RU2710074C1 - Гидрогелевая водорастворимая композиция на основе гиалуроновой кислоты и ионов поливалентных металлов и способ ее получения - Google Patents

Гидрогелевая водорастворимая композиция на основе гиалуроновой кислоты и ионов поливалентных металлов и способ ее получения Download PDF

Info

Publication number
RU2710074C1
RU2710074C1 RU2019131025A RU2019131025A RU2710074C1 RU 2710074 C1 RU2710074 C1 RU 2710074C1 RU 2019131025 A RU2019131025 A RU 2019131025A RU 2019131025 A RU2019131025 A RU 2019131025A RU 2710074 C1 RU2710074 C1 RU 2710074C1
Authority
RU
Russia
Prior art keywords
molecular weight
hyaluronic acid
kda
hydrogel
complex compound
Prior art date
Application number
RU2019131025A
Other languages
English (en)
Inventor
Павел Леонидович Иванов
Владимир Николаевич Хабаров
Original Assignee
Общество с ограниченной ответственностью "МедикалСайнс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "МедикалСайнс" filed Critical Общество с ограниченной ответственностью "МедикалСайнс"
Priority to RU2019131025A priority Critical patent/RU2710074C1/ru
Application granted granted Critical
Publication of RU2710074C1 publication Critical patent/RU2710074C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/728Hyaluronic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Biochemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Cosmetics (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Изобретение относится к составам гидрогелевых систем - комплексов (ассоциатов) гиалуроновой кислоты с щелочноземельными и переходными металлами, выбранных из группы: Ca, Mg, Zn, и способу их получения. Подобные гидрогелевые системы могут быть использованы в фармакологии, например, в качестве носителя лекарственного средства в таргет-терапии артрозов, а также в антивозрастной терапии, мезотерапии для устранения кожных дисфункций. Техническим результатом изобретения является повышение устойчивости гидрогелевой композиции и снижение количества неконтролируемых примесей, проникающего в ткани организма. Гидрогелевая водорастворимая композиция на основе натриевой соли гиалуроновой кислоты и ионов поливалентных металлов, представляющая стабильную систему гелевых глобул в деионизированной воде, содержит гелеобразователь из матрицы высокомолекулярной гиалуроновой кислоты с молекулярной массой 1500-1800 кДа с равномерно распределенными и связанными химически с матрицей частицами комплексного соединения низкомолекулярной гиалуроновой кислоты с молекулярной массой 20-60 кДа с катионами металлов, выбранных из группы: Ca, Mg, Zn, при этом соотношение высокомолекулярной гиалуроновой кислоты к указанному комплексному соединению составляет 10:1, содержание указанных металлов в комплексном соединении - 0,001-0,01 мас.% концентрации указанного гелеобразователя в деионизированной воде - 1,5-2,5 мас.%. 2 н.п. ф-лы, 8 ил.

