RU2706917C1 - Новые α-аминофосфонаты, обладающие антикоррозионной активностью, и способ их получения - Google Patents

Новые α-аминофосфонаты, обладающие антикоррозионной активностью, и способ их получения Download PDF

Info

Publication number
RU2706917C1
RU2706917C1 RU2019113730A RU2019113730A RU2706917C1 RU 2706917 C1 RU2706917 C1 RU 2706917C1 RU 2019113730 A RU2019113730 A RU 2019113730A RU 2019113730 A RU2019113730 A RU 2019113730A RU 2706917 C1 RU2706917 C1 RU 2706917C1
Authority
RU
Russia
Prior art keywords
ethoxy
product
mhz
interaction
cdcl
Prior art date
Application number
RU2019113730A
Other languages
English (en)
Inventor
Евгений Николаевич Никитин
Георгий Геннадьевич Шуматбаев
Дмитрий Александрович Теренжев
Кирилл Олегович Синяшин
Original Assignee
Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Казанский научный центр Российской академии наук"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Казанский научный центр Российской академии наук" filed Critical Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Казанский научный центр Российской академии наук"
Priority to RU2019113730A priority Critical patent/RU2706917C1/ru
Application granted granted Critical
Publication of RU2706917C1 publication Critical patent/RU2706917C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/167Phosphorus-containing compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

Изобретение относится к химии фосфорорганических соединений и области защиты металлов от коррозии и может быть использовано для защиты металлов от углекислотной, сероводородной или смешанной коррозии. Заявлен α-аминофосфонат общей формулы
Figure 00000016
где R1=i-С9Н196Н4-(ОСН2СН2)n, (n=4, 6, 8, 9,10; 12, 14, 15); R2=-Н, -СН3, -СН2-СН3; -СН(-СН3)2; R3, R4=Н, -СН2-СН3, -СН2-СН2-ОН, Ph, -СН2-СН2-O-СН2-СН2-, морфил, -(CH2)m-CH3 (m=2-16), -(CH2-CH2-NH)p-H (р=1-6), обладающий антикоррозионной активностью в отношении углекислотной и сероводородной коррозии. Способ его получения проводят в три этапа: 1) взаимодействие оксиэтилированного алкилфенола или смеси оксиэтилированных алкилфенолов с 5-10% избытком треххлористого фосфора с последующей отгонкой непрореагировавшего треххлористого фосфора; 2) взаимодействие полученного продукта с не менее чем 5% избытком спирта в течение не менее 10 мин с последующей отгонкой образующихся хлороводорода, хлоралкана и избытка спирта; 3) взаимодействие полученного продукта с формальдегидом и аминами различной структуры в мольном соотношении 1:1:1 при перемешивании не менее 60 мин и температуре не менее 60°С. Технический результат: получение новых α-аминофосфонатов, обладающих высоким антикоррозионным эффектом до 99% при малых концентрациях. 3 н. и 7 з.п. ф-лы, 4 табл., 24 пр.

