RU2706298C1 - НУКЛЕАЗА PaCas9 - Google Patents

НУКЛЕАЗА PaCas9 Download PDF

Info

Publication number
RU2706298C1
RU2706298C1 RU2018132816A RU2018132816A RU2706298C1 RU 2706298 C1 RU2706298 C1 RU 2706298C1 RU 2018132816 A RU2018132816 A RU 2018132816A RU 2018132816 A RU2018132816 A RU 2018132816A RU 2706298 C1 RU2706298 C1 RU 2706298C1
Authority
RU
Russia
Prior art keywords
nuclease
pacas9
nucleic acid
sequence
sequences
Prior art date
Application number
RU2018132816A
Other languages
English (en)
Inventor
Дмитрий Александрович Мадера
Александр Владимирович Карабельский
Роман Алексеевич Иванов
Дмитрий Валентинович Морозов
Константин Викторович Северинов
Сергей Анатольевич Шмаков
Дмитрий Александрович Сутормин
Георгий Евгеньевич Побегалов
Александра Андреевна Васильева
Полина Анатольевна Селькова
Анатолий Николаевич Арсениев
Татьяна Игоревна Зюбко
Яна Витальевна Федорова
Original Assignee
Закрытое Акционерное Общество "Биокад"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое Акционерное Общество "Биокад" filed Critical Закрытое Акционерное Общество "Биокад"
Priority to RU2018132816A priority Critical patent/RU2706298C1/ru
Priority to TW108133034A priority patent/TW202016130A/zh
Priority to PE2021000323A priority patent/PE20211111A1/es
Priority to US17/276,016 priority patent/US20220064612A1/en
Priority to PCT/RU2019/050154 priority patent/WO2020055293A1/ru
Priority to BR112021004746-8A priority patent/BR112021004746A2/pt
Priority to JP2021513998A priority patent/JP2022500044A/ja
Priority to AU2019341014A priority patent/AU2019341014A1/en
Priority to ARP190102604A priority patent/AR116403A1/es
Priority to EP19858873.3A priority patent/EP3851522A4/en
Priority to EA202190676A priority patent/EA202190676A1/ru
Priority to CA3113215A priority patent/CA3113215A1/en
Priority to CN201980075402.9A priority patent/CN113272425A/zh
Priority to KR1020217011069A priority patent/KR20210062040A/ko
Priority to MA53045A priority patent/MA53045B1/fr
Priority to MX2021002933A priority patent/MX2021002933A/es
Application granted granted Critical
Publication of RU2706298C1 publication Critical patent/RU2706298C1/ru
Priority to ZA2021/01681A priority patent/ZA202101681B/en
Priority to CONC2021/0003285A priority patent/CO2021003285A2/es
Priority to CL2021000610A priority patent/CL2021000610A1/es
Priority to PH12021550563A priority patent/PH12021550563A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • C12N15/90Stable introduction of foreign DNA into chromosome
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2840/00Vectors comprising a special translation-regulating system
    • C12N2840/007Vectors comprising a special translation-regulating system cell or tissue specific

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Mycology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dispersion Chemistry (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Настоящее изобретение относится к области биотехнологии, молекулярной биологии и медицины. Описан фермент нуклеаза PaCas9 и применение данного фермента нуклеазы. Изобретение также относится к нуклеиновой кислоте, кодирующей данную нуклеазу, генетической конструкции, экспрессионному вектору, вектору для доставки, которые включают данную нуклеиновую кислоту, липосоме, включающей данную нуклеазу или нуклеиновую кислоту, кодирующую данную нуклеазу, способу получения нуклеазы, способам доставки, а также к клетке-хозяину, которая включает нуклеиновую кислоту, кодирующую данную нуклеазу. Изобретение расширяет арсенал нуклеаз. 8 н. и 2 з.п. ф-лы, 2 ил., 4 пр.