Description

Изобретение относится к составам гидрогелевых систем - комплексов (ассоциатов) гиалуроновой кислоты с щелочноземельными и переходными металлами, выбранных из группы: Ca, Mg, Zn и способу их получения. Подобные гидрогелевые системы могут быть использованы в фармакологии, например, в качестве носителя лекарственного средства в таргет-терапии артрозов, а также в антивозрастной терапии, мезотерапии для устранения кожных дисфункций.
Известно, что биополимер природного происхождения - гиалуроновая кислота (далее ГК) является природным анионным несульфатированным гликозаминогликаном, который широко распространен в соединительных, эпителиальных и нервных тканях, с точки зрения эффективности, биологической активности, экологичности, возобновляемости источников их получения является уникальным сырьем для создания целого ряда медицинских изделий. Она обладает высокой биосовместимостью с тканями человеческого организма и нетоксична по отношению к нему. Полисахарид не проявляет свойств антигена, т.е. является нейтральным веществом, которое не узнается иммунной системой, что не приводит к появлению в нем специфических антител и воспалительных процессов. Гиалуроновая кислота, при введении и использовании в качестве терапевтического средства в ее природной форме, обычно быстро выводится из организма (в частности период ее полураспада в коже человека составляет чуть более суток), что делает необходимым ее частые инъекции. (Tammi R., Agren U.M., Tuhkanen A.L., Tammi M. Hyaluronan metabolism in skin. Progress in Histochemistry & Cytochemistry 29(2):1-81, 1994).
Известно, что гелевые растворы ГК обладают уникальными реологическими свойствами, представляя собой вязкоупругий гидрогель даже при низких концентрациях. Особенно ценным свойством гидрогелей на основе солей ГК является адгезия к тканям, подвергаемым риску повреждения при хирургических вмешательствах и диагностике (например, диагностике мочевого пузыря). Присутствие вязкого слоя гидрогеля экзогенной ГК на тканях и слизистых оболочках, наиболее сильно подвергаемых травматическим воздействиям, оказывает защитное действие, которое в значительной мере способствует успешному осуществлению диагностики и хирургической операции. Гидрогели ГК используются в качестве биосовместимых «барьерных веществ» для предотвращения постхирургической адгезии и образования рубцов, а также для заживления ран (см. A. Fakhari, C. Berkland «Applications and Emerging Trends of Hyaluronic Acid in Tissue Engineering, as a Dermal Filler and in Osteoarthritis Treatment» - Acta Biomater. 2013 July; 9(7): 7081-7092).
Известен ряд материалов на базе гидрогелей ГК для адресной (векторной) доставки лекарственных средств и биологически активных соединений к конкретным типам клеток организма с помощью «наноконтейнеров» к пораженному органу или ткани. Структура и материалы таких носителей очень разнообразны, а размеры обычно находятся в диапазоне 15-300 нм. Использование гидрогелей ГК в качестве макромолекулярного носителя может представлять альтернативный подход (см. Хабаров В.Н., Бойков П.Я., 2015). Комплексы гиалуроновой кислоты с низкомолекулярными биорегуляторами - новая страница в лечении суставных патологий. Эстетическая медицина. XIV(2):5-13).
В последнее время разработаны материалы на основе гиалуроновой кислоты с ионами двухвалентных металлов II групп, на базе которых производят инъекционные препараты для косметологии, инициирующие ресинтез коллагена и включающие в себя биоревитализанты, препараты для мезотерапии, а также лифтеры (жидкие мезонити).
Известен препарат, на основе ГК высокой степени очистки с молекулярной массой 1,8 млн. Да и молекулярно-массовым распределением Mw/Mn = 1,389, способной образовывать с двухвалентными металлами ограниченно растворимые соли для пролонгированного действия - «Контургель-ХПМ», содержащий в своем составе 1% (10мг\мл) смеси натриевой и цинковой соли гиалуроновой кислоты в соотношении 5:1,
Способ получения данного препарата состоит в проведении реакции ионного обмена в водном растворе гиалауроната натрия и хлористого цинка при воздействии слабого переменного магнитного поля с напряженностью 0,05 мкТл в диапазоне частот 3,58-4,88 Гц.
В отличие от классического биоревитализанта, на основе только гиалуроната натрия, «Контургель-ХПМ» обеспечивает не только ревитализирующее и увлажняющее действие, но и значительно повышает плотность дермы, активно формируя в местах введения каркас, состоящий из коллагеновых волокон, хотя и ограниченный в объеме и во времени по эффективности, а также оказывает выраженный антиоксидантный эффект. (См. http://la-beaute-medicale.ru/, 2018, свид-во о товарном знаке №579086 от 25.06.2014). Водонерастворимость цинка способствует формированию в дерме однородного эластичного фиброза, т.е. утолщения соединительной ткани. Будучи естественным компонентом кожи, цинк встраивается в клетку, проявляя там свои антиоксидантные свойства, и участвует далее в процессах ее жизнедеятельности. Вместе с тем полученный продукт имеет ограниченную растворимость в воде, что снижает проникающую способность в ткани.
Недостатком известного препарата является использование высокомолекулярной ГК с молекулярной массой до 1800 кДа, в результате чего смесь ГК с солями металлов не может равномерно распределяться в кожном матриксе и таким образом выполнять биоревитализирующее действие.
Известен ряд технических решений - составов и способов получения металлокомплексов ГК (в основном с двухвалентными металлами), применяемых в лечебных или косметических препаратах. Так, например, известны способы получения кобальтового комплекса ГК смешением при перемешивании в течение 30 минут раствора гиалуроната натрия с раствором соли кобальта, с последующим осаждением 3 объемными частями этанола (патент США 5472950, опублик. 05.12.1995 г.) и цинкового комплекса ГК смешением осадка комплекса гиалуроната натрия с катионом четвертичного аммония с водным раствором цинковой соли, разделением фаз и осаждением ассоциата этанолом (патент США 5554598, опублик.09.10.1996 г.). В обоих случаях осадок промывают на фильтре, но получают всегда избыток солей, осаждающихся вместе с металлокомплексом ГК, при этом полные соли гиалуроната не получают, а концентрация примесей достигает десятка процентов, что ухудшает качество комплекса. Конечные продукты ограниченно растворимы в воде.
Известна также биологически активная композиция, содержащая ассоциаты ГК с ионами кобальта Со+2 или цинка Zn+2, (патент RU 2021304 - Способ получения биологически активной композиции - МКИ C08L 5/08, опублик. 15.10.1994), которая содержит кобальтовый или цинковый ассоциат гиалуроновой кислоты в виде композиции водного раствора соли металла-хлорида цинка или хлорида кобальта в эквивалентном соотношении к количеству карбоксильных групп натриевой соли ГК в пределах от 0,95% до 1,10% от эквивалентного, а также функциональные целевые добавки, которые могут использоваться в качестве фармацевтических (терапевтических) или косметических средств. Характеристики гиалуроната натрия, используемого для получения раствора: Мол. м. 1850кДа. Содержание протеина 0,07-0,18 мас. %. УФ-адсорбция A257 1% 0,133 A280 1% 0,075 Вязкость [
Figure 00000001
Figure 00000002
 0% 13,7-16,5 дл/г. содержание гилаурата натрия 98,12 масс. %.
Благодаря взаимодействию эквивалентных количеств гиалуроната натрия и ионов цинка (хлорида цинка) в водном растворе, образуется ассоциат гиалуроната цинка стехиометрического состава. После соответствующей изотонизации путем добавления моносахарида или сахарного спирта полученный раствор может непосредственно использоваться в терапевтических целях, и соединение цинка в твердом состоянии не нужно получать отдельным способом. Осуществление способа с применением ионов кобальта и других ионов 3d металлов приводит к аналогичным результатам.
Способ получения этой известной композиции реализуется двумя методами:
- по первому методу ассоциат, образованный из гиалуроната кислоты и соли четвертичного аммония в водной суспензии растворяют в смеси растворителей, содержащих водные растворы иона Со2+ или Zn2+ с н-бутанолом при рН=5-5,4, после чего ассоциат осаждают с применением алканола или алканона, выделяют осадок из раствора и высушивают конечный продукт. Данная схема отличается сложностью и требует использования большого количества химических ингредиентов, кроме этого, она не позволяет получать полные соли ГК.
