RU2711318C2 - Способ получения люминесцентной керамики на основе сложных оксидов со структурой граната - Google Patents

Способ получения люминесцентной керамики на основе сложных оксидов со структурой граната Download PDF

Info

Publication number
RU2711318C2
RU2711318C2 RU2017146717A RU2017146717A RU2711318C2 RU 2711318 C2 RU2711318 C2 RU 2711318C2 RU 2017146717 A RU2017146717 A RU 2017146717A RU 2017146717 A RU2017146717 A RU 2017146717A RU 2711318 C2 RU2711318 C2 RU 2711318C2
Authority
RU
Russia
Prior art keywords
solutions
components
precipitation
drying
ceramics based
Prior art date
Application number
RU2017146717A
Other languages
English (en)
Other versions
RU2017146717A (ru
RU2017146717A3 (ru
Inventor
Екатерина Вадимовна Гордиенко
Алексей Ефимович Досовицкий
Георгий Алексеевич Досовицкий
Петр Викторович Карпюк
Михаил Васильевич Коржик
Дарья Евгеньевна Кузнецова
Виталий Александрович МЕЧИНСКИЙ
Василий Михайлович Ретивов
Андрей Анатольевич Федоров
Original Assignee
Федеральное государственное унитарное предприятие "Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра "Курчатовский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра "Курчатовский институт" filed Critical Федеральное государственное унитарное предприятие "Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра "Курчатовский институт"
Priority to RU2017146717A priority Critical patent/RU2711318C2/ru
Publication of RU2017146717A publication Critical patent/RU2017146717A/ru
Publication of RU2017146717A3 publication Critical patent/RU2017146717A3/ru
Application granted granted Critical
Publication of RU2711318C2 publication Critical patent/RU2711318C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7706Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates

Abstract

Изобретение относится к способам получения керамических люминесцентных и сцинтилляционных материалов. Такие материалы находят применение в качестве сцинтилляторов для систем рентгеновской компьютерной томографии, досмотровой техники и др., а также в качестве люминофоров для систем твердотельного освещения. Заявленный способ позволяет получать наноструктурированные порошки и люминесцентную керамику на их основе, содержащую одновременно Gd, Ga, Се, Al и необязательно Y. Способ включает следующие последовательные стадии: приготовление водных растворов солей исходных компонентов с точно известными концентрациями, объединение этих растворов в необходимом количестве для обеспечения требуемого состава компонентов, приготовление раствора осадителя, приливание растворов исходных компонентов в раствор осадителя, отделение осадка, сушку, термообработку при температуре 800-1000°С, компактирование и спекание при температуре не менее 1500°С. Для соблюдения стехиометрии растворы исходных компонентов разделяют на 2 или более группы и проводят их осаждение раздельно, причём количество осадителя выбирают таким образом, чтобы обеспечить наиболее полное осаждение входящих в группу компонентов. Гадолиний и галлий входят в разные группы. Полученные осадки смешивают, проводят их совместную сушку, и затем - термообработку полученного продукта и все последующие стадии. Техническим результатом заявленного изобретения является возможность получения люминесцентной керамики на основе сложных оксидов со структурой граната точно заданного состава. 2 пр., 9 ил.