Description

Изобретение относится к химии фосфорорганических соединений, а именно к азот- и фосфорсодержащим соединениям - новым α-аминофосфонатам и способу их получения. Заявляемые соединения проявляют свойства ингибиторов коррозии металлов, поэтому изобретение может быть использовано в различных отраслях промышленности, в частности, для защиты трубопроводов от углекислотной, сероводородной или смешанной коррозии; резервуаров; строительных металлических конструкций; оборудования для добычи, транспортировки и переработки нефти; при металлообработке, в лакокрасочной промышленности.
Ингибиторы, используемые на нефтяных месторождениях, в основном состоят из аминов, амидов, имидазолинов, соединений, содержащих квартенизированные атомы азота, этоксилатов, длинноцепных карбоновых кислот, многофункциональных полимеров с низкой молекулярной массой, сульфонатов, фосфатов и их эфиров, солей пиридина (Askari, М., Aliofkhazraei М., Ghaffari S., Hajizadeh A. Film former corrosion inhibitors for oil and gas pipelines - A technical review // Journal of Natural Gas Science and Engineering, 2018. V. 58. P. 92-114; Ингибиторы коррозии: В 2-х томах. Том 2. Диагностика и защита от коррозии под напряжением нефтегазопромыслового оборудования / Н.А. Гафаров, В.М. Кушнаренко, Д.Е. Бугай и др.; под ред. Д.Е. Рахманкулова. - М: Химия, 2002 - 367 с). Недостатком большинства таких ингибиторов является высокая себестоимость, в некоторых случаях - низкий защитный эффект.
Известен ингибитор коррозии, включающий продукт взаимодействия первичных алифатических аминов, технического диметилфосфита и воды, взятых в мольном соотношении 1:(0,8-1,2):(0,8-1,2) (RU 2038421 С1, 27.06.1995). Однако данный ингибитор недостаточно эффективен в минерализованных водных средах, содержащих сероводород и углекислый газ.
Близкими по технической сущности и предлагаемому эффекту являются ингибиторы коррозии в сероводородсодержащих средах, представляющие собой
продукт взаимодействия оксиэтилированного алкил-(или фенол) метил или этилфосфита с диэтиланином (RU 2298555 С1, 10.05.2007), или его раствор (20-80% масс.) в органическом растворителе (алифатические спирты: метанол, этанол, бутанол, изопропанол; или ароматический растворитель: нефрас АР 120/200, нефрас 150/330 или их смесь),
или гетероциклическими аминами (Угрюмов В.О., Варнавская О.А., Хлебников В.Н, и др. Ингибиторы коррозии марки СНПХ.2. Ингибитор на основе фосфор-, азотсодержащих соединений, для защиты нефтепромыслового оборудования // Защита металлов, 2007. Т. 43, №1. С. 94-102).
Недостатками известного ингибитора являются высокие температуры синтеза ненолфосфита и недостаточно высокий защитный эффект при низких дозировках.
Авторами настоящего технического решения раскрыты композиционные α-аминофосфонаты общей формулы
Figure 00000001
проявляющие антикоррозионную активность в отношении углекислотной, сероводородной или смешанной коррозии (Фасхетдинов Р.Ф., Новые α-аминофосфонаты на основе неонилфосфитов и их антикоррозионная активность / Р.Ф. Фасхетдинов, Е.Н. Никитин Г.Г. Шуматбаев, Д.А. Теренжев К.О. Синяшин // Химия и химическое образование XXI века: Сборник материалов V Всероссийской студенческой конференции с международным участием посвященной Международному году Периодической таблицы химических элементов, Изд-во РГПУ им. А.И. Герцена, 2019. С. 82).
Целевой продукт получают реакцией Кабачника-Филдса при повышенных температурах в присутствии основного катализатора взаимодействием морфолина, формалина и неонилфосфита, полученных из промышленных марок неонола, этанола и треххлористого фосфора. Защитный эффект в дозировке 50 мг/л в отношении смешанной коррозии составил 75-90%. Недостатком описанных α-аминофосфонатов можно назвать достаточно высокую концентрацию, при которой проявляется защитный эффект.
Так же описан (Inhibition of СО2 corrosion of mild steel in a highly mineralized saline solution with a new synthesized α-aminophosphonate / Yu.P. Khodyrev, E.N. Nikitin, G.G. Shumatbaev, K.O. Sinyshin, D.A. Terenzhev and A.M. Ermakova // Int. J. Corros. Scale Inhib., 2019, 8, no. 2, 312-328) способ синтеза неонилэтилдиэтиламинометилен-фосфоната (NEDMP) по классической реакции Кабачника-Филдса в присутствии пара-толуолсульфоновой кислоты в качестве катализатора взаимодействием диэтиламина, параформа и неонилэтилфосфита в среде безводного бензола перемешиванием при 60°С в течение 20 часов в потоке аргона. После завершения реакции катализатор удаляют, целевой продукт промывают бензолом и упаривают в вакууме (0,02 мм рт.ст.) при 60°С. Полученный осадок перекристаллизовывают из этанола. Выход NEDMP составляет всего 40%. В отличие от предлагаемого нами способа по изобретению, в указанной статье указан более дорогостоящий метод синтеза α-аминофосфоната, который требует использование большого количества растворителя и инертного газа, сложную систему очистки, в результате которого выход составляет всего 40%. Кроме того, в статье не изучен защитный эффект ингибитора в смешанной углекислотной и сероводородной коррозии, а представлены данные защитного эффекта соединения, изученные электрохимическим методом в высокоминерализованной среде, насыщенной углекислом газом, механизмы коррозии которых значительно отличаются.
Задачей настоящего изобретения является создание эффективных водорастворимых ингибиторов сероводородной и углекислотной коррозии в минерализованных водных средах, расширяющих арсенал технических средств указанного назначения, обладающих высоким антикоррозионным эффектом - до 99% - в низких концентрациях. Также задачей изобретения является способ их получения с высоким выходом (до 98,6%) в one-pot синтезе при мягких условиях, с возможностью неиспользования растворителей, для минимизации реагентов и удешевления процесса синтеза.
Техническим результатом являются новые азот-, фосфорсодержащие соединения - α-аминофосфонаты, проявляющие свойства ингибиторов сероводородной и углекислотной коррозии в минерализованных водных средах с высоким антикоррозионным эффектом (до 99%), и предлагаемый способ их получения с высоким выходом целевого продукта (88,2-98,6%).
Поставленная задача решается, и технический результат достигается синтезом α-аминофосфонатов общей формулы (I):
Figure 00000002
