RU2709761C2 - Охлаждение масляного контура турбинного двигателя - Google Patents

Охлаждение масляного контура турбинного двигателя Download PDF

Info

Publication number
RU2709761C2
RU2709761C2 RU2017133603A RU2017133603A RU2709761C2 RU 2709761 C2 RU2709761 C2 RU 2709761C2 RU 2017133603 A RU2017133603 A RU 2017133603A RU 2017133603 A RU2017133603 A RU 2017133603A RU 2709761 C2 RU2709761 C2 RU 2709761C2
Authority
RU
Russia
Prior art keywords
heat exchanger
turbine engine
compressor
refrigerant
oil
Prior art date
Application number
RU2017133603A
Other languages
English (en)
Other versions
RU2017133603A (ru
RU2017133603A3 (ru
Inventor
Себастьян ШАЛО
Original Assignee
Сафран Эйркрафт Энджинз
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53059345&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2709761(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Сафран Эйркрафт Энджинз filed Critical Сафран Эйркрафт Энджинз
Publication of RU2017133603A publication Critical patent/RU2017133603A/ru
Publication of RU2017133603A3 publication Critical patent/RU2017133603A3/ru
Application granted granted Critical
Publication of RU2709761C2 publication Critical patent/RU2709761C2/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M5/00Heating, cooling, or controlling temperature of lubricant; Lubrication means facilitating engine starting
    • F01M5/002Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • F02C7/185Cooling means for reducing the temperature of the cooling air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/005Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/08Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by varying the rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/12Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves
    • F04C28/125Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using sliding valves with sliding valves controlled by the use of fluid other than the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/98Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/306Mass flow
    • F05D2270/3062Mass flow of the auxiliary fluid for heating or cooling purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Supercharger (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к турбинному двигателю, такому как турбореактивный двигатель или турбовинтовой двигатель летательного аппарата. Турбинный двигатель содержит по меньшей мере один масляный контур (8) и охлаждающие средства (16) для охлаждения масла в указанном контуре (8), причем охлаждающие средства (16) содержат контур (17) хладагента, в котором выполнены первый теплообменник (18), обеспечивающий возможность теплообмена между хладагентом и воздухом и образующий конденсатор, второй теплообменник (19), обеспечивающий возможность теплообмена между хладагентом и маслом в масляном контуре и образующий испаритель, редуктор (20) давления, компрессор (21) и первые регулирующие средства (31), выполненные с возможностью регулирования давления хладагента, поступающего в первый теплообменник (18). Также представлена охлаждающая система (16) для охлаждения текучей среды в контуре горячей текучей среды авиационного турбинного двигателя (1), содержащая контур (17) хладагента. Изобретение позволяет повысить эффективность турбинного двигателя. 2 н. и 10 з.п. ф-лы, 5 ил.