Description

Область техники
Настоящее изобретение относится к области биотехнологии, молекулярной биологии и медицины, а именно к ферменту нуклеазе и применению данного фермента нуклеазы. Более конкретно, настоящее изобретение относится к ферменту нуклеазе PaCas9. Изобретение также относится к нуклеиновой кислоте, кодирующей данную нуклеазу, генетической конструкции, экспрессионному вектору, вектору для доставки, которые включают данную нуклеиновую кислоту, липосоме, включающей данную нуклеазу или нуклеиновую кислоту, кодирующую данную нуклеазу, способу получения нуклеазы, способам доставки, а также к клетке-хозяину, которая включает нуклеиновую кислоту, кодирующую данную нуклеазу.
Уровень техники
В 2007 году впервые было продемонстрировано, что CRISPR-Cas представляет собой адаптивную иммунную систему у многих бактерий и большинства археев (Barrangou et al., 2007, Science 315: 17091712, Brouns et al. , 2008, Science 321: 960-964). До сих пор были охарактеризованы три типа систем CRISPR-Cas на основе функциональных и структурных критериев, большинство из которых использует малые молекулы РНК в качестве гид-РНК для направления на комплементарные последовательности ДНК-мишеней (Makarova et al., 2011, Nat Rev Microbiol 9: 467-477, Van der Oost et al. , 2014, Nat Rev Microbiol 12: 479-492).
В недавнем исследовании лабораторий Doudna/Charpentier была проведена тщательная характеристика эффекторного фермента системы типа II CRISPR-Cas (Cas9), включая демонстрацию того, что введение созданных с помощью CRISPR гид-РНК (со специфическими спейсерными последовательностями) направлено действует на комплементарные последовательности (протоспейсеры) на плазмиде, вызывая разрывы двойной цепи этой плазмиды (Jinek et al. , 2012, Science 337: 816- 821) . Затем Jinek et al, 2012 использовали Cas9 как инструмент для редактирования генома.
Cas9 использовали для редактирования геномов ряда эукариотических клеток (например, рыб, растений, человека) (Charpentier and Doudna, 2013, Nature 495: 50-51).
Кроме того, Cas9 использовали для улучшения выходов гомологичной рекомбинации у бактерий путем отбора целенаправленных событий рекомбинации (Jiang et al., 2013, Nature Biotechnol 31: 233-239). Для достижения этого токсический фрагмент (направляющий конструкт) подвергают совместной трансфекции со спасающим фрагментом, несущим требуемое изменение (редактирующий конструкт, несущий точечную мутацию или делеции). Направляющий конструкт состоит из Cas 9 в сочетании со сконструированным CRISPR и маркером устойчивости к антибиотикам, определяя сайт желаемой рекомбинации на хромосоме хозяина; в присутствии соответствующего антибиотика отбирают интеграцию направляющего конструкта в хромосому хозяина. Только тогда, когда происходит дополнительная рекомбинация редактирующего конструкта с целевым сайтом CRISPR в другом месте на хромосоме хозяина, хозяин может избежать проблемы аутоиммунности. Следовательно, в присутствии антибиотика только желаемые (свободные от маркера) мутанты способны выживать и расти. Также представлена сходная стратегия выбора для последующего удаления интегрированного направляющего конструкта из хромосомы, создающая свободный от собственного маркера мутант.
В последние годы было установлено, что редактирование генома, опосредуемое CRISPR-Cas, является полезным инструментом для генной инженерии. Установлено, что прокариотические системы CRISPR служат своим хозяевам как адаптивные иммунные системы (Jinek et al., 2012, Science 337: 816-821) и могут быть использованы для быстрой и эффективной генной инженерии (например, Mali et al. , 2013, Nat Methods 10: 957-963), требуя только модификации гид-последовательности для направления на интересующие последовательности.
Тем не менее, существует постоянная потребность в разработке агентов с улучшенным определением специфической для последовательности нуклеиновой кислоты, ее расщеплением и манипуляциями в различных экспериментальных условиях для применения в области генетических исследований и редактирования генома.
Краткое описание изобретения
Настоящее изобретение относится к нуклеазе PaCas9 с аминокислотной последовательностью SEQ ID NO: 2.
В одном из аспектов настоящее изобретение относится к выделенной молекуле нуклеиновой кислоты, которая кодирует нуклеазу PaCas9, с нуклеотидной последовательностью SEQ ID NO: 1.