где R1=i-C9H19-C6H4-(OCH2CH2)n (n=4, 6, 8, 9,10; 12, 14, 15);
R2=-H, -СН3, -СН2-СН3, -СН(-СН3)2;
R3, R4=Н, -СН2-СН3, -СН2-СН2-ОН, Ph, -СН2-СН2-O-СН2-СН2-, морфил, -(CH2)m-CH3 (m=2-16), -(CH2-CH2-NH)p-H (р=1-6).
Для удобства восприятия сведения о структуре новых заявляемых соединений сведены в таблицу 1, их физические характеристики и данные физико-химических методов анализа, подтверждающие структуру, представлены в таблице 2, примеры способа получения заявляемых соединений - в таблице 3, данные по антикоррозионной активности - в таблице 4.
Способ получения α-аминофосфонатов по изобретению представлен на схеме:
Figure 00000003
Поставленная задача решается, и технический результат достигается также заявляемым способом получения α-аминофосфонатов общей формулы (I), который включает:
а) взаимодействие оксиэтилированного алкилфенола или смеси оксиэтилированных алкилфенолов с 5-10%-ным избытком треххлористого фосфора в среде инертного растворителя или без него с последующей отгонкой непрореагировавшего треххлористого фосфора;
б) взаимодействие получившегося на стадии а) продукта с не менее чем 5%-ным избытком спирта в течение не менее 10 минут в среде инертного растворителя или без него с последующей отгонкой образующихся в течение реакции хлороводорода, хлоралкана и непрореагировавшего избытка спирта;
в) взаимодействие получившегося на стадии б) продукта с формальдегидом и амином в мольном соотношении 1:1:1 при перемешивании с использованием катализатора или без него в течение не менее 60 минут при температуре не менее 60°С.
В случае необходимости получения чистого целевого продукта - α-аминофосфоната - выделение осуществляют известными методами, например, упариванием в вакууме. В предпочтительном, но не обязательном варианте осуществления способа, - при 0.02 мм. рт.ст. при 60°С в течение 60 минут. Однако для использования полученных соединений, например, в качестве ингибиторов коррозии, получение чистого целевого продукта не является обязательным, поэтому выделение продукта не осуществляют.
В качестве оксиэтилированного алкилфенола могут быть использованы моноалкилфенолы на основе тримеров пропилена -оксиэтилированные неонолы АФ 9-4, АФ 9-6, АФ 9-9, АФ 9-10, АФ 9-12 АФ, 9-14 с алкилом С9 и числом оксиэтильных групп, равным соответственно 4, 6, 8, 9, 10, 12, 14 по ТУ 2483-077-05766801-98.
Указанный 5-10%-ный избыток по массе треххлористого фосфора является оптимальным, иначе образуются побочные продукты, снижающие в дальнейшем выход целевого продукта.
Взаимодействие на стадии а) проводят до полного завершения реакции, эмпирически установлено - в течение 10-30 минут при комнатной температуре, однако время полного прохождения реакции может быть больше или меньше указанного в зависимости от температуры среды.
Отгонка непрореагировавшего треххлористого фосфора перед стадией б) позволяет избежать образования побочных продуктов на последующих стадиях, что приводит к увеличению выхода целевого продукта. В предпочтительном, но не обязательном варианте осуществления способа отгонку осуществляют в слабом вакууме (10-50 мм. рт.ст.) в течение порядка 10 мин.
В качестве спирта на стадии б) могут быть использованы метанол, этанол, изопропанол, изобутанол, либо смеси спиртов (например, отходы спиртового производства).
Указанный не менее 5%-ный избыток по массе спирта является оптимальным, иначе образуются побочные продукты, снижающие в дальнейшем выход целевого продукта.
Взаимодействие на стадии б) проводят до полного завершения реакции, эмпирически установлено - в течение не менее 10 минут при комнатной температуре, однако время полного прохождения реакции может быть больше или меньше указанного в зависимости от температуры среды.
Отгонка непрореагировавшего избытка спирта и образующихся в течение реакции хлороводорода, хлоралкана перед стадией в) позволяет избежать образования побочных продуктов в дальнейшем, что приводит к увеличению выхода целевого продукта. В предпочтительном, но не обязательном варианте осуществления способа отгонку осуществляют в слабом вакууме (10-50 мм. рт.ст.) в течение порядка 20 минут при 40°С.
Стадии а) и б) могут быть проведены в среде инертного растворителя или без него. В качестве подходящего растворителя используют полярные и неполярные растворители - бензол, толуол, ксилол, гексан, гептан, пентан, петролейный эфир.
В качестве амина на стадии в) могут быть использованы амины различной структуры, например, диметиламин, этиламин, диэтиламин, анилин, морфолин, монэтаноламин, диэтаноламин, кокоалкиламин, гексадециламин, имидазолины, этилендиамин, полиэтиленполиамин (ПЭПА).
В качестве формальдегида на стадии в) используют формалин или параформ.
Амин и формальдегид могут быть использованы, но не обязательно, с небольшим избытком по массе (до 10%).
Стадия в) может быть проведена, но не обязательно, в присутствии катализатора, что позволяет снизить температуру и время реакции. В качестве катализатора могут служить кислоты Льюиса, минеральные кислоты, различные катиониты (Черкасов Р.А., Реакция Кабачника-Филдса: синтетический потенциал и проблема механизма. Р.А. Черкасов, В.И. Галкин, Успехи химии, 67, (1998) стр. 940-968).
Процесс синтеза контролируют данными ЯМР 31Р до исчезновения пиков полупродуктов в соответствующих областях (175-180 ppm для неонилдихлорфосфита, 4-8 ppm для алкилфосфитов.
Спектры ЯМР 1Н, 31Р были зарегистрированы на высокоэффективном цифровом ЯМР-спектрометре AVANCE IITM 400 МГц. BRUKER BioSpin в 600 и 160 МГц соответственно. 1Н-химический сдвиги измерялись относительно остаточного протона сигнал растворителя (CDCl3). Спектры ЯМР 31Р продуктов были зарегистрированы в растворителе CDCl3 и D2O. ИК-спектры были записанные на ИК-Фурье спектрометре Tensor 37 на пластинках KBr в виде жидкой пленки. Элементный анализ проводился высокотемпературный анализаторе EuroEA3028- НТ-ОМ Eurovector S.p.A. Масс-спектры сняты на спектрометре AmaZon X «Bruker».
Определение защитного эффекта заявляемых соединений проводили гравиметрическим методом по ГОСТ 9.506-87 - определением потери массы металлических образцов за время их пребывания в неингибированной и ингибированной коррозионных средах в течение 6 часов. Изучение антикоррозионной активности осуществляли на железных пластинах марки сталь 3.