Другой метод включает приготовление водного раствора соли металла (хлорида цинка или хлорида кобальта) с добавлением 2,0-3,0 объемов С13алканола или С34алканона, к соответствующему неизотонизированному раствору, содержащему хлорид цинка, его смешивание с натриевой солью ГК с вышеуказанными характеристиками, в количестве эквивалентном гиалуронату, выдерживание смеси при рН=5, ее механическое перемешивание, разбавление водой и последующую фильтрацию для выделения конечного продукта. Полученный при использовании данной схемы конечный продукт отличается недостаточно стабильным качеством. В отфильтрованном продукте будут встречаться низкомолекулярные фрагменты ГК, не вступившие в реакцию хлорид цинка или хлорид кобальта, хлорид натрия, натриевая соль ГК, что вызывает потребность в дополнительной очистке. Продукт ограниченно растворим в воде (патент RU 2021304 - Способ получения биологически активной композиции - МКИ C08L 5/08, опублик. 15.10.1994).
Для повышения эффективности и пролонгации эффекта ГК необходимо сохранить в структуре металл, но снизить молекулярную массу ГК, не нарушив при этом стехиометрический комплекс ГК с Zn+2 (О.В. Сибикина, А.А. Йозеп, А.В.Москвин. Комплексы полисахаридов с ионами металлов: применение и строение - Химико-фармацевтический журнал, том 43, №6, 2009, с. 35-39).
Известен ряд способов снижения молекулярной массы ГК, для чего её подвергают воздействию деструктирующих факторов различной природы, приводящему к снижению молекулярной массы и повышению растворимости полисахарида при взаимодействии с клетками кожи и подкожного слоя. Наиболее распространенными являются методы подобной модификации ГК облучением УФ-светом, гамма-, или электронным излучением, термообработкой. При этом, в зависимости от состава и характеристик исходной ГК получают олигосахаридные фрагменты с низкой до 100 кДа молекулярной массой.
Известен способ получения функционализованных производных гиалуроновой кислоты с регулируемой молекулярной массой (патент RU 2523182 C2 - Способ получения функционализованных производных гиалуроновой кислоты и образования их гидрогелей - МКИ С08В 37/00, опублик. 20.07.2014 г.) и активацией по меньшей мере одной гидроксильной группы ГК карбонилирующим агентом и с использованием УФ-облучения светом с длиной волны 250-370нм при максимуме 310 нм с мощностью 125 Вт при 12°С. Недостатком метода является получение промежуточных для гидрогелей ГК структур, по сути - полуфабриката, без развития их технологической переработки в лечебные или косметические средства.
Известно комплексное косметическое средство с омолаживающим и лифтинг-эффектом (патент RU 2438648 -Комплексное косметическое средство, опубл. 02.08.2010), которое включает гиалуроновую кислоту, воск эмульсионный, воду и матричный пептид, выделенный из гидрогеля гиалуроновой кислоты в процессе фотохимического наноструктурирования, при длине волны, равной 280 нм, а гиалуроновая кислота наноструктурирована с диаметром отдельных цепей до 5 нм при следующем соотношении компонентов, мас. %:
Наноструктурированная гиалуроновая кислота с диаметром отдельных цепей
до 5 нм 1
Матричный пептид, выделенный из гидрогеля гиалуроновой кислоты в процессе
фотохимического наноструктурирования при длине волны 280 нм 0,1
Воск эмульсионный 10,0
Вода дистиллированная Остальное
Способ получения, включающий процесс фотохимического структурирования приводит к формированию комплексов матричного пептида и гиалуроновой кислоты с образованием ячеек размером до 100 нм. Данная технология формирует надмолекулярный комплекс гиалуроновая кислота - матричный пептид с ячеистой структурой размерностью в пределах 100 нм, но недостатком является то, что только отдельные ее элементы имеют размер (5 нм), а размер основной структуры уже нивелирует способность проникать в слои кожи и оказывать физиологический эффект. По сути, в данном способе фотохимическое наноструктурирование приводит к образованию высокомолекулярной гиалуроновой кислоты, которая способна оказывать свой эффект (гидратации) только на поверхностном слое кожи, образуя гидрофильную пленку на наружной поверхности. Кроме того, данный комплекс не позволяет матричному пептиду проникнуть в глубокие слои кожи, т.к. он изначально химически связан с ГК.
Известно также комплексное косметическое средство, включающее воду, гиалуроновую кислоту и пептидный комплекс, (Патент RU 2524663 Комплексное косметическое средство, опублик 27.07.2014), причем гиалуроновая кислота деструктурирована гамма-излучением с дозой облучения 16-50 кГр и пептидный комплекс состоит из пептидов с массой 244-459 Да и десмозина, причем компоненты в средстве находятся в определенном соотношении в масс. %.
Гиалуроновая кислота, деструктурированная гамма-излучением
с дозой облучения 40-50 кГр 1,5
Пептидный комплекс 5
Вода дистиллированная Остальное
Способ для получения низкомолекулярной ГК состоит в воздействии на нее гамма-излучения в диапазоне от 16 до 50 кГр, что позволяет получить ГК с молекулярной массой (Mw) 40-80 кДа. При этом воздействие на водный раствор ГК гамма-излучения до 16 кГр не позволяет получить низкомолекулярную ГК, а воздействие выше 50 кГр вызывает полное разрушение ГК, что и в том, и в другом случае ведет к отсутствию косметического эффекта.
Способ обеспечивает повышение проникающей способности гиалуроновой кислоты в глубокие кожные слои и увеличение увлажнения кожи, но при этом достигаемый эффект создания каркасной структуры кратковременный, поскольку в указанных технических решениях не используются структурирующие и стабилизирующие добавки - соли металлов II группы.
В результате патентного поиска не выявлено известных технических решений, позволяющих получить составы гидрогелей ГК на базе её металлокомплексов, полностью растворимых в воде, с совмещенным положительным эффектом, в т.ч. по эффективности в части терапевтического и профилактического действия при отсутствии в гидрогеле посторонних примесей, способности создать в тканях трехмерную структуру каркасного типа, стабильности структуры со связанными металлами во времени, пролонгированного эффекта в тканях организма, что обусловлено, в основном, параметрами используемой ГК и применяемыми технологиями простого солевого обмена для их получения, как показано выше.
Условно к прототипу данного изобретения можно отнести известное техническое решение (патент RU 2280041 - Способ получения водорастворимых солевых комплексов гиалуроновой кислоты (варианты) - опублик. 20.07.2006 г) - препарат водорастворимого солевого комплекса в виде сухого субстрата на основе натриевой соли ГК со средней молекулярной массой 1500 кДа (содержание гиалуроната натрия 98,53%; содержание протеина не более 0,05 мас. % от сухого вещества), и соли d-металла IV, V и VI периодов Периодической системы, причем процент замещения натрия на карбоксильных группах ГК может составлять соотношение соли d-металла ГК к натриевой соли ГК (с поправкой на процессы гидролиза) от 90%:8% до 8%:90% в зависимости от требуемого фармакологического и (или) косметологического эффекта.
Способ получения известного препарата состоит в последовательности операций:
- смешения 1,1%-2% раствора гиалуроната натрия в деионизированной воде с вязкостью до 1450 мПа·с с 1,0-1,9% водным раствором соли d-металла при рН = 6, 5, причем для смешивания используют количество водного раствора соли вышеуказанного d-металла, эквивалентное количеству карбоксильных групп натриевой соли ГК или лежащее в пределах от 0,95% до 1,10% от эквивалентного, или меньшее эквивалентного количества карбоксильных групп натриевой соли ГК (далее Na-ГК), а смешение ведут при комнатной температуре в течение суток;
- разбавления полученного раствора деионизированной водой до объема 10 л;
- ультрафильтрации разбавленного водного раствора на разделительных мембранах с порами 0,03 мкм;
- одновременной промывки фильтрата вначале водным раствором соли вышеуказанного d-металла, а потом деионизированной водой;
- концентрирования полученного раствора до 1/3 полученного объема;
- спиртоосаждения 3 объемами высокочистого 95%этанола или лиофильной сушке после концентрирования;
- последующей стерильной фильтрации;
- после стерильной фильтрации продукт подвергают спиртоосаждению или лиофилизации и сушке при 60°С и пониженном давлении.