Description

Данное изобретение относится к турбинному двигателю, такому как турбореактивный двигатель или турбовинтовой двигатель летательного аппарата, содержащему по меньшей мере один масляный контур и средства для охлаждения масла в указанном контуре.
Известный турбинный двигатель содержит масляный контур для смазки и охлаждения систем, в частности таких как антифрикционные подшипники или элементы зубчатых передач, а также содержит топливный контур, питающий форсунки, установленные в камере сгорания.
Известны соединения масляного и топливного контуров с помощью теплообменников для исключения чрезмерного нагревания смазочного масла, при этом масло охлаждается вследствие обмена теплом с топливом.
Для этого используются топливно-масляные теплообменники, расположенные в масляном и топливном контурах ниже или выше по потоку от одного или более масляно-воздушных теплообменников, установленных в масляном контуре. Поток воздуха, поступающий снаружи или изнутри турбинного двигателя, проходит через масляно-воздушный теплообменник или обтекает его.
Масляно-воздушный теплообменник необходим для охлаждения масла тогда, когда в определенные моменты работы турбинного двигателя топливно-масляный теплообменник не обеспечивает достаточного охлаждения масла.
Из уровня техники также известны другие решения, в частности такие как использование термостатических клапанов в обходной линии на входе масляно-воздушного теплообменника или даже использование увлажнителей подаваемого воздуха.
В заявках на патент FR 2951228, FR 1061138 и FR 1157953, поданных заявителем, описаны конфигурации масляных и топливных контуров в турбинном двигателе.
Масляно-воздушный теплообменник представляет собой, например, теплообменник с поверхностным охлаждением, другими словами, он содержит масляные линии, обтекаемые потоком холодного воздуха, поступающего из обходного воздушного потока турбинного двигателя, называемого вторичным воздушным потоком. Такой теплообменник, например, заглублен в стенку обводного трубопровода, непосредственно ниже по потоку от воздухонагнетателя.
Масляно-воздушный теплообменник также может представлять собой пластинчатый теплообменник, через который проходит поток воздуха, забираемый из вторичного воздушного потока и повторно вводимый в него на выходе.
Существующие теплообменники имеют относительно низкую эффективность, что вынуждает использовать относительно объемные теплообменники. Однако, поскольку они расположены во вторичных воздушных потоках, они создают аэродинамические разрывы, которые увеличиваются с увеличением размеров теплообменников, что отрицательно влияет на общую эффективность турбинного двигателя.
Для устранения этого недостатка в заявке на патент FR 2993610, поданной от имени заявителя, предложен турбинный двигатель, такой как турбореактивный двигатель или турбовинтовой двигатель летательного аппарата, содержащий по меньшей мере один масляный контур и средства для охлаждения масла в указанном контуре, содержащие контур хладагента, в котором выполнены первый теплообменник, обеспечивающий возможность теплообмена между хладагентом и воздухом и образующий конденсатор, второй теплообменник, обеспечивающий возможность теплообмена между хладагентом и маслом в масляном контуре и образующий испаритель, редуктор давления, установленный ниже по потоку от первого теплообменника и выше по потоку от второго теплообменника в направлении потока хладагента, и компрессор, установленный ниже по потоку от второго теплообменника и выше по потоку от первого теплообменника.
Таким образом, масляный контур охлаждается не с помощью простого воздушно-масляного теплообменника, а с помощью термодинамической системы, такой как тепловой насос.
В данной системе тепло забирается от масла с помощью испарителя и затем передается воздуху с помощью конденсатора.
Такая термодинамическая система обеспечивает высокую эффективность, что дает возможность, в частности, ограничения размера теплообменника для теплообмена между воздухом и хладагентом без влияния на общую эффективность турбинного двигателя.
Существует необходимость в дополнительном повышении общей эффективности турбинного двигателя.
Для этого в данном изобретении предложен турбинный двигатель, такой как турбореактивный двигатель или турбовинтовой двигатель летательного аппарата, содержащий по меньшей мере один масляный контур и средства для охлаждения масла в указанном контуре, причем указанные охлаждающие средства содержат контур хладагента, в котором выполнены первый теплообменник, обеспечивающий возможность теплообмена между хладагентом и воздухом и образующий конденсатор, второй теплообменник, обеспечивающий возможность теплообмена между хладагентом и маслом в масляном контуре и образующий испаритель, редуктор давления, установленный ниже по потоку от первого теплообменника и выше по потоку от второго теплообменника в направлении потока хладагента, и компрессор, установленный ниже по потоку от второго теплообменника и выше по потоку от первого теплообменника, отличающийся тем, что охлаждающие средства содержат первые регулирующие средства, выполненные с возможностью регулирования давления хладагента, поступающего в первый теплообменник.
Таким образом, имеется возможность изменения давления хладагента, проходящего через первый теплообменник, т.е. конденсатор, в частности, в зависимости от условий полета или внешних условий.
Соответственно, в так называемых горячих условиях, когда температура наружного воздуха повышена, необходимо увеличить давление хладагента, проходящего через конденсатор, для высвобождения достаточного количества тепловой энергии и обеспечения достаточного нагревания масла в соответствующем контуре. Этот режим работы, который представляет малую часть сценария полета или работы, является относительно энергоемким, так как требует подачи достаточной мощности к компрессору для достижения необходимой мощности на входе первого теплообменника.