В одном из аспектов настоящее изобретение относится к экспрессионному вектору, содержащему нуклеиновую кислоту с нуклеотидной последовательностью SEQ ID NO: 1.
В некоторых вариантах экспрессионный вектор представляет собой генетическую конструкцию, указанную на фиг. 1, PpCas9-T2A-GFP-sgRNA1-MCS-sgRNA2-MCS.
В одном из аспектов настоящее изобретение относится к вектору для доставки терапевтического агента, содержащего нуклеиновую кислоту с нуклеотидной последовательностью SEQ ID NO: 1.
В одном из вариантов настоящего изобретения вектор доставляет терапевтический агент в клетки-мишени или ткани-мишени.
В одном из аспектов настоящее изобретение относится к липосоме для доставки терапевтического агента, включающего нуклеазу PaCas9 с аминокислотной последовательностью SEQ ID NO: 2 или нуклеиновую кислоту с нуклеотидной последовательностью SEQ ID NO: 1.
В одном из вариантов настоящего изобретения липосома доставляет терапевтический агент в клетки-мишени или ткани-мишени.
В одном из аспектов настоящее изобретение относится к способу доставки в клетки-мишени или ткани-мишени терапевтического агента с помощью вышеуказанного вектора или вышеуказанной липосомы.
В одном из вариантов способа доставки в клетки-мишени или ткани-мишени терапевтического агента осуществляется путем введения в организм млекопитающего вышеуказанного вектора или вышеуказанной липосомы.
В одном из аспектов настоящее изобретение относится к способу получения клетки-хозяина для получения нуклеазы PaCas9 с аминокислотной последовательностью SEQ ID NO: 2, который включает трансформирование клетки любым вышеуказанным вектором.
В одном из аспектов настоящее изобретение относится к способу получения нуклеазы PaCas9, заключающемуся в культивировании вышеуказанной клетки-хозяина в культуральной среде в условиях, необходимых для получения указанной нуклеазы PaCas9, при необходимости, с последующим выделением и очисткой полученной нуклеазы PaCas9.
Краткое описание чертежей
Фиг. 1. Кольцевая схема плазмиды PpCas9-T2A-GFP-sgRNA1-MCS-sgRNA2-MCS, предназначенной для наработки нуклеазы PpCas9 в клетках млекопитающих.
AmpR – ген бета-лактамазы, обеспечивающий устойчивость к ампициллину,
CMV promoter – промотор ранних генов цитомегаловируса,
Kozak sequence- последовательность Kozak для повышения эффективности трансляции белка,
START codon - старт-кодон,
NLS -сигналы ядерной локализации (NLS),
PaCas9 - нуклеотидная последовательностью SEQ ID NO: 1, кодирующая нуклеазу PaCas9 с аминокислотной последовательностью SEQ ID NO: 2,
FLAG- последовательность эпитопа FLAG для детекции белка,
GFP- модифицированный зелёный флуоресцентный белок,
TK pA - последовательность поли-А сигнала тимидинкиназы для повышения стабильности мРНК
F1 ori - ориджин репликации, который позволяет плазмиде упаковываться в фаговые частицы при котрансформации с фагами-помощниками,
polIII term + U6 promotor - кассеты для экспрессии малых молекул РНК, каждая кассета содержит U6 промотор и терминатор транскрипции РНК полимеразы III.
pUC origin- pUC ориджин репликации в бактериях.
Фиг. 2. Аминокислотная последовательность нуклеазы PaCas9 с распределением по доменам.
Описание изобретения
Определения и общие методы
Если иное не определено в настоящем документе, научные и технические термины, используемые в связи с настоящим изобретением, будут иметь значения, которые обычно понятны специалистам в данной области.
Кроме того, если по контексту не требуется иное, термины в единственном числе включают в себя термины во множественном числе, и термины во множественном числе включают в себя термины в единственном числе. Как правило, используемая классификация и методы культивирования клеток, молекулярной биологии, иммунологии, микробиологии, генетики, аналитической химии, химии органического синтеза, медицинской и фармацевтической химии, а также гибридизации и химии белка и нуклеиновых кислот, описанные в настоящем документе, хорошо известны специалистам и широко применяются в данной области. Ферментативные реакции и способы очистки осуществляют в соответствии с инструкциями производителя, как это обычно осуществляется в данной области, или как описано в настоящем документе.