Однако при изучении изменения макроструктуры (по показателю вязкоэластичности) ГК после процедур лиофилизации трёх образцов Na-ГК с концентрациями 5, 7.5 и 10 мг/мл воды было обнаружено снижение вязкоэластичности и необратимое изменение макроструктуры ГК, причем оптимальная композиция гидрогелей на основе натриевой соли ГК для интра-артикулярного введения не достигалась. [Krugger-Szabo et al, Microstructural analysis of the fast gelling freeze-dried sodium hyaluronate. Journal of Pharmaceutical and Biomedical Analysis 104 (2015) 12-16].
Недостатком известного технического решения также является ограниченная растворимость солевых комплексов в воде, что дает водные дисперсии - золи, из-за чего снижена функциональность, связанная с невозможностью использования препарата для каркасного протезирования тканей, недостаточно стабильное качество, связанное с значительной неопределенностью в реакции солевого обмена пропорций гиалуроната натрия и соли d-металла, приводящей к снижению пролонгированного действия, длительный и сложный процесс получения препарата, а также необходимость дополнительных операций приготовления инъекционных смесей перед применением, особенно в варианте использования его в качестве медикаментозного носителя.
Вышеприведенные известные технические решения не имеют универсальной функциональности в использовании: известно, что соли поливалентных металлов с ГК являются водонерастворимыми. Подобные композиции с ионами металлов II группы применяются для поверхностного применения. Они нестабильны во времени и быстро распадаются, не достигая заявленного косметического эффекта. Кроме того, они имеют неконтролируемые количества примеси добавляемых солей металлов и выделившейся в процессе реакции соли натрия, что часто приводит к нежелательным осложнениям.
Задачей заявленного изобретения является разработка гидрогелевых систем ГК на основе высокочистых полностью водорастворимых металлосодержащих агломератов, содержащих в качестве матрицы высокомолекулярную ГК (1500-1800 кДа), с включениями совместимых с ней жидкокристаллических включений комплексных соединений низкомолекулярной ГК (20-60 кДа), содержащих катионы металла, выбранных из группы Ca, Mg, Zn и деионизированную воду, для медицинских и косметологических целей, химически стабильного и сохраняющего устойчивость эффекта во времени, с минимальным количеством неконтролируемых примесей, проникающего в ткани организма, а также оригинального способа его получения, включающего механохимическое совмещение двух компонентов агломерата.
Техническим результатом изобретения является повышение устойчивости гидрогелевой композиции и снижение количества неконтролируемых примесей, проникающего в ткани организма.
Гидрогелевая водорастворимая композиция, согласно заявленному изобретению, на основе натриевой соли гиалуроновой кислоты и ионов поливалентных металлов, представляющая стабильную систему гелевых глобул в деионизированной воде, содержит гелеобразователь из матрицы высокомолекулярной гиалуроновой кислоты с молекулярной массой 1500-1800 кДа с равномерно распределенными и связанными химически с матрицей частицами комплексного соединения Me(II)-ГК (20-60 кДа) с катионами металлов, выбранных из группы Ca, Mg, Zn, при этом соотношение высокомолекулярной гиалуроновой кислоты к указанному комплексному соединению составляет 10:1, содержание указанных металлов в комплексном соединении - 0,001-0,01% масс., а концентрация гелеобразователя в деионизированной воде - 1,5-2,5% масс.
Полученный гелеобразователь содержит матрицу из натриевой соли высокомолекулярной ГК с комплексным соединением очищенной низкомолекулярной Me(II)-ГК в соотношении 10:1, при содержании металла Ме(II) 0,001-0,04% масс. в комплексном соединении, для получения водорастворимой гидрогелевой композиции гелеобразователь смешивают с деоннизировванной водой, при содержании в водорастворимой гидрогелевой композиции гелеобразователя в количестве 1,5-2,5% масс и деионизированной воды - остальное (97,5-98,5% масс).
Способ получения гидрогелевой композиции согласно изобретению состоит в последовательности следующих операций:
- приготовление 1-2% водного раствора натриевой соли высокомолекулярной ГК в деионизированной воде;
- деструкция высокомолекулярной ГК на фракции с молекулярной массой до 100 кДа (оптимально 20-60 кДа) облучением водного раствора гиалуроната натрия УФ-излучением, генерируемого специальной ртутной лампой низкого давления, излучающей при 184,9 нм, 194,2 нм, и 253,7 нм, при непрерывном контроле вязкости раствора, с уменьшением до 30 % от первоначальной за 120 мин. облучения;
- введение в облученный УФ-светом раствор ионов Ме(II) в виде растворов солей хлоридов: ZnCl2, или MgCl2, или CaCl2; проведение ионного обмена в растворе ионов Na+ в полученных фрагментах гиалуроната натрия на ионы Zn+2, или Mg+2, или Ca+2 перемешиванием раствора в течение нескольких часов при комнатной температуре; образование низкомолекулярных фрагментов комплексного соединения Ме(II)-ГК;
- лиофильная сушка полученного раствора при 40-600С при пониженном давлении;
- выделение отделением от фильтра сухого субстрата фрагментов Ме(II)-ГК с молекулярной массой 20-60 кДа;
- предварительное смешение порошка высокомолекулярной ГК с молекулярной массой до 1800 кДа с полученными сухими субстратами Ме(II)-ГК с молекулярной массой 20-60 кДа в соотношении 10:1 по массе;
- механохимическая обработка полученной однородной порошкообразной смеси путем одновременного воздействия давления и деформации сдвига в механохимическом реакторе типа наковальни Бриджмена или экструдере при температуре 20-50°С и при давлении от 5 до 1000 МПа в течение 0,1-10 мин. позволяет получить порошковый гелеобразователь - комплекс ГК(1800кДа) + Ме(II)-ГК(20-60 кДа);
- получение водорастворимой гидрогелевой композиции растворением 1,5-2,5% масс. порошкового комплекса в деионизированной воде до 100% масс., полностью растворимый субстрат комплекса.
Авторы настоящего изобретения ранее уже использовали механохимический способ получения сшитых солей ГК (см. RU 2366665 С1, опубл. 10.09.2009 г.). Использование этого метода позволило получить полностью водорастворимый комплекс ГК (1800 кДа) + Ме(II)-ГК(20-60 кДа) для получения заявленного гидрогеля.
Структура гидрогеля на основе комплекса ГК(1800кДа) + Ме(II)-ГК(20-60 кДа) представляет собой систему гелевых глобул ГК с вкраплениями низкомолекулярных фрагментов комплексных соединений Ме(II)-ГК. Очень короткие олигосахаридные фрагменты ГК в водном растворе самоорганизовываются в определенные жидкокристаллические фазы, самостоятельно ориентируясь в пространстве параллельно друг другу. Эти короткие молекулярные фракции ГК, в силу определенной геометрии и химических свойств, могут собираться в капли жидкокристаллических фаз. Предлагаемый способ позволяет получать гидрогелевый материал, в котором активные компоненты Ме(II)-ГК(20-60 кДа) в виде «гиасом» (микроскопические жидкокристаллические сферические, каплеобразные частицы) равномерно распределены в объеме гиалуронанового гидрогеля.
Фиг. 1-5 показывают внутреннюю структуру препарата гидрогеля. Изображения, полученые на растровом сканирующем электронном микроскопе SEM «ZEIS» EVO10MA.
Фиг. 1. Структура полученного препарата гидрогеля с цинком (жидкое состояние, водный раствор), фото на электронном микроскопе
Фиг. 1а - разрешение 20 мкм/см
Фиг. 1б - разрешение 10 мкм/см
Фиг. 1в - разрешение 5 мкм/см
Фиг. 2. Поверхность высушенной плёнки из гидрогеля с цинком
Фиг. 3. Мэппинг, распределение цинка в высушенной плёнке гидрогеля
Фиг. 4. Поверхность высушенной плёнки из гидрогеля с кальцием
Фиг. 5. Мэппинг, распределение кальция в высушенной плёнке гидрогеля
Фиг. 6. Поверхность высушенной плёнки из гидрогеля с магнием
Фиг. 7. Мэппинг, распределение магния в высушенной плёнке гидрогеля.
Фиг. 8 - изображена структурная формула комплексного соединения Me(II)-ГК (20-60 кДа) с катионами Me(II), выбранных из группы Ca, Mg, Zn.
Изобретение иллюстрируют следующие примеры.
Пример 1.