В качестве коррозионной среды в испытаниях использовали стандартную модель нефтепромысловой воды следующего состава (г/дм3): NaCl - 163,0; CaCl2 2H2O - 23,0; MgCl2⋅6H2O - 17,0; CaSO4⋅2H2O - 0,14. Все соли растворяли в дистиллированной воде. Удаление кислорода проводили пропусканием в течение 1 часа через полученный раствор аргона. В качестве агрессивной среды при испытаниях использовалась модель воды, насыщенная углекислым газом (СО2 - 250 г/м3) и модель воды смешанная углекислым газом и сероводородом (CO2 - 250 г/м3, H2S -200 г/м3).
Изучение антикоррозионной активности осуществляли на железных пластинах марки сталь 3.
Защитный эффект Z, %, вычисляли по формуле:
Figure 00000004
где Δm1 - потеря массы образца после испытания в неингибированной среде, г;
Δm2 - потеря массы образца после испытания в ингибированной среде, г;
Δm3 - потеря массы образца за счет обработки после испытаний, г.
Результаты представлены в таблице 4.
Хорошая ингибирующая активность обусловлена образованием прочной адсорбционной связи полученных соединений с атомами на поверхности металла за счет комплексообразующих способностей атомов фосфора, и азота, связанных между собой через метиленовый фрагмент, и длинной углеводородной цепочкой неонильного радикала, которая препятствует скорости десорбции ингибитора с поверхности металла. Поэтому защитный эффект ингибитора проявляется уже при низких концентрациях, в агрессивной среде.
Изобретение иллюстрируется следующими примерами конкретного выполнения.
Пример 1.
В кругло донную колбу с магнитной мешалкой помещают 50 г 17-(4-Нонилфенокси)-3,6,9,12,15-пентаоксагептадеканола-1 (0,1 ммоль) медленно (порциями) при перемешивании приливают избыток 15 г треххлористого фосфора (0,11 ммоль). Реакционную смесь перемешивают в течение 20 минут при комнатной температуре и отгоняют избыток хлорида фосфора (III) в течение 10 минут при слабом вакууме (10-50 мм. рт.ст.).
Далее к реакционной смеси при перемешивании приливают 10 г этанола (0,22 ммоль), нагревают до 40°С в течение 10 минут и отгоняют образующийся хлороводород, и диэтилхлорид в течение 20 минут при слабом вакууме (10-50 мм. рт.ст.).
Затем к реакционной смеси приливают 8 г диэтиламина (0,11 ммоль) и 11 г формалина (0,11 ммоль), перемешивают в течение 2 часов при температуре 80°С и упаривают при температуре 60°С в течение часа при сильном вакууме (0.02 мм. рт.ст.).
Процесс синтеза контролируют данными спектра ЯМР 31Р, до исчезновения пиков полупродуктов в соответствующих областях (175-180 ppm - для неонилдихлорфосфита, и 4-8 ppm - для алкилфосфитов).
Получают O-(17-(4-Нонилфенокси)-3,6,9,12,15-пентаоксагептадеканил-1-)-O-алкил-(N,N-диэтиламино)-метиленфосфонат (продукт 1) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 68,2 г (96,4%). Масс-спектр (m/z) 662,5. ИК спектр (жидкая пленка, ν, см-1): 1251 (Р=O), 882 (РОС). Спектр ЯМР 31Р (160 МГц, D2O) δp=24,8. Спектр ЯМР 1Н (400 МГц, CDCl3,) δ=2,87 (д, 2Н, 2JPH=10,5, PCH2N). Элементный анализ: C34H64NO9P, найдено (%): С 61,7; Н 9,7; N 2,1; Р 6,4.
Пример 2.
Пример 2 осуществляют в условиях примера 1, однако в качестве формальдегида используют параформ в количестве 3,3 г (0,11 ммоль). Получают продукт 1 в виде прозрачной, светло-желтой, вязкой жидкости с выходом 67,6 г (95,6%). Физико-химические характеристики продукта описаны в примере 1.
Пример 3.
Пример 3 осуществляют в условиях примера 1, однако при прибавлении формалина добавляют катализатор - паратолуолсульфокислоту в количестве 0,1% от общей массы. Реакционную смесь перемешивают в течение 1 часа при температуре 60°С и упаривают при температуре 60°С в течение часа при сильном вакууме (0.02 мм. рт.ст.). Получают продукт 1 в виде прозрачной, светло-желтой, вязкой жидкости с выходом 68,2 г (96,5%). Физико-химические характеристики продукта описаны в примере 1.
Пример 4.
Пример 4 осуществляют в условиях примера 3, однако в качестве катализатора добавляют хлорид цинка в количестве 0,1% от общей массы. Получают продукт 1 в виде прозрачной, светло-желтой, вязкой жидкости с выходом 68,4 г (96,7%). Физико-химические характеристики продукта описаны в примере 1.
Пример 5.
Пример 5 осуществляют в условиях примера 1, однако в качестве оксиэтилированного алкилфенола применяют неонол АФ 9-4 в количестве 41 г (0,1 ммоль). Получают O-(2-[2-[2-[2-(4-нонилфенокси)этокси]-этокси]этокси)этил-O-этил-(N,N-диэтиламино)-метилфосфонат (продукт 2а) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 56,7 г (96,1%). Масс-спектр (m/z) 662,5. ИК спектр (жидкая пленка, ν, см-1): 1249 (Р=O), 874 (РОС); Спектр ЯМР 31Р (160 МГц, D2O) δр=24,8. Спектр ЯМР 1H (400 МГц, CDCl3) δ=2,87 (д, 2Н, 2JPH=10,5 PCH2N). Элементный анализ: C34H64NO9P, найдено (%): С 61,7; Н 9,7; N 2,1; Р 4,6.
Пример 6.
Пример 6 осуществляют в условиях примера 1, однако в качестве оксиэтилированного алкилфенола применяют неонол АФ 9-6 в количестве 50 г (0,1 ммоль). Получают O-(2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]-этокси]этокси]этокси]этокси)этил-O-этил-(N,N-диэтиламино)-метилфосфонат (продукт 2б) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 68,7 г (97,2%). Масс-спектр (m/z) 662,8. ИК спектр (KBr, ν см-1): 1249 (Р=O), 873 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=24,5. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,80 (д, 2JPH=10,6, PCH 2N). Элементный анализ C34H64NO9P, найдено (%): С 61,7; Н 9,7; N 2,1; Р 6,4.
Пример 7.
Пример 7 осуществляют в условиях примера 1, однако в качестве оксиэтилированного алкилфенола применяют неонол АФ 9-9 в количестве 63,6 г (0,1 ммоль). Получают O-(2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)-этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси)этил-O-этил-(N,N-диэтиламино)-метилфосфонат (продукт 2в) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 78,1 г (95,3%). Масс-спектр (m/z) 795,1. ИК спектр (KBr, ν см-1): 1250 (Р=O), 876 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=24,7. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,73 (д, 2JPH=10,6, PCH 2N). Элементный анализ C40H76NO12P, найдено (%): С 60,5; Н 9,6; N 1,7; Р 3,9.
Пример 8.