Под «млекопитающим» понимается любое животное, классифицируемое как млекопитающее, в том числе приматы, люди, грызуны, собачьи, кошачьи, крупный рогатый скот, мелкий рогатый скот, лошади, свиньи и т.д.
Нуклеаза
Нуклеазы — большая группа ферментов, гидролизующих фосфодиэфирную связь между субъединицами нуклеиновых кислот.
Различают несколько типов нуклеаз в зависимости от их специфичности и активности: экзонуклеазы и эндонуклеазы, рибонуклеазы и дезоксирибонуклеазы, рестриктазы и некоторые другие. Рестриктазы занимают важное положение в прикладной молекулярной биологии.
Нуклеаза PaCas9 относится к типу дезоксирибонуклеаз.
Нуклеаза PaCas9 способна расщеплять ДНК, включающую последовательность нуклеиновой кислоты-мишени, при связывании, по меньшей мере, с одной молекулой РНК, которая распознает последовательность-мишень.
Нуклеаза PaCas9 cодержит два эндонуклеазных домена, которые поодиночке вносят одноцепочечные разрывы, а действуя совместно — двуцепочечный разрыв.
Нуклеаза PaCas9 представляет собой эффекторный фермент системы типа II CRISPR-Cas (нуклеаза второго типа).
Нуклеаза PaCas9 способна создавать двухцепочечный разрыв в ДНК с высокоспецифичным сайтом узнавания (16-20 букв).
ДНК нуклеазы PaCas9 представлена в SEQ ID NO:1.
Аминокислотная последовательность нуклеазы PaCas9 представлена в SEQ ID NO:2
На фигуре 2 приведена аминокислотная последовательность нуклеазы PaCas9 с распределением по доменам.
Нуклеаза PaCas9 связанна с изолированным кластером регулярно расположенных группами коротких палиндромных повторов (CRISPR), а также находящимися по соседству остальными компонентами CRISPR-Cas системы: последовательностями crRNA и tracrRNA.
Нуклеотидная последовательность, кодирующая tracrRNA, представлена в SEQ ID NO:3.
Нуклеотидная последовательность, кодирующая прямой повтор DR, представлена в SEQ ID NO:4.
crRNA состоит из вариабельной части, зависящей от мишени, и последовательности прямого повтора DR, представленной в SEQ ID NO:4.
Под «терапевтическим агентом» в данном изобретении подразумевается нуклеаза PaCas9 с аминокислотной последовательностью SEQ ID NO: 2 или выделенная молекула нуклеиновой кислоты, которая кодирует нуклеазу PaCas9, с нуклеотидной последовательностью SEQ ID NO: 1.
tracrRNA (транс-активирующая crRNA) – это небольшая транс-кодированная РНК.
CRISPR (от англ. Clustered Regularly Interspaced Short Palindromic Repeats; короткие палиндромные повторы, регулярно расположенные группами) - это особые локусы бактерий и архей, состоящие из прямых повторяющихся последовательностей, которые разделены уникальными последовательностями (спейсерами).
Молекулы нуклеиновых кислот
Термины «нуклеиновая кислота», «нуклеиновая последовательность» или «нуклеиновокислотная последовательность», «полинуклеотид», «олигонуклеотид», «полинуклеотидная последовательность» и «нуклеотидная последовательность», которые используются равнозначно в данном описании, обозначают четкую последовательность нуклеотидов, модифицированных или не модифицированных, определяющую фрагмент или участок нуклеиновой кислоты, содержащую или не содержащую неприродные нуклеотиды и являющуюся либо двухцепочечной ДНК или РНК, либо одноцепочечной ДНК или РНК, либо продуктами транскрипции указанных ДНК.