Description

Изобретение относится к способам получения керамических люминесцентных и сцинтилляционных материалов. Такие материалы находят применение в качестве сцинтилляторов для систем рентгеновской компьютерной томографии, досмотровой техники и др., а также в качестве люминофоров для систем твердотельного освещения.
Люминесцентная керамика используется в качестве сцинтилляционного материала для систем медицинской визуализации [GE Gemstone. C.W.van Eijk, Nuclear Instr. Meth. Phys. Res. A, 509(1) (2003), 17-25] и в качестве люминофора для систем светодиодного освещения [Philips Lumiramics. S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto, Opt. Mater., 2011, 33, 688.]. Одним из наиболее перспективных семейств составов этих материалов являются сложные оксиды на основе Gd, Ga, Al и других элементов, которые рассматриваются для применения в качестве и сцинтилляторов [Z.M. Seeley, N.J. Cherepy, S.A. Payne. J. Cryst. Growth 379 (2013) 79-83. K. Kamada, T. Yanagida, J. Pejchal, M. Nikl, T. Endo, K. Tsutumi, Y. Fujimoto, A. Fukabori, A. Yoshikawa. J. Phys. D 44(50) (2011), 505104.] и люминофоров [S. Nishiura, S. Tanabe, K. Fujioka, Y. Fujimoto. Proc. of SPIE Vol. 7934, 2011, 793404-1-6. J. Ueda, K. Kuroishi, S. Tanabe. Applied Physics Express 7 (2014) 062201-1-3]. Сцинтилляционные характеристики соединений из этого семейтсва существенно зависят от вариаций состава [K. Kamada, S. Kurosawa, P. Prusa, M. Nikl, V.V. Kochurikhin, T. Endo, K. Tsutumi, H. Sato, Y. Yokota, K. Sugiyama, A. Yoshikawa. Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Optical Materials (2014) 36(12), 1942-1945. Dosovitskiy, G., Fedorov, A., Mechinsky, V., Borisevich, A., Dosovitskiy, A., Tret'jak, E., & Korjik, M. (2017, February). Persistent luminescence in powdered and ceramic polycrystalline Gd3Al2Ga3O12:Ce. In IOP Conference Series: Materials Science and Engineering (Vol. 169, No. 1, p. 012014). IOP Publishing]. Таким образом, для разработки и производства сцинтилляционных материалов на основе сложных оксидов со структурой граната необходим способ, позволяющий получать материал с точно заданным составом.
Известен способ получения керамики на основе сложного оксида Gd, Ga, Al, активированного Се, при помощи твердофазного синтеза из исходных наноразмерных порошков индивидуальных оксидов [Chen,X., Qin,H., Zhang,Y., Luo,Z., Jiang,J., Jiang,H. J. Am. Ceram. Soc. 98(8), 2015, 2352-2356. Chen,X., Qin,H., Wang,X., Yang,C, Jiang,J., Jiang,H. J. Eur. Ceram. Soc. 36(10), 2016, 2587-2591. US 8,815,122 В2]. Для осуществления этого метода требуются исходные порошки, отвечающие высоким требованиям по микроструктуре и/или длительный помол компонентов для их измельчения и гомогенизации. Этот процесс, также как и использование спекающих добавок является нежелательным приемом, так как может привести к загрязнению исходного порошка что, в свою очередь, вызовет ухудшение люминесцентных и сцинтилляционных характеристик получаемых материалов.
Также известен способ получения керамики на основе сложного оксида Gd, Y, Ga, Al, активированного Се из порошков, синтезированных методом пиролиза аэрозолей [Z.M. Seeley, N.J. Cherepy, S.A. Payne. J. Cryst. Growth 379 (2013) 79-83]. Этот метод позволяет получать порошки заданного состава и слабо агломерированные, но использует металлоорганические прекурсоры и является дорогостоящим в промышленной реализации.
Метод соосаждения из водных растворов солей компонентов получаемого материала является масштабируемым, использует стандартное технологическое оборудование и технологические процессы и позволяет получать порошки достаточного качества для получения прозрачной керамики, вплоть до лазерной.
Известен способ получения наноструктурированных порошков сложного оксида со структурой граната на основе Y, Ga, Al, активированного Се [RU 2503754, С30В 29/28, 2014], в котором применяется метод осаждения, который осуществляют путем введения в водный раствор гидрокарбоната аммония, используемого в качестве осадителя, смесевого водного раствора азотнокислых солей алюминия, иттрия и церия, с добавлением фтора в количестве 1-5%. При этом осаждение проводят при перемешивании реакционной массы со скоростью 300-500 об./мин., выделяют осажденный продукт, промывают его водой, сушат и прокаливают. Осаждение осуществляют, предпочтительно, 2-молярным водным раствором гидрокарбоната аммония. В качестве исходного раствора совместного водного раствора азотнокислых солей алюминия, иттрия и легирующих элементов, предпочтительно, используют раствор с общей концентрацией ионов металлов 1 моль/л. При этом смесевой раствор катионов приливают, предпочтительно, со скоростью, равной 60 мл/мин.