Пример 8 осуществляют в условиях примера 1, однако в качестве оксиэтилированного алкилфенола применяют неонол АФ 9-10 в количестве 68,1 г (0,1 ммоль). Получают O-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]-этокси)этил-O-этил-(N,N-диэтиламино)-метилфосфонат (продукт 2г) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 83,2 г (96,1%). Масс-спектр (m/z) 838,1. ИК спектр (KBr, ν см-1): 1250 (Р=O), 874 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=24,9. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,78 (д, 2JPH=10,5, PCH 2N). Элементный анализ C42H80NO13P, найдено (%): С 60,1; Н 9,5; N 1,6; Р 3,6.
Пример 9.
Пример 9 осуществляют в условиях примера 1, однако в качестве оксиэтилированного алкилфенола применяют неонол АФ 9-12 в количестве 77,3 г (0,1 ммоль). Получают O-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]этокси]этокси]этокси]этокси]этокси]этокси]-этокси]этокси]этокси]этокси)этил-O-этил-(N,N-диэтиламино)-метилфосфонат (продукт 2д) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 92,7 г (96,9%). Масс-спектр (m/z) 927,1. ИК спектр (KBr, ν см-1): 1249 (Р=O), 874 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=25,8. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,86 (д, 2JPH=10,75, PCH 2N). Элементный анализ C46H88NO15P, найдено (%): С 59,5; Н 9,6; N 1,8; Р 3,4.
Пример 10.
Пример 10 осуществляют в условиях примера 9, однако в качестве амина применяют диметиламин в количестве 14 г (0,1 ммоль). Получают O-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]этокси]-этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси)этил-O-этил-(N,N-диметиламино)-метилфосфонат (продукт 3) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 87,8 г (94,7%). Масс-спектр (m/z) 898,1. ИК спектр (KBr, ν см-1): 1252 (Р=O), 877 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=25,6. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,81 (д, J=10,6, PCH 2N). Элементный анализ C44H84NO15P, найдено (%): С 58,8; Н 9,3; N 1,5; Р 3,4.
Пример 11.
Пример 11 осуществляют в условиях примера 9, однако в качестве амина применяют этиламин в количестве 4,70 г (0,1 ммоль). Получают О-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]этокси]этокси]-этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси)этил-O-этил-(N-этиламино)-метилфосфонат (продукт 4) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 88,3 г (95,3%). Масс-спектр (m/z) 898,1. ИК спектр (KBr, ν см-1): 1249 (Р=O), 873 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=25,3. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,73 (д, 2JPH=10,5, PCH 2N). Элементный анализ C44H84NO15P, найдено (%): С 58,3; Н 9,4; N 1,4; Р 3,4.
Пример 12.
Пример 12 осуществляют в условиях примера 9, однако в качестве амина применяют моноэтаноламин в количестве 6,4 г (0,1 ммоль). Получают O-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]-этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси)-этил-O-этил-(N-[2-гидроксо]этиламино)-метилфосфонат (продукт 5) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 87,5 г (92,8%). Масс-спектр (m/z) 915,1. ИК спектр (KBr, ν см-1): 1250 (Р=O), 876 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=24,3. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,83 (д, 2JPH=10,4, PCH 2N). Элементный анализ C44H84NO16P, найдено (%): С 57,7; Н 9,1; N 1,3; Р 3,3.
Пример 13.
Пример 13 осуществляют в условиях примера 9, однако в качестве амина применяют диэтаноламин в количестве 10,8 г (0,1 ммоль). Получают O-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси)этил-O-этил-(N,N-ди[2-гидроксо]этиламино)-метилфосфонат (продукт 6) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 94,3 г (95,3%). Масс-спектр (m/z) 959,2. ИК спектр (KBr, ν см-1): 1250 (Р=O), 876 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=24,1. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,89 (д, 2JPH=10,3, PCH 2N). Элементный анализ C46H88NO17P, найдено (%): С 57,5; Н 9,2; N 1,4; Р 3,2.
Пример 14.
Пример 14 осуществляют в условиях примера 9, однако в качестве амина применяют бутиламин в количестве 7,5 г (0,1 ммоль). Получают О-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]этокси]этокси]-этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси)этил-O-этил-(N-бутиламино)-метилфосфонат (продукт 7) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 86,1 г (95,3%). Масс-спектр (m/z) 927,2. ИК спектр (KBr, ν см-1): 1248 (Р=O), 879 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=25,6. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,73 (д, 2JPH=10,7, PCH 2N). Элементный анализ C46H88NO15P, найдено (%): С 59,5; Н 9,4; N 1,5; Р 3,3.
Пример 15.
Пример 15 осуществляют в условиях примера 9, однако в качестве амина применяют этилендиамин в количестве 7,3 г (0,1 ммоль). Получают O-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]этокси]-этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси)этил-O-этил-(N-[2-амино]этиламино)-метилфосфонат (продукт 8) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 90,7 г (96,3%). Масс-спектр (m/z) 914,2. ИК спектр (KBr, ν см-1): 1248 (Р=O), 873 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=24,5. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,54 (д, 2JPH=10,2, PCH 2N). Элементный анализ C44H84N2O15P, найдено (%): С 57,8; Н 9,3; N 3,07; Р 3,4.
Пример 16.
Пример 16 осуществляют в условиях примера 9, однако в качестве амина применяют морфолин в количестве 9,0 г (0,1 ммоль). Получают О-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]этокси]этокси]-этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси)этил-O-этил-(N-морфолил)-метилфосфонат (продукт 9) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 95,5 г (98,3%). Масс-спектр (m/z) 940,0. ИК спектр (KBr, ν см-1): 1251 (Р=O), 879 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=23,8. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,87 (д, 2JPH=10,5, PCH 2N). Элементный анализ C46H86NO16P, найдено (%): С 58,6; Н 9,2; N 1,3; Р 3,2.
Пример 17.
Пример 17 осуществляют в условиях примера 9, однако в качестве амина применяют анилин в количестве 9,6 г (0,1 ммоль). Получают O-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]этокси]этокси]-этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси)этил-O-этил-(N-фениламино)-метилфосфонат (продукт 10) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 86,3 г (88,2%). Масс-спектр (m/z) 947,2. ИК спектр (KBr, ν см-1): 1251 (Р=O), 874 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=25,2. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,81 (д, 2JPH=10,5, PCH 2N). Элементный анализ C48H84NO15P, найдено (%): С 60,8; Н 8,8; N 1,5; Р 3,2.