Здесь также следует упомянуть, что данное изобретение не относится к нуклеотидным последовательностям в их природной хромосомной среде, т.е. в природном состоянии. Последовательности данного изобретения были выделены и/или очищены, т.е. были взяты прямо или косвенно, например, путем копирования, при этом их среда была по меньшей мере частично модифицирована. Таким образом, также здесь следует подразумевать изолированные нуклеиновые кислоты, полученные путем генетической рекомбинации, например, с помощью принимающих клеток (клеток-хозяев), или полученные путем химического синтеза.
«Выделенная» молекула нуклеиновой кислоты представляет собой молекулу нуклеиновой кислоты, которая идентифицирована и отделена от по меньшей мере одной молекулы нуклеиновой кислоты-примеси, с которой она обычно связана в естественном источнике нуклеиновой кислоты нуклеазы. Выделенная молекула нуклеиновой кислоты отличается от той формы или набора, в которых она находится в естественных условиях. Таким образом, выделенная молекула нуклеиновой кислоты отличается от молекулы нуклеиновой кислоты, существующей в клетках в естественных условиях. Однако выделенная молекула нуклеиновой кислоты включает молекулу нуклеиновой кислоты, находящуюся в клетках, в которых в норме происходит экспрессия нуклеазы, например, в случае, если молекула нуклеиновой кислоты имеет локализацию в хромосоме, отличную от ее локализации в клетках в естественных условиях.
Термин нуклеотидная последовательность охватывает его комплимент, если не указано иное. Таким образом, нуклеиновую кислоту, имеющую определенную последовательность следует понимать как охватывающие ее комплементарную цепь с ее комплементарной последовательностью.
Выражение «контролирующие последовательности» относится к последовательностям ДНК, необходимым для экспрессии функционально связанной кодирующей последовательности в определенном организме-хозяине. Пригодные для прокариот контролирующие последовательности представляют собой, например, промотор, необязательно оператор и сайт связывания рибосомы. Как известно, в эукариотических клетках присутствуют промоторы, сигналы полиаденилирования и энхансеры.
Нуклеиновая кислота «функционально связана», если она находится в функциональной связи с другой нуклеотидной последовательностью. Например, ДНК предпоследовательности или секреторной лидерной последовательности функционально связывают с ДНК полипептида, если он экспрессируется в виде предпротеина, который принимает участие в секреции полипептида; промотор или энхансер функционально связывают с кодирующей последовательностью, если он оказывает воздействие на транскрипцию последовательности; сайт связывания рибосомы функционально связывают с кодирующей последовательностью, если он расположен так, что может облегчать трансляцию. Как правило, «функционально связан» обозначает, что связанные последовательности ДНК являются смежными, а в случае секреторной лидерной последовательности являются смежными и находятся в фазе считывания. Однако энхансеры не обязательно должны быть смежными.
Вектор
Термин «вектор» при использовании в настоящем документе означает молекулу нуклеиновой кислоты, способную транспортировать другую нуклеиновую кислоту, с которой она соединена. В некоторых вариантах осуществления изобретения вектор представляет собой плазмиду, т.е. кольцевую двухцепочечную часть ДНК, в которую могут быть лигированы дополнительные сегменты ДНК. В некоторых вариантах осуществления изобретения вектор представляет собой вирусный вектор, в котором дополнительные сегменты ДНК могут быть лигированы в вирусный геном. В некоторых вариантах осуществления изобретения векторы способны к автономной репликации в клетке-хозяине, в которую они введены (например, бактериальные векторы, имеющие бактериальный сайт инициации репликации и эписомные векторы млекопитающих). В других вариантах осуществления изобретения векторы (например, неэписомальные векторы млекопитающих) могут быть интегрированы в геном клетки-хозяина при введении в клетку-хозяина, и таким образом реплицируются вместе с геном хозяина. Более того, некоторые векторы способны направлять экспрессию генов, с которыми они функционально соединены. Такие векторы упоминаются в данном документе как «рекомбинантные экспрессирующие векторы» (или просто «экспрессирующие векторы»).
В одном аспекте настоящее изобретение настоящее изобретение относится к вектору, подходящему для экспрессии любой из нуклеотидных последовательностей, описанных в настоящем документе.