Известен способ получения наноструктурированного порошка сложного оксида со структурой граната на основе Y, Al, активированного Се, основанный на известном методе осаждения [Г.А. Досовицкий, Д.Е. Кузнецова, П.А. Волков, К.С. Напольский, И.В. Росляков, Ю.А. Великодный, С.Н. Мудрецова, К.Б. Богатов, А.Л. Михлин, А.Е. Досовицкий. Наукоемкие Технологии (ISSN 1999-8465), т. 14, №3, 2013, С. 48-52.] Данный способ включает следующие последовательные стадии процесса: приготовление водных растворов солей исходных компонентов с заданными концентрациями, смешение этих растворов и приготовление общего смесевого раствора, приготовление раствора осадителя, приливание растворов исходных компонентов в раствор осадителя, отделение осадка, сушка, термообработка при температуре 700-1100°С.
Однако, если использовать этот способ для получения наноструктурированного порошка сложного оксида со структурой граната на основе активированного Се, как показывает масс-спектральный анализ промывных вод и растворов, происходит неполное осаждение и вхождение в продукт Ga и/или Gd, а при использовании различного избытка осадителя происходит неполное осаждение этих компонентов, что обусловлено их химической природой [Б.В. Некрасов. Основы Общей Химии. Том 2, М.: Изд. «Химия», 1973].
Наиболее близким аналогом заявленного изобретения по совокупности существенных признаков является способ получения люминесцентного керамического материала со структурой граната, содержащий Gd, Ga, Се, Al, D, общей формулы: (Gd1-z, Cez)3+u (Ga1-m-n, Alm, Dn)5-u О12, включающий следующие стадии: приготовление водных растворов солей исходных компонентов, смешивание в заданных соотношениях, добавление раствора осадителя (карбоната или бикарбоната аммония), отделение осадка, сушку, компактирование и спекание до получения керамического материала (US 9145517, С09К 11/80, 2015).
Целью создания заявленного изобретения является возможность получения люминесцентной керамики заданного состава на основе сложных оксидов со структурой граната, содержащей одновременно Gd, Ga, Се, Al, а также один или несколько дополнительных элементов.
Для этого предложен способ получения люминесцентной керамики на основе сложных оксидов со структурой граната, содержащей Gd, Ga, Се, Al, осуществляемый многостадийным способом, включающим первоначальную стадию приготовления водных растворов солей исходных элементов, смешивание их в заданных соотношениях, а затем добавление их к раствору гидрокарбоната аммония, отделение выпавшего осадка, сушку, термообработку, компактирование и спекание до получения керамического материала, причем получают осадки путем вливания растворов исходных компонентов в раствор осадителя, причем растворы, содержащие различные компоненты, приливают различными группами, не менее, чем двумя, подбирая количество осадителя таким образом, чтобы обеспечить наиболее полное осаждение входящих в группу компонентов, при этом Gd и Ga входят в разные группы, затем проводят смешение всех осадков, их совместную сушку, и затем термообработку при температуре 800-1000°С и спекание при температуре выше1500°С.
Совокупность приведенных выше существенных признаков позволяет получать наноструктурированный порошок методом осаждения из водных растворов точно заданного состава, из которого может быть получена высокоплотная люминесцентная керамика.
Важно, что осадки формируются предельно близким способом получения - методом совместного осаждения гидрокарбонатом аммония, а различаются только условия проведения осаждения, а именно - избыток осадителя, используемый для проведения осаждения; это обеспечивает их сходную химическую природу осадков. Смешение осадков происходит во влажном виде, таким образом, уже на стадии высыхания осадки формируют смешанные агрегаты, все компоненты которых находятся в форме реакционно способных солей, что способствует взаимодействию компонентов.
Краткое описание чертежей
На Фиг. 1 представлены зависимости остаточного содержания солей галлия и гадолиния в маточном растворе от избытка гидрокарбоната аммония, используемого при осаждении.