Пример 18.
Пример 18 осуществляют в условиях примера 9, однако в качестве амина применяют кокоалкиламин в количестве 19,4 г (0,1 ммоль). Получают O-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]-этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси)-этил-O-этил-(N-додециламино)-метилфосфонат (продукт 11) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 103,2 г (97,6%). Масс-спектр (m/z) 1025,3. ИК спектр (KBr, ν см-1): 1251 (Р=O), 882 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=26,4. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,92 (д, 2JPH=10,8, PCH 2N). Элементный анализ C53H102NO15P, найдено (%): С 62,2; Н 10,1; N 1,3; Р 3,1.
Пример 19.
Пример 19 осуществляют в условиях примера 9, однако в качестве амина применяют гексадециламин в количестве 24,8 г (0,1 ммоль). Получают O-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]-этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси)-этил-O-этил-(N-гексадециламино)-метилфосфонат (продукт 12) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 110,2 г (97,3%). Масс-спектр (m/z) 1094,5. ИК спектр (KBr, ν см-1): 1249 (Р=O), 876 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=26,5. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=3,07 (д, 2JPH=10,7, PCH 2N). Элементный анализ C58H112NO15P, найдено (%): С 63,5; Н 10,2; N 1,1; Р 2,7.
Пример 20.
Пример 20 осуществляют в условиях примера 9, однако в качестве амина применяют полиэтиленполиамин в количестве 15,1 г (0,1 ммоль). Получают O-(2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]-этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси]этокси)-этил-O-этил-(N-[2-[2-этиламиноамино]этиламино]этиламино))-метилфосфонат (продукт 13) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 98,2 г (95,2%). Масс-спектр (m/z) 1042,0. ИК спектр (KBr, ν см-1): 1248 (Р=O), 873 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=24,2. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,58 (д, 2JPH=10,5, PCH 2N). Элементный анализ C50H100N5O15P, найдено (%): С 57,4; Н 9,6; N 6,6; Р 2,8.
Пример 21.
Пример 21 осуществляют в условиях примера 1, однако в качестве спирта применяют метанол в количестве 7 г (0,22 ммоль). Получают O-(2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]этокси]этокси]этокси]этокси)этил-O-метил-(N,N-диэтиламино)-метилфосфонат (продукт 14) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 64,9 г (97,5%). Масс-спектр (m/z) 648,5. ИК спектр (KBr, ν см-1): 1249 (Р=O), 881 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=24,8. Спектр ЯМР 1H (600 МГц, CDCl3) δ=2,66 (д, 2JPH=10,3, PCH 2N). Элементный анализ C33H62NO9P, найдено (%): С 61,7; Н 9,7; N 2,1; Р 6,4.
Пример 22.
Пример 22 осуществляют в условиях примера 1, однако в качестве спирта применяют изопропанол в количестве 13 г (0,22 ммоль). Получают O-(2-[2-[2-[2-[2-[2-(4-нонилфенокси)этокси]этокси]этокси]этокси]этокси)-этил-O-(1-метилэтил)-(N,N-диэтиламино)-метилфосфонат (продукт 15) в виде прозрачной, светло-желтой, вязкой жидкости с выходом 69,2 г (95,3%). Масс-спектр (m/z) 676,5. ИК спектр (KBr, ν см-1): 1249 (Р=O), 879 (РОС). Спектр ЯМР 31Р (160 МГц, CDCl3) δр=23,2. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=3,01 (д, 2JPH=10,5, PCH 2N). Элементный анализ C35H66NO9P, найдено (%): С 61,7; Н 9,7; N 2,1; Р 6,4.
Пример 23.
Пример 23 осуществляют в условиях примера 1, однако очистку выделение целевого продукта (упаривание при температуре 60°С в течение часа при сильном вакууме (0.02 мм. рт.ст.)) не проводят. Получают продукт 16, который является обводненным продуктом 1 в виде прозрачной, светло-желтой, вязкой жидкости с выходом 68,6 г (94,2%). Масс-спектр (m/z) 672,1. Наблюдают дополнительный пик в РЖ спектре, подтверждающий наличие воды в продукте. ИК спектр (KBr, ν см-1): 1380 (-ОН), 1251 (Р=O), δ 881 (РОС). Спектр ЯМР 31Р (150 МГц, CDCl3) δр=24,6. Спектр ЯМР 1Н (600 МГц, CDCl3) δ=2,83 (д, 2JPH=10,3, PCH 2N). Элементный анализ C34H64NO9P, найдено (%): С 61,3; Н 9,6; N 2,2; Р 6,3.
Пример 24.
Пример 24 осуществляют в условиях примера 1, однако
- оксиэтилированный алкилфенол заливают в колбу в виде 50% раствора в бензоле,
- треххлористый фосфор добавляют в виде 20% раствора в бензоле,
- этанол добавляют в реакционную смесь в виде 50% раствора в бензоле.
Получают продукт 1 в виде прозрачной, светло-желтой, вязкой жидкости с выходом 69,4 г (98,6%). Физико-химические характеристики продукта описаны в примере 1.
Таким образом, предложены новые соединения, которые при низких концентрациях обладают высоким защитным эффектом - 75-99% в агрессивных минеральных средах, содержащих углекислый газ и сероводород. Антикоррозионная активность заявляемых α-аминофосфонатов проявляется в низких концентрациях: защитный эффект в соответствии с данными таблицы 4 при концентрации 5 мг/л составляет 75-89%, при 10 мг/л - 83-95%, при 25 мг/л - 87-98%, при 50 мг/л - 93-99%.
Заявлено применение этих соединений в качестве эффективных водорастворимых ингибиторов сероводородной и углекислотной коррозии в минерализованных водных средах, α-аминофосфонаты по изобретению расширяют арсенал технических средств указанного назначения. Преимуществом использования предлагаемых соединений является растворимость их в воде, высокая эффективность как ингибиторов коррозии в водной и в водно-нефтяных средах, содержащих растворенные сероводород и углекислоту при низких дозировках.
Предложен также способ их получения с высоким выходом (до 98,3%). Преимуществом является то, что многостадийный синтез протекает в одном реакторе при мягких условиях, в качестве исходных реагентов могут быть использованы промышленно доступные реагенты, а также отходы производств.
Изобретение создано при финансовой поддержке гранта Российского научного фонда №17-73-10273 «Синтез и исследование механизма действия новых активных ингибиторов углекислотной и сероводородной коррозии сталей и цветных металлов для использования их в нефтедобывающей промышленности».
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012