Готовят 200 мл 1,5% масс. водного раствора натриевой соли высокомолекулярной гиалуроновой кислоты с молекулярной массой 1800 кДа, растворяя 3,0 г сухой натриевой соли ГК в 200 мл деионизированной воды в кварцевой колбе при перемешивании в течение 60 мин. при комнатной температуре. Вязкость полученного раствора 350-320 мПа*с. Проверку динамической вязкости геля проводят с помощью вибровискозиметра (модель SV-10A, фирма “A&D COMPANY Ltd.”, Япония) в соответствии с инструкцией по эксплуатации. Далее полученный раствор подвергают УФ-облучению светом ртутной лампы низкого давления типа ДБ-30-01, имеющим максимумы и интенсивность в спектре при 184,9 нм (3.25×1018 квантов*с-1), 194,2 нм (8×1018 квантов*с-1), и 253,7 нм (4.5×1021 квантов*с-1) с мощностью потока 30 Вт. Длительность облучения 120 мин. Вязкость раствора после облучения 120 мПа*с, что соответствует молекулярной массе гиалуроновой кислоты ~20-30 кДа. В раствор с пониженной вязкостью вводят 22 мл 1,5% водного раствора хлорида цинка ZnCl2 при перемешивании в течение 2 часов при комнатной температуре. При этом происходит частичный ионный обмен ионов Na+ на ионы Zn+2 с образованием раствора комплексного соединения Zn(II)-ГК(20-30 кДа).
Полученный водный раствор указанного комплексного соединения подвергают фильтрации на разделительных мембранах и лиофильной сушке при 50°С при пониженном давлении 0,1Па, отделяют фильтрат в виде порошка комплекса низкомолекулярной гиалуроновой кислоты с Zn(II). Далее 3,033 г полученного порошка этого комплекса смешивают с 30 г сухого порошка высокомолекулярной гиалуроновой кислоты с молекулярной массой 1800 кДа в соотношении 1:10 по массе. Полученную смесь помещают в камеру механохимического реактора наковальни Бриджмена, и подвергают одновременному воздействию давления с нарастающей амплитудой и деформации сдвига с усилием от 5 до 500 МПа в течение 2 мин. Полученная порошковая масса представляет собой комплекс гиалуроновая кислота(1800кДа) + Zn(II)-гиалуроновая кислота(20-30 кДа) в соотношении 10:1. Содержание Zn (II) - 0,033% масс.
Затем 1,5 г полученного порошка комплекса растворяют в 100 мл деионизированной воды, при этом порошок полностью растворился в воде, получают водную гидрогелевую композицию состава: 1,5% масс. комплекса гиалуроновая кислота(1800 кДа) + Zn(II)-гиалуроновая кислота(20-30 кДа) и 98,5 % масс. деионизированной воды.
На фиг. 1 (а, б, в) в разной степени увеличения на электронном микроскопе показана структура полученной гидрогелевой композиции, где ясно видны совместимые с высокомолекулярной матрицей включения низкомолекулярных «гиасом» - микроскопических жидкокристаллических сферических каплеобразных частиц, содержащих комплекс цинка, равномерно распределеных в объеме гиалуроновой кислоты геля.
На фиг. 2 показана структура сухой пленки высушенной полученной гидрогелевой композиции. Это однородная прозрачная пленка без видимых нерастворимых включений.
На фиг. 3 при большом увеличении в поляризованном свете показана микрофотография пленки с распределением частиц Zn в матрице высокомолекулярной гиалуроновой кислоты; виден равномерный характер распределения гиасом с частицами металла (красные зоны).
Пример 2.
Готовят 200 мл 1,0 % масс. водного раствора натриевой соли высокомолекулярной гиалуроновой кислоты с молекулярной массой 1600 кДа, растворяя 2,0 г сухой соли ГК в 200 мл деионизированной воды в кварцевой колбе при перемешивании в течение 60 мин. при комнатной температуре. Вязкость полученного раствора ~300 мПа*с. Далее аналогично примеру 1 проводят облучение УФ-светом в течение 100 мин. Вязкость раствора после облучения 100 мПа*с, что соответствует для этой концентрации раствора молекулярной массе гиалуроновой кислоты ~30-40 кДа. В раствор с пониженной вязкостью вводят 22 мл 1,5% водного раствора хлорида кальция CaCl2 при перемешивании в течение 2,5 часов при комнатной температуре. При этом происходит частичный ионный обмен ионов Na+ на ионы Са+2 с образованием раствора комплексного соединения Са(II)-ГК(20-30 кДа).
Аналогично примеру 1 проводят операцию лиофильной сушки раствора вышеуказанного раствора комплексного соединения. Далее 2,033 г полученного порошка комплекса низкомолекулярной гиалуроновой кислоты с Са(II) смешивают с 22 г сухого порошка высокомолекулярной гиалуроновой кислоты с молекулярной массой 1600 кДа в соотношении 1:10 по массе. Аналогично примеру 1 смесь подвергают механохимической обработке на наковальне Бриджмена. Полученная порошковая масса представляет собой комплекс гиалуроновая кислота(1600 кДа) + Са(II)-гиалуроновая кислота(30-40 кДа) в соотношении 10:1. Содержание Са(II) - 0,040% масс.
Затем 2,0 г полученного порошка комплекса растворяют в 100 мл деионизированной воды, при этом порошок полностью растворился в воде, получают водную гидрогелевую композицию состава 2,0% масс. комплекса гиалуроновая кислота(1600 кДа) + Са(II)-гиалуроновая кислота(30-40 кДа) и 98% масс. деионизированной воды.
На фиг. 4 на электронном микроскопе показана структура полученной из гидрогелевой композиции пленки; пленка прозрачна без нерастворимых включений. Общая структура пленки с Са(II) несколько отлична от структуры в примере 1, поскольку введение Са(II) частично сшивает структуру матрицы, увеличивает размер гиасом и создает механические напряжения.
На фиг. 5 при большом увеличении в поляризованном свете показана микрофотография пленки с распределением частиц Са(II) в матрице высокомолекулярной гиалуроновой кислоты; виден равномерный характер распределения гиасом с частицами металла (красные зоны) и сшитые зоны геля.
Пример 3.
Аналогично примеру 1 готовят 200 мл 2,0% масс. водного раствора натриевой соли высокомолекулярной гиалуроновой кислоты с молекулярной массой 1500 кДа, растворяя 4,0 г сухой соли в 200 мл деионизированной воды в кварцевой колбе при перемешивании в течение 60 мин. при комнатной температуре. Вязкость полученного раствора ~450 мПа*с. Далее аналогично примеру 1 проводят облучение раствора УФ-светом в течение 100 мин. Вязкость раствора после облучения 150 мПа*с, что соответствует для этой концентрации раствора молекулярной массе ~50-60 кДа. В раствор с пониженной вязкостью вводят 22 мл 0,5% водного раствора хлорида магния MgCl2 при перемешивании в течение 2,5 часов при комнатной температуре. При этом происходит частичный ионный обмен ионов Na+ на ионы Mg+2 с образованием раствора комплексного соединения Mg(II)-ГК(20-30 кДа).
Аналогично примеру 1 проводят операцию лиофильной сушки вышеуказанного раствора комплексного соединения. Далее 4,011 г полученного порошка комплекса низкомолекулярной гиалуроновой кислоты с Mg(II) смешивают с 40,0 г сухого порошка высокомолекулярной гиалуроновой кислоты с молекулярной массой 1500 кДа в соотношении 1:10 по массе. Аналогично примеру 1 смесь подвергают механохимической обработке на наковальне Бриджмена. Полученная порошковая масса представляет собой комплекс гиалуроновая кислота(1600 кДа) + Mg(II)-гиалуроновая кислота(50-60 кДа) в соотношении 10:1. Содержание Mg (II) - 0,001% масс.
Затем 2,5 г полученного порошка растворяют в 100 мл деионизированной воды при этом порошок полностью растворился в воде, получают водную гидрогелевую композицию состава 2,5% масс. комплекса гиалуроновая кислота(1600 кДа) + Mg(II)-гиалуроновая кислота(50-60 кДа) и 97,5% масс. деионизированной воды.
На фиг. 6 на электронном микроскопе показана структура полученной из гидрогелевой композиции пленки; пленка прозрачна без нерастворимых включений, но видны структурированные области, образованные при высыхании гидрогеля, увеличенный размер гиасом.
На фиг. 7 при большом увеличении в поляризованном свете показана микрофотография пленки с распределением частиц Mg(II) в матрице высокомолекулярной гиалуроновой кислоты; несмотря на структурирование пленки виден равномерный характер распределения гиасом с частицами металла (красные зоны), в том числе и в сшитых зонах геля.
На Фиг. 8 изображена структурная формула комплексного соединения Me(II)-ГК (20-60 кДа) с катионами Me(II), выбранных из группы Ca, Mg, Zn, при связывании катиона Ме2+ с двумя дисахаридными звеньями гиалуроновой кислоты. Гиалуронан может образовывать хелатоподобные комплексы с двухвалентными катионами, в которых, в среднем, два дисахаридных звена цепи связывает один Me2+. Ион металла взаимодействует с шестью атомами кислорода, которые относятся к двум N-ацетильным группам и двум карбоксильным группам противоположных участков цепи. Влияние двухвалентных катионов на гиалуронан приводит к снижению вязкости раствора вследствие уменьшения гидродинамического радиуса молекул.