В противоположность этому, в большинстве сценариев полета или работы, когда температура наружного воздуха понижена, давление хладагента, проходящего через конденсатор, может быть понижено с обеспечением при этом достаточного охлаждения масла. В этом случае может быть уменьшена мощность, потребляемая компрессором, и, таким образом, повышена общая эффективность турбинного двигателя.
Турбинный двигатель может также содержать вторые регулирующие средства, выполненные с возможностью регулирования расхода хладагента, поступающего в первый теплообменник.
Расход хладагента зависит, главным образом, от давления на входе первого теплообменника.
В соответствии с одним вариантом выполнения компрессор представляет собой двухвинтовой турбокомпрессор.
В этом случае первые регулирующие средства содержат подвижный ползун, положение которого относительно винтов турбокомпрессора может регулироваться, давление хладагента на выходе компрессора зависит от положения указанного ползуна, а первые регулирующие средства содержат средства для управления положением указанного ползуна.
Такой двухвинтовой турбокомпрессор, снабженный подвижным ползуном, известен, в частности, из документов FR 2501799, ЕР 0162157 и US 588430 для других вариантов применений.
Кроме того, вторые регулирующие средства могут содержать средства, выполненные с возможностью регулирования скорости вращения винтов турбокомпрессора.
Фактически, в случае турбокомпрессора расход потока на выходе указанного компрессора зависит от скорости вращения винтов.
В соответствии с другим вариантом выполнения изобретения компрессор представляет собой центробежный компрессор, содержащий ротор, скорость вращения которого определяет давление хладагента на выходе компрессора.
В этом случае первые регулирующие средства содержат средства для управления скоростью вращения ротора.
Фактически, в случае турбокомпрессора давление на выходе указанного компрессора зависит от скорости вращения ротора.
Кроме того, вторые регулирующие средства содержат диафрагму с изменяемым сечением, расположенную ниже по потоку от указанного центробежного компрессора, и средства управления сечением указанной диафрагмы.
Фактически, расход хладагента на выходе диафрагмы зависит от ее сечения.
Турбинный двигатель также может содержать вычислительные средства, выполненные с возможностью определения:
- необходимой скорости вращения винтов турбокомпрессора или необходимой скорости вращения ротора центробежного компрессора и/или
- необходимого сечения диафрагмы или необходимого положения ползуна двухвинтового турбокомпрессора,
в зависимости от
- входных параметров, в частности таких как температура воздуха снаружи турбинного двигателя, характеристики компрессора, температура масла в определенной точке масляного контура, скорость вращения ротора винтов компрессора, сечение диафрагмы или положение ползуна,
- температуры масла, которую следует поддерживать в масляном контуре, и/или
- математической модели охлаждающих средств.
Следует отметить, что характеристики компрессора могут представлять собой, в частности, его характеристическую кривую, задающую, например, давление и/или расход потока на выходе компрессора в зависимости от скорости вращения винтов или ротора указанного компрессора.
Турбинный двигатель предпочтительно содержит вторичный тракт для прохождения вторичного потока, поступающего от воздухонагнетателя, причем первый теплообменник расположен в указанном вторичном тракте.
Как вариант, первый теплообменник предназначен для обеспечения теплообмена между хладагентом и окружающим воздухом снаружи турбинного двигателя.
В соответствии с одной характерной особенностью изобретения масляный контур может быть предназначен для смазки и/или охлаждения элементов турбинного двигателя и/или системы, такой как генератор электроэнергии.
Изобретение также относится к охлаждающей системе для охлаждения текучей среды в контуре горячей текучей среды авиационного турбинного двигателя, причем указанная система содержит контур хладагента, содержащий:
первый теплообменник, образующий конденсатор и обеспечивающий возможностью теплообмена между хладагентом и воздухом,
второй теплообменник, образующий испаритель и обеспечивающий возможностью теплообмена между хладагентом и текучей средой в контуре горячей текучей среды, и
компрессор, установленный ниже по потоку от второго теплообменника и выше по потоку от первого теплообменника в направлении потока хладагента, и редуктор давления, установленный ниже по потоку от первого теплообменника и выше по потоку от второго теплообменника,
при этом охлаждающая система содержит первые регулирующие средства, выполненные с возможностью регулирования давления хладагента, поступающего в первый теплообменник.
Текучая среда в контуре горячей текучей среды может представлять собой масло для смазки систем турбинного двигателя.
Как вариант, текучая среда в контуре горячей текучей среды может представлять собой горячий воздух, отобранный из компрессорной ступени турбинного двигателя.
Редуктор давления может быть встроен в трубопровод контура хладагента, соединяющий первый теплообменник со вторым теплообменником, при этом редуктор давления выполнен в виде местного сужения проходного сечения указанного трубопровода.
Таким образом, редуктор давления не является элементом, установленным на трубопроводе, а вместо этого может быть образован имеющимся трубопроводом.
Изобретение станет более понято, а его другие элементы, характерные особенности и преимущества - очевидны при прочтении нижеследующего описания, приведенного в качестве неограничивающего примера со ссылкой на прилагаемые чертежи, на которых:
фиг. 1 изображает схематический вид в аксонометрии турбинного двигателя согласно уровню техники,
фиг. 2 изображает частичный схематический вид масляного контура и охлаждающих средств согласно уровню техники,
фиг. 3 изображает вид, соответствующий фиг. 2 и показывающий первый вариант выполнения изобретения,
фиг. 4 изображает схематический разрез двухвинтового турбокомпрессора, снабженного подвижным ползуном,
фиг. 5 изображает вид, соответствующий фиг. 2 и показывающий второй вариант выполнения изобретения.
На фиг. 1 изображен турбинный двигатель 1 согласно уровню техники, содержащий камеру 2 сгорания, газы сгорания из которой приводят в действие турбину 3 высокого давления и турбину 4 низкого давления. Турбина 3 высокого давления соединена валом с компрессором высокого давления, расположенным выше по потоку от камеры 2 сгорания и подающим в последнюю сжатый воздух. Турбина 4 низкого давления соединена другим валом с воздухонагнетающим колесом 5, расположенным на верхнем по потоку конце турбинного двигателя 1.
К валу турбины 3 высокого давления с помощью механического устройства 7 отбора мощности присоединена коробка 6 передач, или вспомогательная коробка передач, которая содержит набор шестерен для приведения в действие различных систем турбинного двигателя, таких как насосы и генераторы, в частности электрические. Также могут использоваться другие силовые передачи.
На фиг. 2 изображен масляный контур 8 турбинного двигателя, показанного на фиг. 1.
От верхнего по потоку конца к нижнему по потоку концу в направлении потока масла контур 8 содержит различные узлы 9, в которых используется смазывающее и/или охлаждающее масло, продувочные насосы 10, обеспечивающие возможность рециркуляции масла из систем в резервуар 11, питающие насосы 12 и фильтр 13.
В дополнение к маслу, используемому для смазки и охлаждения двигателя 1, в частности подшипников турбины и валов компрессора, общий масляный поток может содержать масло, используемое для смазки вспомогательной коробки передач и для смазки одного или более генераторов электроэнергии.
Контур 8 содержит два теплообменника, установленных последовательно между фильтром 13 и узлами 9, а именно основной топливно-масляный теплообменник 14 и вторичный топливно-масляный теплообменник 15.
Устройство также содержит термодинамическое устройство 16, такое как тепловой насос. Указанное устройство 16 содержит контур 17 хладагента, в котором выполнены первый теплообменник 18, обеспечивающий возможность теплообмена между хладагентом и воздухом и образующий конденсатор, второй теплообменник 19, обеспечивающий возможность теплообмена между хладагентом и маслом контура 8 и образующий испаритель, редуктор 20 давления, установленный ниже по потоку от первого теплообменника 18 и выше по потоку от второго теплообменника 19 в направлении потока хладагента, и компрессор 21, установленный ниже по потоку от второго теплообменника 19 и выше по потоку от первого теплообменника 18.
Первый теплообменник 18 предпочтительно расположен во вторичном тракте для прохождения вторичного потока, поступающего от воздухонагнетателя 5 турбинного двигателя 1.
Масляный контур 8 также содержит линию 22, установленную в контуре 8 для обхода второго теплообменника 19, и имеет вход, расположенный между выходом фильтра 13 и входом теплообменника 19, и выход, расположенный между выходом теплообменника 19 и входом вторичного топливно-воздушного теплообменника 15. В обходной линии 22 установлен гидравлический клапан 23, регулирующий прохождение потока масла во второй теплообменник 19 или через линию 22.
Во время работы, когда необходимо охладить масло в контуре 8, выполняется запуск компрессора 21. Затем испаритель 19 обеспечивает возможность испарения хладагента путем отбора тепла от масла. Компрессор 21 обеспечивает возможность повышения давления и температуры хладагента в паровой фазе перед тем, как последний пройдет через конденсатор 18, где он отдает тепло в воздух при переходе из газообразного состояния в жидкое состояние. Затем хладагент в жидкой фазе проходит через редуктор 20 давления, который уменьшает его давление и температуру, перед прохождением назад через испаритель 19.
Также следует отметить, что при работе в холодных условиях клапан 23 может быть открыт для обеспечения возможности прохождения масла через обходную линию 22.
Такое устройство обычно характеризуется коэффициентом полезного действия (КПД), который может составлять, например, порядка 5. Это означает, что на одну единицу энергии, поданную в компрессор 21 (в виде электрической энергии), приходится пять единиц энергии (в форме тепла), которые забираются маслом и передаются воздуху.
Таким образом, высокая эффективность данной системы 16 позволяет уменьшить размер теплообменника 18 для теплообмена между воздухом и хладагентом без оказания значительного влияния на эффективность турбинного двигателя.
В частности, размер теплообменника 18 ограничен тем фактом, что обмен возможен между хладагентом и воздухом с существенной разницей температур.
Как указано выше, существует необходимость в дополнительном повышении общей эффективности узла.
На фиг. 3 и 4 изображен первый вариант выполнения изобретения, в котором компрессор 21 представляет собой двухвинтовой турбокомпрессор, приводимый в действие, например, электрическим мотором 24. Общая конструкция такого компрессора 21 известна, в частности, из документов FR 2501799, ЕР 0162157 и US 7588430 и описана ниже со ссылкой на фиг. 4.