Claims (27)

1. Азот- и фосфорсодержащее органическое соединение, характеризующееся общей формулой
Figure 00000013
где R1=i-C9H19-C6H4-(OCH2CH2)n (n=4, 6, 8, 9,10; 12, 14, 15);
R2=-Н, -СН3, -СН2-СН3, -СН(-СН3)2;
R3, R4=Н, -СН2-СН3, -СН2-СН2-ОН, Ph, -СН2-СН2-O-СН2-СН2-, морфил, -(CH2)m-CH3 (m=2-16), -(CH2-CH2-NH)p-H (р=1-6).
2. Способ получения азот- и фосфорсодержащего органического соединения, характеризующегося общей формулой
Figure 00000014
где R1=i-C9H19-C6H4-(OCH2CH2)n (n=4, 6, 8, 9,10; 12, 14, 15);
R2=-Н, -СН3, -СН2-СН3, -СН(-СН3)2;
R3, R4=Н, -СН2-СН3, -СН2-СН2-ОН, Ph, -СН2-СН2-O-СН2-СН2-, морфил, -(CH2)m-CH3 (m=2-16), -(CH2-CH2-NH)p-H (р=1-6),
включающий:
взаимодействие оксиэтилированного алкилфенола или смеси оксиэтилированных алкилфенолов с 5-10%-ным избытком треххлористого фосфора в среде подходящего растворителя или без него с последующей отгонкой непрореагировавшего треххлористого фосфора;
взаимодействие получившегося продукта с не менее чем 5%-ным избытком спирта в течение не менее 10 минут в среде подходящего растворителя или без него с последующей отгонкой образующихся в течение реакции хлороводорода, хлоралкана и непрореагировавшего избытка спирта;
взаимодействие получившегося продукта с формальдегидом и амином в мольном соотношении 1:1:1 в присутствии катализатора или без него при перемешивании в течение не менее 60 минут при температуре не менее 60°С.
3. Способ по п. 2, отличающийся тем, что в случае необходимости получения чистого продукта выделение целевого продукта осуществляют известными методами, например упариванием в вакууме.
4. Способ по п. 2, отличающийся тем, что в качестве оксиэтилированного алкилфенола используют моноалкилфенолы на основе тримеров пропилена - оксиэтилированные неонолы АФ 9-4, АФ 9-6, АФ 9-9, АФ 9-12 с алкилом С9 и числом оксиэтильных групп, равным соответственно 4, 6, 8, 9, 10, 12.
5. Способ по п. 2, отличающийся тем, что в качестве спирта используют метанол, этанол, изопропанол, изобутанол или смеси спиртов.
6. Способ по п. 2, отличающийся тем, что в качестве подходящего растворителя на стадиях взаимодействия оксиэтилированного алкилфенола или смеси оксиэтилированных алкилфенолов с треххлористым фосфором и последующего взаимодействия получившегося продукта со спиртом используют бензол, толуол, ксилол, гексан, гептан, пентан, петролейный эфир.
7. Способ по п. 2, отличающийся тем, что в качестве амина используют диметиламин, этиламин, диэтиламин, анилин, морфолин, монэтаноламин, диэтаноламин, кокоалкиламин, гексадециламин, имидазолины, этилендиамин, полиэтиленполиамин.
8. Способ по п. 2, отличающийся тем, что в качестве формальдегида используют формалин или параформ.
9. Способ по п. 2, отличающийся тем, что в качестве катализатора на стадии реакции продукта, полученного взаимодействием со спиртом, с формальдегидом и амином используют кислоты Льюиса, или минеральные кислоты, или различные катиониты.
10. Азот- и фосфорсодержащее органическое соединение, характеризующееся общей формулой
Figure 00000015
где R1=i-C9H19-C6H4-(CH2CH2)n (n=4, 6, 8, 9,10; 12, 14, 15);
R2=-Н, -СН3, -СН2-СН3, -CH(-СН3)2;
R3, R4=Н, -СН2-СН3, -СН2-СН2-ОН, Ph, -СН2-СН2-O-СН2-СН2-, морфил, -(CH2)m-CH3 (m=2-16), -(CH2-CH2-NH)p-H (р=1-6),
обладающее антикоррозионной активностью в отношении углекислотной и сероводородной коррозии.
RU2019113730A 2019-05-07 2019-05-07 Новые α-аминофосфонаты, обладающие антикоррозионной активностью, и способ их получения RU2706917C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019113730A RU2706917C1 (ru) 2019-05-07 2019-05-07 Новые α-аминофосфонаты, обладающие антикоррозионной активностью, и способ их получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019113730A RU2706917C1 (ru) 2019-05-07 2019-05-07 Новые α-аминофосфонаты, обладающие антикоррозионной активностью, и способ их получения