На Фиг. 2 представлено изображение порошка состава Gd2,97Ce0,03Al2Ga3O12 полученного в соответствии с Примером 1, полученное методом сканирующей электронной микроскопии.
На Фиг. 3 представлено изображение керамики состава Gd2,97Ce0,03Al2Ga3O12 полученной в соответствии с Примером 1, полученное методом сканирующей электронной микроскопии.
На Фиг. 4 представлен спектр фотолюминесценции керамики состава Gd2,97Ce0,03Al2Ga3O12 полученной в соответствии с Примером 1.
На Фиг. 5 представлены амплитудные спектры, зарегистрированные при возбуждении источником альфа-частиц образца сравнения - монокристалла алюмоиттриевого граната, активированного церием (1) и керамики состава Gd2,97Ce0,03Al2Ga3O12 полученной в соответствии с Примером 1 (2).
На Фиг. 6 представлены изображения осадков соединений Gd+Ce, Y, Ga, Al, полученных в соответствии с Примером 2, полученные методом сканирующей электронной микроскопии. 1 - осадок, полученный из азотнокислого раствора алюминия; 2 - осадок, полученный из азотнокислого раствора иттрия; 3 - осадок, полученный из азотнокислого раствора галлия; 4 - осадок, полученный из азотнокислого раствора гадолиния и церия.
На Фиг. 7 представлено изображение керамики состава Gd1,485Y1,485Ce0,03Al2,5Ga2,5O12 полученной в соответствии с Примером 2, полученное методом сканирующей электронной микроскопии.
На Фиг. 8 представлен спектр фотолюминесценции керамики состава Gd1,485Y1,485Ce0,03Al2,5Ga2,5O12 полученной в соответствии с Примером 2.
На Фиг. 9 представлены амплитудные спектры, зарегистрированные при возбуждении источником альфа-частиц образца сравнения - монокристалла алюмоиттриевого граната, активированного церием (1) и керамики состава Gd1,485Y1,485Ce0,03Al2,5Ga2,5O12 полученной в соответствии с Примером 2 (2).
Осуществление и примеры реализации изобретения
Способ получения люминесцентной керамики на его основе сложных оксидов со структурой граната точно заданного состава включает в себя следующие операции:
1) Приготовление водных растворов солей исходных компонентов с точно известными концентрациями. Исходные компоненты включают в себя Gd, Ga, Се, а также один или несколько элементов, таких как лантаноиды (La-Lu), Sc, Al и др. Растворы могут быть приготовлены растворением солей воде, предпочтительно - нитратов, или оксидов в кислоте, предпочтительно - в азотной кислоте. Концентрация растворов может быть определена любым известным способом, например - гравиметрией, титрованием, растворением известной навески.
2) Взятие этих растворов в необходимом количестве для обеспечения требуемого состава компонентов при объединении этих растворов.
3) Приготовление раствора осадителя, предпочтительно - гидрокарбоната аммония NH4HCO3 с концентрацией не менее 10%.
4) Приливание растворов исходных компонентов в раствор осадителя, причем растворы, содержащие различные компоненты приливают различными группами, не менее, чем двумя, так, чтобы для каждой группы реализовались условия, обеспечивающие наиболее полное осаждение входящих в группу компонентов.
5) Отделение осадков любым подходящим способом, например, фильтрацией, и их промывка.
6) Смешение осадков любым подходящим способом, например, в шаровой мельнице.
7) Сушка полученной смеси.
8) Термообработка при температуре 800-100°С.
9) Опционально - помол порошка любым подходящим способом, например - в шаровой, планетарной шаровой или бисерной мельнице.
10) Компактирование любым известным способом, например, одноосным прессованием, изостатическим прессованием, шликерным литьем, фильтр-прессованием, инжекционным литьем, ленточным литьем, гель-литьем, робокастингом, стереолитографией.
11) Спекание компактов при температуре не менее 1500°С.
Заявляемый способ иллюстрируется следующими примерами:
Пример 1
Готовят азотнокислые растворы алюминия, галлия, гадолиния, церия с концентрациями 1 моль/л по содержанию катиона. Концентрацию растворов уточняют методом гравиметрического анализа. Затем отбирают необходимые количества растворов компонентов, в количествах, обеспечивающих в сумме состав отвечающий формуле Gd2,97Ce0,03Al2Ga3O12, и с расчетной массой продукта 20 г. Необходимые количества элементов составляют: Gd - 10,08 г, Се - 0,09 г, Al - 1,17 г, Ga - 4,52 г (расчетные количества элементов в граммах на элемент). Необходимые количества растворов отбирают исходя из их фактической концентрации. Затем готовят смесевой раствор смешением азотнокислых растворов Gd, Се, Al и отдельно оставляют азотнокислый раствор Ga.