Указанный турбокомпрессор 21 содержит кожух 25, имеющий вход 26 для хладагента под низким давлением и выход 27 для хладагента под высоким давлением, при этом в кожухе 25 расположены два ротора или вращающихся винта 28. Роторы 28 имеют спиральные зубья, причем один из указанных роторов 28 образует охватываемый или ведущий ротор, приводимый в действие электрическим мотором, а другой ротор 28 образует охватывающий ротор, приводимый в действие или вращаемый вследствие вращения охватываемого ротора. Указанные два ротора 28 имеют параллельные оси и находятся в зацеплении друг с другом, образуя между собой и с кожухом проход для циркуляции хладагента, который сужается по мере удаления от входа 26 кожуха 25. Таким образом, чем дальше хладагент продвигается вдоль роторов 28 в противоположную сторону от входа 26, тем больше указанная текучая среда сжимается. Длина пути сжатия, проходимого хладагентом, может регулироваться с помощью подвижного ползуна 29, перемещающегося герметичным образом относительно роторов 28. Другими словами, со ссылкой на фиг.4, чем дальше влево, то есть по направлению ко входу 26, расположен ползун 29, тем ниже будет давление на выходе компрессора 21, и чем дальше вправо, то есть по направлению к выходу 27, расположен ползун, тем выше будет давление на выходе компрессора 21.
Положение ползуна 29 может быть определено с помощью датчика положения, например такого как линейный датчик на основе дифференциального трансформатора.
Ползун 29 может перемещаться с помощью любых подходящих средств, например таких как электрический или гидравлический привод 30.
Кроме того, как по существу известно, расход потока на выходе компрессора 21 зависит от скорости вращения винтов или роторов 28.
Турбинный двигатель 1 также содержит вычислительные средства 31, образованные, например, полностью автономным вычислительным цифровым устройством для управления двигателем, которое обеспечивает возможность измерения скорости вращения роторов 28 и положения ползуна 29, необходимых для обеспечения надлежащего охлаждения соответствующего масляного контура 8 в зависимости от всех или от некоторых из следующих элементов 32:
- входных параметров, в частности таких как температура воздуха снаружи турбинного двигателя, характеристики компрессора 21, температура масла в определенной точке контура 8, скорость вращения роторов или винтов 28 компрессора 21 и положение ползуна 29,
- температуры масла, которая должна поддерживаться в контуре 8, и/или
- математической модели охлаждающих средств 16.
Таким образом, изобретение обеспечивает возможность регулирования давления хладагента на входе конденсатора 18 с помощью положения ползуна 29 и возможность регулирования расхода хладагента на входе конденсатора 18 с помощью скорости вращения роторов 28. Управление приводом 30 ползуна 29 может осуществляться с помощью вычислительных средств 31 или с помощью отдельных вычислительных средств.
Таким образом, имеется возможность регулирования мощности, подаваемой к компрессору 21 для охлаждения масляного контура 8, с повышением общей эффективности турбинного двигателя 1.
На фиг. 5 изображен второй вариант выполнения изобретения, в котором компрессор 21 представляет собой центробежный компрессор, содержащий ротор, приводимый в действие, например, электрическим мотором 24. Как указано выше, в случае центробежного компрессора давление на выходе компрессора 21 зависит от скорости вращения указанного ротора.
Кроме того, в данном варианте выполнения между выходом центробежного компрессора 21 и входом конденсатора 18 расположена диафрагма 33 с изменяемым сечением. Соответственно, расход хладагента на выходе диафрагмы 33 может регулироваться путем изменения проходного сечения диафрагмы 33. Однако такая диафрагма не является существенной для реализации изобретения.
В данном варианте выполнения вычислительные средства 31, образованные, например, полностью автономным цифровым средством для управления двигателем, могут определять скорость вращения ротора центробежного компрессора 21 и изменяемое сечение диафрагмы, необходимые для обеспечения надлежащего охлаждения масла в соответствующем контуре, в зависимости от всех или от некоторых их следующих элементов 32:
- входных параметров, в частности таких как температура воздуха снаружи турбинного двигателя, характеристики компрессора 21, температура масла в определенной точке контура 8, скорость вращения ротора и сечение диафрагмы 33,
- температуры масла, которая должна поддерживаться в контуре 8, и
- математической модели охлаждающих средств 16.
Таким образом, изобретение обеспечивает возможность регулирования давления хладагента на входе конденсатора 18 с помощью скорости вращения ротора компрессора 21 и возможность регулирования расхода хладагента на входе конденсатора 18 с помощью сечения диафрагмы 33.
Таким образом, имеется возможность регулирования мощности, подаваемой к компрессору 21 для охлаждения масляного контура 8, с повышением общей эффективности турбинного двигателя 1.
Следует отметить, что изобретение также может обеспечить возможность уменьшения размеров первого теплообменника 18 по сравнению с уровнем техники для уменьшения сопротивления, создаваемого указанным теплообменником 18 во вторичном тракте, с повышением тем самым эффективности турбинного двигателя 1.
Кроме того, как указано выше, мощность, подаваемая к компрессору 21, может быть уменьшена пропорциональным образом, что может составлять порядка 70% по сравнению с уровнем техники, на большинстве этапов работы или полета.
Следует отметить, что в системе могут отсутствовать обходная линия 22 и клапан 23 (фиг. 2). Фактически, имеется возможность, в частности, уменьшения мощности, подаваемой к компрессору. В частности, компрессор 21 может быть отключен при определенных условиях полета, в частности, во время взлета при чрезвычайно холодной погоде.
Кроме того, редуктор 20 давления может быть встроен в трубопровод 34 контура 17 хладагента, при этом редуктор 20 выполнен, например, в виде местного сужения проходного сечения трубопровода 34.

