato, forma cristalina y método de preparación de los mismos
BR112021001435A2 (pt) formas cristalinas de um inibidor de lta4h
US20240279167A1 (en) Crystalline polymorphs of rigosertib sodium
KR102355955B1 (ko) 퀴나졸린 유도체의 염, 이의 제조 방법 및 응용
RU2619129C2 (ru) Кристаллические сольваты гидрохлорида 6-(пиперидин-4-илокси)-2н-изохинолин-1-oha
WO2024172778A1 (en) Novel polymorph of ruxolitinib hemifumarate and method of preparation
KR20220014858A (ko) 디아민 유도체의 결정형 및 이의 제조 방법
EP4355737A1 (en) Polymorphs of 2-(3,5-dichlorophenyl)-l,3-benzoxazole-6-carboxylic acid
CN118647618A (zh) Rabeximod化合物
BR112020003557A2 (pt) composto de triaminopirimidina, forma cristalina, processo para a preparação do composto e composição