Claims (9)

1. Гидрогелевая водорастворимая композиция на основе натриевой соли гиалуроновой кислоты и ионов поливалентных металлов, представляющая стабильную систему гелевых глобул в деионизированной воде, содержащая гелеобразователь из матрицы высокомолекулярной гиалуроновой кислоты с молекулярной массой 1500-1800 кДа с равномерно распределенными и связанными химически с матрицей частицами комплексного соединения низкомолекулярной гиалуроновой кислоты с молекулярной массой 20-60 кДа с катионами металлов, выбранных из группы: Ca, Mg, Zn, при этом соотношение высокомолекулярной гиалуроновой кислоты к указанному комплексному соединению составляет 10:1, содержание указанных металлов в комплексном соединении – 0,001-0,01 мас.%, концентрации указанного гелеобразователя в деионизированной воде – 1,5-2,5 мас.%.
2. Способ получения гидрогелевой водорастворимой композиции на основе гиалуроновой кислоты и ионов поливалентных металлов, включающий следующие этапы:
- приготовление 1-2% водного раствора натриевой соли высокомолекулярной гиалуроновой кислоты с молекулярной массой 1500-1800 кДа в деионизованной воде;
- получение низкомолекулярной гиалуроновой кислоты с молекулярной массой 20-60 кДа при облучении водного раствора гиалуроната натрия в течение 100-120 минут УФ-излучением;
- получение раствора комплексного соединения низкомолекулярной гиалуроновой кислоты с молекулярной массой 20-60 кДа с катионами металлов, выбранных из группы: Ca, Mg, Zn, при смешивании полученного облученного раствора гиалуроната натрия с водным раствором соли хлорида соответствующего металла из указанной группы, с последующим перемешиванием раствора в течение 2-3 часов при комнатной температуре;
- получение порошка комплексного соединения низкомолекулярной гиалуроновой кислоты с молекулярной массой 20-60 кДа с катионами металлов, выбранных из группы: Ca, Mg, Zn, путем фильтрации из полученного раствора, с последующей лиофильной сушкой полученного осадка при 40-60°С при пониженном давлении 0,1 Па и дальнейшим отделением от фильтра сухого субстрата;
- предварительное получение однородной смеси порошков при смешивании сухого порошка натриевой соли высокомолекулярной гиалуроновой кислоты с молекулярной массой 1500-1800 кДа с полученным сухим порошком комплексного соединения низкомолекулярной гиалуроновой кислоты с молекулярной массой 20-60 кДа с катионами металлов, выбранных из группы: Ca, Mg, Zn, в соотношении 10:1 по массе;
- механохимическая обработка полученной однородной смеси порошков путем одновременного воздействия давления и деформации сдвига в механохимическом реакторе типа наковальни Бриджмена или экструдере при температуре 20-50°С и при давлении от 5 до 1000 МПа в течение 0,1-10 минут для получения порошка гелеобразователя, содержащего матрицу из высокомолекулярной гиалуроновой кислоты с молекулярной массой 1500-1800 кДа и равномерно распределенными и химически связанными с матрицей частицами комплексного соединения низкомолекулярной гиалуроновой кислоты с молекулярной массой 20-60 кДа с катионами металлов, выбранных из группы: Ca, Mg, Zn;
- получение гидрогелевой водорастворимой композиции при растворении 1,5-2,5 мас.% полученного порошка гелеобразователя в деионизированной воде до 100 мас.%.
RU2019131025A 2019-10-02 2019-10-02 Гидрогелевая водорастворимая композиция на основе гиалуроновой кислоты и ионов поливалентных металлов и способ ее получения RU2710074C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019131025A RU2710074C1 (ru) 2019-10-02 2019-10-02 Гидрогелевая водорастворимая композиция на основе гиалуроновой кислоты и ионов поливалентных металлов и способ ее получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019131025A RU2710074C1 (ru) 2019-10-02 2019-10-02 Гидрогелевая водорастворимая композиция на основе гиалуроновой кислоты и ионов поливалентных металлов и способ ее получения