Claims (23)

1. Турбинный двигатель (1), такой как турбореактивный двигатель или турбовинтовой двигатель летательного аппарата, содержащий по меньшей мере один масляный контур (8) и охлаждающие средства (16) для охлаждения масла в указанном контуре (8), причем охлаждающие средства (16) содержат контур (17) хладагента, в котором выполнены первый теплообменник (18), обеспечивающий возможность теплообмена между хладагентом и воздухом и образующий конденсатор, второй теплообменник (19), обеспечивающий возможность теплообмена между хладагентом и маслом в масляном контуре и образующий испаритель, редуктор (20) давления, установленный ниже по потоку от первого теплообменника (18) и выше по потоку от второго теплообменника (19) в направлении потока хладагента, и компрессор (21), установленный ниже по потоку от второго теплообменника (19) и выше по потоку от первого теплообменника (18), отличающийся тем, что охлаждающие средства (16) содержат первые регулирующие средства (31, 29, 30, 21, 24), выполненные с возможностью регулирования давления хладагента, поступающего в первый теплообменник (18).
2. Турбинный двигатель (1) по п. 1, отличающийся тем, что он содержит вторые регулирующие средства (31, 24, 28, 33), выполненные с возможностью регулирования расхода хладагента, поступающего в первый теплообменник (18).
3. Турбинный двигатель (1) по п. 1 или 2, отличающийся тем, что компрессор (21) представляет собой турбокомпрессор, содержащий роторы, образованные вращающимися винтами (28).
4. Турбинный двигатель (1) по п. 3, отличающийся тем, что первые регулирующие средства содержат подвижный ползун (29), выполненный с возможностью регулирования его положения относительно роторов (28) компрессора (21), при этом давление хладагента на выходе компрессора (21) зависит от положения указанного ползуна (29), при этом первые регулирующие средства содержат средства (30) для управления положением указанного ползуна (29).
5. Турбинный двигатель (1) по п. 3 или 4, отличающийся тем, что вторые регулирующие средства содержат средства (31, 24) для управления скоростью вращения роторов (28) компрессора (21).
6. Турбинный двигатель (1) по п. 1 или 2, отличающийся тем, что компрессор (21) представляет собой центробежный компрессор, содержащий ротор, скорость вращения которого определяет давление хладагента на выходе компрессора (21).
7. Турбинный двигатель по п. 6, отличающийся тем, что первые регулирующие средства содержат средства (31, 24) для управления скоростью вращения ротора.
8. Турбинный двигатель по п. 6 или 7, отличающийся тем, что вторые регулирующие средства содержат диафрагму (33) с изменяемым сечением, расположенную ниже по потоку от указанного центробежного компрессора (21), и средства (31) для управления сечением указанной диафрагмы (33).
9. Турбинный двигатель по п. 5 или 7, отличающийся тем, что указанные средства для управления скоростью вращения по меньшей мере одного ротора компрессора (21) содержат электрический мотор (24), управляемый вычислительным устройством (31).
10. Турбинный двигатель (1) по любому из пп. 2-9, отличающийся тем, что он содержит вычислительные средства, выполненные с возможностью определения:
- необходимой скорости вращения винтов (28) турбокомпрессора (21) или необходимой скорости вращения ротора центробежного компрессора (21) и/или
- необходимого сечения диафрагмы (33) или необходимого положения ползуна (29) двухвинтового турбокомпрессора (21),
в зависимости от
- входных параметров, в частности таких как температура воздуха снаружи турбинного двигателя, характеристики компрессора (21), температура масла в определенной точке масляного контура (8), скорость вращения ротора или винтов (28) компрессора (21), сечение диафрагмы (33) или положение ползуна (29),
- температуры масла, которая должна поддерживаться в масляном контуре (8), и/или
- математической модели охлаждающих средств (16).
11. Охлаждающая система (16) для охлаждения текучей среды в контуре горячей текучей среды авиационного турбинного двигателя (1), содержащая контур (17) хладагента, содержащий
первый теплообменник (18), образующий конденсатор и обеспечивающий возможность теплообмена между хладагентом и воздухом,
второй теплообменник (19), образующий испаритель и обеспечивающий возможность теплообмена между хладагентом и текучей средой в контуре горячей текучей среды, и
компрессор (21), установленный ниже по потоку от второго теплообменника (19) и выше по потоку от первого теплообменника (18) в направлении потока хладагента, и редуктор (20) давления, установленный ниже по потоку от первого теплообменника (18) и выше по потоку от второго теплообменника (19),
причем указанная охлаждающая система (16) содержит первые регулирующие средства (31, 29, 30, 21, 24), выполненные с возможностью регулирования давления хладагента, поступающего в первый теплообменник (18),
при этом текучая среда в контуре горячей текучей среды представляет собой масло для смазки систем турбинного двигателя (1).
12. Охлаждающая система по п. 11, в которой редуктор (20) давления встроен в трубопровод (34) контура (17) хладагента, соединяющий первый теплообменник (18) со вторым теплообменником (19), и выполнен в виде местного сужения проходного сечения указанного трубопровода (34).
RU2017133603A 2015-04-03 2016-04-01 Охлаждение масляного контура турбинного двигателя RU2709761C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1552920A FR3034464B1 (fr) 2015-04-03 2015-04-03 Refroidissement du circuit d'huile d'une turbomachine
FR1552920 2015-04-03
PCT/FR2016/050745 WO2016156756A1 (fr) 2015-04-03 2016-04-01 Refroidissement du circuit d'huile d'une turbomachine