В стеклянный стакан помещают водный раствор гидрокарбоната аммония с концентрацией 15 вес. % в количестве, отвечающем избытку 15% сверх стехиометрического количества (185 мл). При постоянном перемешивании приливают к нему тонкой струей смесевой раствор, содержащий Gd, Се, Al. Осадок отфильтровывают и промывают на фильтре водой и изопропанолом. Затем в стеклянный стакан помещают водный раствор гидрокарбоната аммония с концентрацией 15 вес. % в количестве, отвечающем избытку 30% сверх стехиометрического количества (125 мл). При постоянном перемешивании приливают к нему тонкой струей раствор, содержащий Ga. Осадок также отфильтровывают и промывают на фильтре водой и изопропанолом.
Отфильтрованные и промытые осадки помещают в барабан шаровой мельницы, и измельчают в течение 30 минут. Полученную пульпу загружают в кварцевый тигель и помещают в сушильный шкаф. Сушку ведут при температуре 100°С в течение 8 часов, перемешивая содержимое тигля каждый час. Просушенный продукт измельчают в агатовой ступке и просеивают через сетку из полиамидных нитей с размером ячеек 100 мкм. Тигель с продуктом загружают в печь и проводят термообработку при 850°С в течение 2 часов после выхода печи на режим. На Фиг. 2 приведено изображение полученного порошка.
Проводят компактирование полученного порошка методом одноосного прессования в таблетки диаметром 30 мм и толщиной 2 мм при давлении 4 т. Затем проводят спекание этих таблеток при температуре 1600°С на воздухе. В результате получают образец керамики с плотностью 98%, полосой фотолюминесценции с максимумом 530 нм и световыходом сцинтилляций более 35000 фотонов / МэВ. На Фиг. 3 приведено изображение скола полученной керамики. На Фиг. 4 приведен спектр фотолюминесценциии полученной керамики. На Фиг. 5 приведен амплитудный спектр полученной керамики. Световыход керамики можно оценить в 38000 фотонов / МэВ.
Пример 2
Готовят азотнокислые растворы алюминия, галлия, гадолиния, иттрия, церия с концентрациями 1 моль/л по содержанию катиона. Концентрацию растворов уточняют методом гравиметрического анализа. Затем отбирают необходимые количества растворов компонентов, в количествах, обеспечивающих в сумме состав, отвечающий формуле Gd1,485Y1,485Ce0,03Al2,5Ga2,5O12, и с расчетной массой продукта 24 г. Необходимые количества элементов составляют: Gd - 7,08 г, Y - 4,0 г, Се - 0,13 г, Al - 2,05 г, Ga - 5,29 г. Необходимые количества растворов отбирают исходя из их фактической концентрации.
В стеклянный стакан помещают водный раствор гидрокарбоната аммония с концентрацией 15 вес. %. При постоянном перемешивании приливают к нему тонкой струей азотнокислый раствор одного из компонентов - Gd+Ce, Y, Ga, Al. Осадок отфильтровывают и промывают на фильтре водой и изопропанолом. Для осаждения используют следующие количества и избытки осадителя: Gd+Ce - 78 мл, избыток 15%; Y - 90 мл, избыток 30%; Ga - 144 мл, избыток 30%; Al - 128 мл, избыток 15%. На Фиг. 6 приведены изображения полученных осадков.
Отфильтрованные и промытые осадки помещают в барабан шаровой мельницы, и измельчают в течение 30 минут. Полученную пульпу загружают в кварцевый тигель и помещают в сушильный шкаф. Сушку ведут при температуре 100°С в течение 8 часов, перемешивая содержимое тигля каждый час. Просушенный продукт измельчают в агатовой ступке и просеивают через сетку из полиамидных нитей с размером ячеек 100 мкм. Тигель с продуктом загружают в печь и проводят термообработку при 850°С в течение 2 часов после выхода печи на режим.
Проводят компактирование полученного порошка методом одноосного прессования в таблетки диаметром 30 мм и толщиной 2 мм при давлении 4 т. Затем проводят спекание этих таблеток при температуре 1600°С на воздухе. В результате получают образец керамики с плотностью 98%, полосой фотолюминесценции с максимумом 530 нм и световыходом сцинтилляций более 40000 фотонов / МэВ. На Фиг. 7 приведено изображение скола полученной керамики. На Фиг. 8 приведен спектр фотолюминесценциии полученной керамики. На Фиг. 9 приведен амплитудный спектр полученной керамики. Световыход керамики можно оценить в 63000 фотонов / МэВ.
Таким образом, заявляемый способ позволяет получать люминесцентную керамику, содержащую одновременно Gd, Ga, Се и другие элементы, позволяя избежать потерь одного или нескольких из этих элементов, приводящих к нарушению состава.