Publications (1)

Publication Number Publication Date
RU2710074C1 true RU2710074C1 (ru) 2019-12-24

Family

ID=69022873

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019131025A RU2710074C1 (ru) 2019-10-02 2019-10-02 Гидрогелевая водорастворимая композиция на основе гиалуроновой кислоты и ионов поливалентных металлов и способ ее получения

Country Status (1)

Country Link
RU (1) RU2710074C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2745124C1 (ru) * 2020-07-02 2021-03-22 Общество с ограниченной ответственностью "МедикалСайнс" Биоактивная композиция на основе сшитой соли гиалуроновой кислоты, содержащая ресвератрол, и способ ее получения
CN114767934A (zh) * 2022-04-14 2022-07-22 上海邦铭生物科技有限公司 一种注射型美容整形用面部填充水凝胶的制备方法
RU2780485C1 (ru) * 2021-10-22 2022-09-26 Общество с ограниченной ответственностью "МедикалСайнс" Твердофазный способ получения биоактивной композиции на основе хелатных комплексов цинка, магния, марганца, меди и хрома с гиалуроновой кислотой
CN117586432A (zh) * 2023-11-08 2024-02-23 山东焦点福瑞达生物股份有限公司 一种透明质酸锌的制备方法及其应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2280041C1 (ru) * 2005-04-21 2006-07-20 Общество с ограниченной ответственностью Научно-производственное предприятие "Тульская индустрия ЛТД" Способ получения водорастворимых солевых комплексов гиалуроновой кислоты (варианты)
US20060166928A1 (en) * 2002-07-26 2006-07-27 Moon Tae S Hyaluronic acid derivative gel and method for preparing the same
KR20080026924A (ko) * 2006-09-22 2008-03-26 주식회사 바이오랜드 저분자량 히알루론산 또는 그 염을 함유하는 조성물
RU2366666C1 (ru) * 2007-12-20 2009-09-10 Институт синтетических полимерных материалов (ИСПМ) им. Н.С. Ениколопова РАН Способ получения сшитых солей гиалуроновой кислоты в водной среде
RU2366665C1 (ru) * 2007-12-03 2009-09-10 Институт синтетических полимерных материалов (ИСПМ) им. Н.С. Ениколопова РАН Способ получения сшитых солей гиалуроновой кислоты
CN101534842A (zh) * 2006-12-13 2009-09-16 株式会社Lg生命科学 用于治疗特应性皮炎的包含透明质酸和/或其盐的组合物
RU2534789C1 (ru) * 2013-06-19 2014-12-10 Сергей Алексеевич Успенский Твердофазный способ получения водорастворимого биоактивного нанокомпозита на основе модифицированной лимонной кислотой гиалуроновой кислоты и наночастиц золота
CN104225677B (zh) * 2013-06-13 2016-09-21 山东省生物药物研究院 交联透明质酸细胞支架材料及其制备方法和应用
CN106905545A (zh) * 2017-01-10 2017-06-30 罗穗 交联透明质酸凝胶、微针贴膜及微针贴膜的制作方法
CN107174535A (zh) * 2017-04-18 2017-09-19 杭州惠博士健康产业有限公司 一种具有抗炎透皮修复功效的透明质酸组合物及应用
RU2641053C1 (ru) * 2016-09-21 2018-01-15 Наталья Павловна Михайлова Твёрдофазный способ получения биоактивного композита для наращивания ткани на основе гиалуроновой кислоты и микрочастиц полилактида или его сополимеров и способ получения имплантата на основе этого композита