Publications (3)

Publication Number Publication Date
RU2017133603A RU2017133603A (ru) 2019-05-06
RU2017133603A3 RU2017133603A3 (ru) 2019-09-30
RU2709761C2 true RU2709761C2 (ru) 2019-12-20

Family

ID=53059345

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017133603A RU2709761C2 (ru) 2015-04-03 2016-04-01 Охлаждение масляного контура турбинного двигателя

Country Status (8)

Country Link
US (1) US20180094584A1 (ru)
EP (1) EP3277938B2 (ru)
CN (2) CN111120110A (ru)
BR (1) BR112017020669B1 (ru)
CA (1) CA2980798C (ru)
FR (1) FR3034464B1 (ru)
RU (1) RU2709761C2 (ru)
WO (1) WO2016156756A1 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993610B1 (fr) * 2012-07-19 2014-07-11 Snecma Refroidissement du circuit d'huile d'une turbomachine
US11085448B2 (en) * 2017-04-21 2021-08-10 Atlas Copco Airpower, Naamloze Vennootschap Oil circuit, oil-free compressor provided with such oil circuit and a method to control lubrication and/or cooling of such oil-free compressor via such oil circuit
FR3070057B1 (fr) * 2017-08-11 2019-09-06 Safran Aircraft Engines Unite de commande d'une vanne commandee de prelevement d'un flux d'air dans un flux d'air sous pression d'un aeronef
US10883377B2 (en) * 2017-10-27 2021-01-05 Rolls-Royce North American Technolgies Inc. System and method of controlling tip clearance in a shroud assembly for a bladed disc
WO2019155548A1 (ja) * 2018-02-07 2019-08-15 三菱電機株式会社 空調システム及び空調制御方法
US11162419B2 (en) * 2018-02-12 2021-11-02 General Electric Company Method and structure for operating engine with bowed rotor condition
FR3084699B1 (fr) * 2018-07-31 2020-09-25 Safran Aircraft Engines Echangeur thermique pour turbomachine et procede de fabrication associe
FR3094749B1 (fr) * 2019-04-03 2021-11-19 Safran Nacelles Système de refroidissement de turboréacteur pour aéronef
EP3726027A1 (en) * 2019-04-17 2020-10-21 United Technologies Corporation Integrated thermal management system for fuel cooling
CN111114800B (zh) * 2019-12-31 2021-09-14 上海微电机研究所(中国电子科技集团公司第二十一研究所) 一种高空飞行器电推进系统
US11486315B2 (en) * 2020-11-06 2022-11-01 Ge Aviation Systems Llc Combustion engine including turbomachine
CN114180071B (zh) * 2021-11-19 2023-10-27 中国直升机设计研究所 一种使用滑油作为辅助热源的加温系统
GB2622211A (en) * 2022-09-06 2024-03-13 Rolls Royce Plc A thermal management system for an aircraft
GB2622209A (en) * 2022-09-06 2024-03-13 Rolls Royce Plc A thermal management system for an aircraft
GB2622212A (en) * 2022-09-06 2024-03-13 Rolls Royce Plc A thermal management system for an aircraft
GB2622208A (en) 2022-09-06 2024-03-13 Rolls Royce Plc A thermal management system for an aircraft

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131235A (en) * 1990-03-31 1992-07-21 Aisin Seiki Kabushiki Kaisha Cooling system having coolant mass flow control
EP2476973A1 (en) * 2009-10-07 2012-07-18 Mitsubishi Electric Corporation Refrigeration cycle device
RU130644U1 (ru) * 2012-12-07 2013-07-27 Ирина Анатольевна Якубович Устройство подачи масла в турбокомпрессор с постоянным давлением, подогревом и очисткой