Claims (1)

  1. Способ получения люминесцентной керамики на основе сложных оксидов со структурой граната, содержащей Gd, Ga, Се, Al, осуществляемый многостадийным способом, включающим первоначальную стадию приготовления водных растворов солей исходных элементов, смешивание их в заданных соотношениях, а затем добавление их к раствору гидрокарбоната аммония, отделение выпавшего осадка, сушку, термообработку, компактирование и спекание до получения керамического материала, отличающийся тем, что получают осадки путем вливания растворов исходных компонентов в раствор осадителя, причем растворы, содержащие различные компоненты, приливают различными группами, не менее чем двумя, подбирая количество осадителя таким образом, чтобы обеспечить наиболее полное осаждение входящих в группу компонентов, при этом Gd и Ga входят в разные группы, затем проводят смешение всех осадков, их совместную сушку, и затем термообработку при температуре 800-1000°С и спекание при температуре выше 1500°С.
RU2017146717A 2017-12-28 2017-12-28 Способ получения люминесцентной керамики на основе сложных оксидов со структурой граната RU2711318C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017146717A RU2711318C2 (ru) 2017-12-28 2017-12-28 Способ получения люминесцентной керамики на основе сложных оксидов со структурой граната

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146717A RU2711318C2 (ru) 2017-12-28 2017-12-28 Способ получения люминесцентной керамики на основе сложных оксидов со структурой граната

Publications (3)

Publication Number Publication Date
RU2017146717A RU2017146717A (ru) 2019-06-28
RU2017146717A3 RU2017146717A3 (ru) 2019-07-17
RU2711318C2 true RU2711318C2 (ru) 2020-01-16

Family

ID=67209812

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146717A RU2711318C2 (ru) 2017-12-28 2017-12-28 Способ получения люминесцентной керамики на основе сложных оксидов со структурой граната

Country Status (1)

Country Link
RU (1) RU2711318C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789398C1 (ru) * 2021-10-19 2023-02-02 Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ) Способ получения бифазных керамических люминофоров для белых светодиодов

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115925408B (zh) * 2022-11-18 2024-04-12 上海御光新材料科技股份有限公司 一种透明闪烁陶瓷材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2391754C2 (ru) * 2008-08-13 2010-06-10 Учреждение Российской академии наук Институт радиотехники и электроники им. В.А. Котельникова РАН Лазерный материал
US20110305005A1 (en) * 2010-06-09 2011-12-15 Shin-Etsu Chemical Co., Ltd. Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
RU2503754C1 (ru) * 2012-08-06 2014-01-10 Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Министерства Образования И Науки Российской Федерации Способ получения алюмоиттриевого граната, легированного редкоземельными элементами
EP2763197A1 (en) * 2011-09-26 2014-08-06 Konica Minolta, Inc. Phosphor dispersion liquid and method for manufacturing led device
US9145517B2 (en) * 2012-04-17 2015-09-29 General Electric Company Rare earth garnet scintillator and method of making same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2391754C2 (ru) * 2008-08-13 2010-06-10 Учреждение Российской академии наук Институт радиотехники и электроники им. В.А. Котельникова РАН Лазерный материал
US20110305005A1 (en) * 2010-06-09 2011-12-15 Shin-Etsu Chemical Co., Ltd. Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
EP2763197A1 (en) * 2011-09-26 2014-08-06 Konica Minolta, Inc. Phosphor dispersion liquid and method for manufacturing led device
US9145517B2 (en) * 2012-04-17 2015-09-29 General Electric Company Rare earth garnet scintillator and method of making same
RU2503754C1 (ru) * 2012-08-06 2014-01-10 Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Министерства Образования И Науки Российской Федерации Способ получения алюмоиттриевого граната, легированного редкоземельными элементами