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060166928A1 (en) * 2002-07-26 2006-07-27 Moon Tae S Hyaluronic acid derivative gel and method for preparing the same
RU2280041C1 (ru) * 2005-04-21 2006-07-20 Общество с ограниченной ответственностью Научно-производственное предприятие "Тульская индустрия ЛТД" Способ получения водорастворимых солевых комплексов гиалуроновой кислоты (варианты)
KR20080026924A (ko) * 2006-09-22 2008-03-26 주식회사 바이오랜드 저분자량 히알루론산 또는 그 염을 함유하는 조성물
CN101534842A (zh) * 2006-12-13 2009-09-16 株式会社Lg生命科学 用于治疗特应性皮炎的包含透明质酸和/或其盐的组合物
RU2366665C1 (ru) * 2007-12-03 2009-09-10 Институт синтетических полимерных материалов (ИСПМ) им. Н.С. Ениколопова РАН Способ получения сшитых солей гиалуроновой кислоты
RU2366666C1 (ru) * 2007-12-20 2009-09-10 Институт синтетических полимерных материалов (ИСПМ) им. Н.С. Ениколопова РАН Способ получения сшитых солей гиалуроновой кислоты в водной среде
CN104225677B (zh) * 2013-06-13 2016-09-21 山东省生物药物研究院 交联透明质酸细胞支架材料及其制备方法和应用
RU2534789C1 (ru) * 2013-06-19 2014-12-10 Сергей Алексеевич Успенский Твердофазный способ получения водорастворимого биоактивного нанокомпозита на основе модифицированной лимонной кислотой гиалуроновой кислоты и наночастиц золота
RU2641053C1 (ru) * 2016-09-21 2018-01-15 Наталья Павловна Михайлова Твёрдофазный способ получения биоактивного композита для наращивания ткани на основе гиалуроновой кислоты и микрочастиц полилактида или его сополимеров и способ получения имплантата на основе этого композита
CN106905545A (zh) * 2017-01-10 2017-06-30 罗穗 交联透明质酸凝胶、微针贴膜及微针贴膜的制作方法
CN107174535A (zh) * 2017-04-18 2017-09-19 杭州惠博士健康产业有限公司 一种具有抗炎透皮修复功效的透明质酸组合物及应用

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2745124C1 (ru) * 2020-07-02 2021-03-22 Общество с ограниченной ответственностью "МедикалСайнс" Биоактивная композиция на основе сшитой соли гиалуроновой кислоты, содержащая ресвератрол, и способ ее получения
RU2780485C1 (ru) * 2021-10-22 2022-09-26 Общество с ограниченной ответственностью "МедикалСайнс" Твердофазный способ получения биоактивной композиции на основе хелатных комплексов цинка, магния, марганца, меди и хрома с гиалуроновой кислотой
RU2782921C1 (ru) * 2021-10-22 2022-11-07 Общество с ограниченной ответственностью "МедикалСайнс" Протез синовиальной жидкости и способ его получения
CN114767934A (zh) * 2022-04-14 2022-07-22 上海邦铭生物科技有限公司 一种注射型美容整形用面部填充水凝胶的制备方法
CN117586432A (zh) * 2023-11-08 2024-02-23 山东焦点福瑞达生物股份有限公司 一种透明质酸锌的制备方法及其应用
RU2830110C1 (ru) * 2023-12-15 2024-11-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Приволжский исследовательский медицинский университет" Министерства здравоохранения Российской Федерации Иммобилизованный на геле гиалуроновой кислоты бис(L-треонинат) германия (IV) дигидроксид с химической формулой [Ge(Thr)2(OH)2] и способ его получения

Similar Documents

Publication Publication Date Title
Zhang et al. Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing
Guo et al. Injectable adhesive self-healing multiple-dynamic-bond crosslinked hydrogel with photothermal antibacterial activity for infected wound healing
Masud et al. Preparation of novel chitosan/poly (ethylene glycol)/ZnO bionanocomposite for wound healing application: Effect of gentamicin loading
RU2692800C2 (ru) Вязкоэластичные гели в качестве новых наполнителей
RU2710074C1 (ru) Гидрогелевая водорастворимая композиция на основе гиалуроновой кислоты и ионов поливалентных металлов и способ ее получения
US20190008775A1 (en) Method for Preparing Modified Sodium Alginate Embolization Microsphere
Chiellini et al. Ulvan: A versatile platform of biomaterials from renewable resources
JP3337472B2 (ja) 創傷治癒剤
EP2861626B1 (en) Method of preparing a composition based on hyaluronic acid
JP2019501928A (ja) 核酸及びキトサンを含む温度感応性ハイドロゲル組成物
JP2022514331A (ja) 多糖類と両性イオン性ポリマーをベースにしたヒドロゲル組成物およびその使用方法
EP3107587A1 (en) Dermocosmetic filler and uses thereof for aesthetic purposes
FR3035327A1 (fr) Solution aqueuse homogene de chitosane ou derive de chitosane injectable presentant un ph proche du ph physiologique
CN108478875A (zh) 一种交联透明质酸凝胶微球的制备方法及其应用
Montanari et al. Halting hyaluronidase activity with hyaluronan-based nanohydrogels: Development of versatile injectable formulations
Tran et al. Chitosan hydrogel containing silk fibroin nanofibrils for controllable properties and its application to drug delivery system
RU2477138C1 (ru) Способ получения заполняющего материала для пластической хирургии и инструментальной косметологии, заполняющий материал и способ введения заполняющего материала в проблемную зону
Yamazaki et al. Analysis of the aggregation mechanism of chondroitin sulfate/chitosan particles and fabrication of hydrogel cell scaffolds
KR102721032B1 (ko) 히알루론산, 폴리에틸렌글리콜 및 실리콘 함유 성분을 포함하는 생체적합성 하이드로겔
Moon et al. LCST/UCST behavior of polysaccharides for hydrogel fabrication
Zavyalova et al. Characteristics of physicochemical and rheological properties of chitosan hydrogels based on selected hydroxy acids
Mondal et al. Multibiofunctional Self-healing Adhesive Injectable Nanocomposite Polysaccharide Hydrogel
Cui et al. Advances in Biomedical Applications of Hydrogels from Seaweed-Derived Sulfated Polysaccharides: Carrageenan, Fucoidan, and Ulvan
EP4261245A1 (en) Method for producing highly swellable hyaluronic acid bead gel
Mohammed et al. Synthesis of Nanochitosan membranes from Shrimp shells