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1061138A (fr) 1952-07-31 1954-04-08 Dentifaire Appareillage pour radioscopie dentaire
US2970437A (en) * 1956-02-28 1961-02-07 Thompson Ramo Wooldridge Inc High temperature pumping system with variable speed pump and refrigeration by-product
FR1157953A (fr) 1956-09-10 1958-06-05 Gen Aeronautique Marcel Dassau Perfectionnements à l'usinage chimique des métaux
US3788066A (en) * 1970-05-05 1974-01-29 Brayton Cycle Improvement Ass Refrigerated intake brayton cycle system
US4212168A (en) * 1978-09-15 1980-07-15 Chicago Bridge & Iron Company Power producing dry-type cooling system
US4388048A (en) 1981-03-10 1983-06-14 Dunham Bush, Inc. Stepping type unloading system for helical screw rotary compressor
GB2131094A (en) * 1982-11-29 1984-06-13 Gen Electric Engine oil heat recovery system
DE3473326D1 (en) 1984-05-21 1988-09-15 Kobe Steel Ltd A screw compressor incorporating a slide valve
US4705100A (en) * 1986-07-11 1987-11-10 Grumman Aerospace Corp. Fuel/auxiliary oil thermal management system
FR2728938A1 (fr) * 1995-01-04 1996-07-05 Snecma Systeme de regulation des temperatures de l'huile et du carburant dans un turboreacteur
US20050092002A1 (en) * 2000-09-14 2005-05-05 Wightman David A. Expansion valves, expansion device assemblies, vapor compression systems, vehicles, and methods for using vapor compression systems
US6659729B2 (en) * 2001-02-15 2003-12-09 Mayekawa Mfg. Co., Ltd. Screw compressor equipment for accommodating low compression ratio and pressure variation and the operation method thereof
US7343750B2 (en) * 2003-12-10 2008-03-18 Carrier Corporation Diagnosing a loss of refrigerant charge in a refrigerant system
JP4110123B2 (ja) 2004-07-12 2008-07-02 株式会社神戸製鋼所 スクリュ圧縮機
US8109104B2 (en) * 2004-08-25 2012-02-07 York International Corporation System and method for detecting decreased performance in a refrigeration system
FR2914365B1 (fr) * 2007-03-28 2012-05-18 Airbus France Systeme de refroidissement et de regulation en temperature d'equipements d'un ensemble propulsif d'aeronef.
US7984606B2 (en) * 2008-11-03 2011-07-26 Propulsion, Gas Turbine, And Energy Evaluations, Llc Systems and methods for thermal management in a gas turbine powerplant
CN101413608A (zh) * 2008-11-27 2009-04-22 泰州五行消防水带有限公司 水带
FR2951228B1 (fr) * 2009-10-13 2013-07-19 Snecma Procede et systeme de gestion d'echanges thermiques entre fluides dans une turbomachine
FR2993610B1 (fr) * 2012-07-19 2014-07-11 Snecma Refroidissement du circuit d'huile d'une turbomachine
CN105121981B (zh) * 2013-04-12 2017-04-12 艾默生环境优化技术有限公司 具有带液起动控制的压缩机
JP5826437B1 (ja) * 2014-07-02 2015-12-02 三菱電機株式会社 膨張弁、及び、冷凍サイクル装置
US9829229B2 (en) * 2015-01-27 2017-11-28 Johnson Controls Technology Company System and method for detecting low refrigerant charge in a refrigeration system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5131235A (en) * 1990-03-31 1992-07-21 Aisin Seiki Kabushiki Kaisha Cooling system having coolant mass flow control
EP2476973A1 (en) * 2009-10-07 2012-07-18 Mitsubishi Electric Corporation Refrigeration cycle device
RU130644U1 (ru) * 2012-12-07 2013-07-27 Ирина Анатольевна Якубович Устройство подачи масла в турбокомпрессор с постоянным давлением, подогревом и очисткой

Also Published As

Publication number Publication date
EP3277938A1 (fr) 2018-02-07
CA2980798A1 (fr) 2016-10-06
WO2016156756A1 (fr) 2016-10-06
RU2017133603A (ru) 2019-05-06
BR112017020669A2 (pt) 2018-06-26
FR3034464B1 (fr) 2017-03-24
CN111120110A (zh) 2020-05-08
CA2980798C (fr) 2023-09-19
RU2017133603A3 (ru) 2019-09-30
FR3034464A1 (fr) 2016-10-07
BR112017020669B1 (pt) 2023-01-17
US20180094584A1 (en) 2018-04-05
EP3277938B2 (fr) 2022-02-09
CN107532516A (zh) 2018-01-02
EP3277938B1 (fr) 2019-03-06

Similar Documents

Publication Publication Date Title
RU2709761C2 (ru) Охлаждение масляного контура турбинного двигателя
GB2519016B (en) Cooling of an oil circuit of a turbomachine
US10823005B2 (en) Lubrication system for a turbine engine
US7908840B2 (en) Turbine engine with integrated generator having shared lubrication system
EP1329617B1 (en) Fluid flow system for a gas turbine engine
US8205427B2 (en) Interdependent lubrication systems in a turbine engine
US9739198B2 (en) Oil and fuel circuits in a turbine engine
EP3239479A1 (en) Fluid cooling system for a gas turbine engine and corresponding gas turbine engine
US8495857B2 (en) Gas turbine engine thermal management system
CA2949293A1 (en) Gas turbine engine fluid cooling systems and methods of assembling the same
RU2674301C2 (ru) Подающий текучую среду контур с устройствами изменяемой геометрии и без объемного насоса для турбомашины
EP3123082B1 (en) Chiller compressor rolling bearings with squeeze film dampers
US20130036722A1 (en) Fuel system having fuel control unit and heat exchanger
US10954832B2 (en) System for cooling a circuit of a first fluid of a turbomachine
EP3054126A1 (en) Heat exchangers for thermal management systems
CN114501921A (zh) 用于冷却部件的蒸气循环系统及相关方法
WO2015046177A1 (ja) 燃料システム
US20190277165A1 (en) Reversible system for dissipating thermal power generated in a gas-turbine engine