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГУЗМАН И.Я., ред., "Химическая технология керамики", Москва, ООО РИФ "Стройматериалы", 2003, с.58-60. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2789398C1 (ru) * 2021-10-19 2023-02-02 Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ) Способ получения бифазных керамических люминофоров для белых светодиодов
RU2808387C1 (ru) * 2023-08-18 2023-11-28 федеральное государственное автономное образовательное учреждение высшего образования "Северо-Кавказский федеральный университет" Способ получения люминесцентной керамики, содержащей фазу YAG:Ce, для источников белого света

Also Published As

Publication number Publication date
RU2017146717A (ru) 2019-06-28
RU2017146717A3 (ru) 2019-07-17

Similar Documents

Publication Publication Date Title
Du et al. Sol-gel processing of Eu3+ doped Li6CaLa2Nb2O12 garnet for efficient and thermally stable red luminescence under near-ultraviolet/blue light excitation
RU2503754C1 (ru) Способ получения алюмоиттриевого граната, легированного редкоземельными элементами
Yang et al. Hydrothermal approach and luminescent properties for the synthesis of orthoniobates GdNbO 4: Ln 3+(Ln= Dy, Eu) single crystals under high-temperature high-pressure conditions
Michalik et al. Application of mechanochemical processing to synthesis of YAG: Ce garnet powder
Szczeszak et al. Spectroscopic properties of Eu3+ doped YBO3 nanophosphors synthesized by modified co-precipitation method
Kravtsov et al. Combined effect of MgO sintering additive and stoichiometry deviation on YAG crystal lattice defects
Chen et al. Microstructure evolution in two-step-sintering process toward transparent Ce:(Y, Gd) 3 (Ga, Al) 5O12 scintillation ceramics
RU2711318C2 (ru) Способ получения люминесцентной керамики на основе сложных оксидов со структурой граната
RU2613994C1 (ru) Способ получения легированного алюмоиттриевого граната
Liu et al. Photoluminescence and afterglow behavior of orange-reddish Pr3+-activated Sr3Al2O6 phosphor
Pakalniskis et al. Sol-gel synthesis and study of praseodymium substitution effects in yttrium aluminium garnet Y3-xPrxAl5O12
Dai et al. Effect of dopant concentration on the optical characteristics of Cr3+: ZnGa2O4 transparent ceramics exhibiting persistent luminescence
EP2690154A1 (en) Method for preparing phosphor precursor and phosphor, and wavelength converter
CN109370583A (zh) 硫氧化钆粉体的制备方法及其产品和应用
Singh et al. Green luminescence and EPR studies on Mn-activated yttrium aluminum garnet phosphor
Wang et al. Branch-shaped NaGdF4: Eu3+ nanocrystals: Selective synthesis, and photoluminescence properties
Zhou et al. Synthesis and luminescent properties of BaGd2O4: Eu3+ phosphor
JPS59107969A (ja) ジルコニア系固溶体単結晶超微粒子の分散したゾルおよび製造方法
Merkulov et al. Vibrational and luminescent properties of polycrystalline zircon: Effect of structural and impurity defects
Wang et al. GdBO3: Eu phosphor particles with uniform size, plate morphology, and non-aggregation
Pązik et al. Luminescence properties of BaTiO3: Eu3+ obtained via microwave stimulated hydrothermal method
de Jesús Morales-Ramírez et al. Influence of annealing temperature on structural and optical properties of Lu2O3: Eu3+, Tb3+ transparent films
Singh et al. Photoluminescence studies of cerium doped strontium aluminate nanophosphors (SrAl2O4: Ce)
RU2682554C1 (ru) Способ получения поликристаллических сцинтилляционных материалов в форме порошков
Wu et al. Preparation of europium-doped gadolinium lutetium oxide solid solution transparent ceramics and its optical properties

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20210120

Effective date: 20210120