Publications (1)

Publication Number Publication Date
RU2706917C1 true RU2706917C1 (ru) 2019-11-21

Family

ID=68653012

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019113730A RU2706917C1 (ru) 2019-05-07 2019-05-07 Новые α-аминофосфонаты, обладающие антикоррозионной активностью, и способ их получения

Country Status (1)

Country Link
RU (1) RU2706917C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279228A (ja) * 2000-03-31 2001-10-10 Ajinomoto Co Inc 新規なキレート剤
RU2298555C1 (ru) * 2006-04-14 2007-05-10 Открытое акционерное общество "НАПОР" Оксиэтилированные алкил-(или фенол) метил или этилфосфиты n-метил или этилалкиламмония в качестве ингибиторов коррозии, обладающие бактерицидной активностью в отношении сульфатвосстанавливающих бактерий
RU2578622C1 (ru) * 2015-04-07 2016-03-27 Общество с ограниченной ответственностью "Научно-производственный центр "Интехпромсервис" Способ получения ингибитора сероводородной и углекислотной коррозии в минерализованных водных средах
RU2665662C1 (ru) * 2017-05-26 2018-09-03 Руслан Адгамович Вагапов Способ получения ингибитора коррозии

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279228A (ja) * 2000-03-31 2001-10-10 Ajinomoto Co Inc 新規なキレート剤
RU2298555C1 (ru) * 2006-04-14 2007-05-10 Открытое акционерное общество "НАПОР" Оксиэтилированные алкил-(или фенол) метил или этилфосфиты n-метил или этилалкиламмония в качестве ингибиторов коррозии, обладающие бактерицидной активностью в отношении сульфатвосстанавливающих бактерий
RU2578622C1 (ru) * 2015-04-07 2016-03-27 Общество с ограниченной ответственностью "Научно-производственный центр "Интехпромсервис" Способ получения ингибитора сероводородной и углекислотной коррозии в минерализованных водных средах
RU2665662C1 (ru) * 2017-05-26 2018-09-03 Руслан Адгамович Вагапов Способ получения ингибитора коррозии

Similar Documents

Publication Publication Date Title
GB1566106A (en) Additives for aviation and similar fuels
RU2706917C1 (ru) Новые α-аминофосфонаты, обладающие антикоррозионной активностью, и способ их получения
CA2709332A1 (en) Asphaltene dispersants based on phosphonic acids
JPS5948158B2 (ja) 水処理用プロパン−1,3−ジホスホン酸
US4851577A (en) New substituted derivatives of N-ethyl(meth)acrylamide and a method for the preparation thereof
Nikitin et al. New α-aminophosphonates as corrosion inhibitors for oil and gas pipelines protection
CN109402640B (zh) 一种缓蚀剂及其制备方法
DE19804124A1 (de) Phosphorhaltige Verbindungen auf Basis der 1-Hydroxypropan-1,3-diphosphonsäure
US3553265A (en) Process for preparing nitrogen-containing tertiary phosphines and phosphine oxides
RU2379280C1 (ru) N, n-диэтил-n-[изоалкоксикарбонилметил]- n-[алкилфеноксиполи(этиленокси)карбонилэтил]аммоний 2-гидроксипропионаты, обладающие свойствами ингибиторов коррозии стали
CN100365003C (zh) 磷-氧酸的含烷氧基的酯及其作为缓蚀剂和防火剂的用途
JP2694978B2 (ja) ベンゾトリアゾール−ホスホン酸誘導体
US4435298A (en) Ammonium salts of polymaleic acids, and their use as corrosion inhibitors in mineral oils
Failla et al. Unexpected course of dimethyl phosphite addition to the condensation products obtained from o-carboxybenzaldehyde and aliphatic amines
RU2430997C2 (ru) Ингибитор коррозии
RU2298555C1 (ru) Оксиэтилированные алкил-(или фенол) метил или этилфосфиты n-метил или этилалкиламмония в качестве ингибиторов коррозии, обладающие бактерицидной активностью в отношении сульфатвосстанавливающих бактерий
RU2723809C1 (ru) Состав для предотвращения кальциевых солеотложений
RU2721407C2 (ru) Способ получения 5-алкилсалицилалдоксимов и их применение
US3036108A (en) Alkylene amino phosphonic acid chelating agents
US5530131A (en) N-alkyl-n'-poly(oxyalkyl)-hexahydropyrimidines
CN114561005B (zh) 一种可聚合型的硫杂蒽酮水性光引发剂及其制备方法和应用
RU2162116C1 (ru) Способ получения ингибитора коррозии
US5312953A (en) Polyether bis-phosphonic acid compounds
Boulos et al. The reaction of Wittig and Wittig–Horner reagents with dicyanomethylene derivatives of fluorenone, xanthone, and thiaxanthone. A novel synthesis of phosphoranylidenecyclobutylidene derivatives
EP0368155B1 (en) Inhibiting corrosion in aqueous systems