Настоящее изобретение относится к векторам, содержащим молекулы нуклеиновых кислот, которые кодируют нуклеазу PaCas9.
В некоторых вариантах осуществления изобретения, нуклеаза PaCas9 по данному изобретению экспрессируются путем вставки ДНК в экспрессионные вектора, таким образом, что гены функционально соединены с необходимыми последовательностями, контролирующими экспрессию, такими как транскрипционные и трансляционные контрольные последовательности. Экспрессионные векторы включают плазмиды, ретровирусы, аденовирусы, аденоассоциированные вирусы (AAV), вирусы растений, такие как вирус мозаики цветной капусты, вирусы табачной мозаики, космиды, YAC, EBV полученные эписомы и тому подобное. Молекулы ДНК могут быть лигированы в вектор таким образом, что последовательности, контролирующие транскрипцию и трансляцию в векторе, выполняют предусмотренную функцию регуляции транскрипции и трансляции ДНК. Экспрессионный вектор и последовательности контроля экспрессии могут быть выбраны таким образом, чтобы быть совместимыми с используемой экспрессирующей клеткой-хозяином. Молекулы ДНК могут быть введены в экспрессионный вектор стандартными способами (например, лигированием комплементарных сайтов рестрикции на фрагменте гена нуклеазы PaCas9 и вектора или лигированием тупых концов, если сайты рестрикции отсутствуют).
Помимо гена нуклеазы PaCas9, рекомбинантная экспрессия векторов по данному изобретению может нести регулирующие последовательности, которые контролируют экспрессию гена нуклеазы PaCas9 в клетке-хозяине. Специалистам в этой области будет понятно, что дизайн экспрессионного вектора, включая выбор регулирующих последовательностей, может зависеть от таких факторов, как селекция клетки-хозяина для трансформации, уровень экспрессии желаемого белка, и т.д. Предпочтительные регулирующие последовательности для экспрессирующей клетки-хозяина млекопитающих включают вирусные элементы обеспечивающие высокий уровень экспрессии белков в клетках млекопитающих, таких как промоторы и/или энхансеры, полученные из ретровирусной LTR, цитомегаловируса (CMV) (например, CMV промотора/энхансера), обезьяньего вируса 40 (SV40) (например, SV40 промотора/энхансера), аденовируса, (например, большого позднего промотора аденовируса (AdMLP)), вирус полиомы, а также сильных промоторов млекопитающих, таких как промотор нативных иммуноглобулинов или промотор актина. Для дальнейшего описания вирусных регулирующих элементов и их последовательностей см., например, патенты США 5,168,062, 4,510,245 и 4,968,615. Методы экспрессии полипептидов в бактериальных клетках или клетках грибов, например, дрожжевых клетках, также хорошо известны в данной области техники.
В дополнение к гену нуклеазы PaCas9 и регулирующим последовательностям, рекомбинантные векторы экспрессии изобретения могут нести дополнительные последовательности, такие как последовательности, которые регулируют репликацию вектора в клетках-хозяевах (например, точки начала репликации) и гены селектируемого маркера. Ген селектируемого маркера облегчает селекцию клеток-хозяев, в которые был введен вектор (см., например, патенты США 4,399,216, 4,634,665 и 5,179,017). Например, обычно ген селектируемого маркера придает устойчивость к лекарственным средствам, таким как G418, гигромицин или метотрексат, клетке-хозяину, в которую вектор введен. Например, гены селектируемого маркера включают ген дигидрофолат редуктазы (DHFR) (для использования в dhfr-клетках-хозяевах при селекции/амплификации метотрексата), ген нео (для селекции G418) и ген синтетазы глутамата.
Термин «последовательность контроля экспрессии», используемый в данном описании, означает полинуклеотидные последовательности, которые необходимы для воздействия на экспрессию и процессинг кодирующих последовательностей, к которым они лигированы. Контролирующие экспрессию последовательности включают соответствующие последовательности инициации транскрипции, терминации, промотора и энхансера; эффективные сигналы процессинга РНК, такие как сплайсинг и сигналы полиаденилирования; последовательности, которые стабилизируют цитоплазматическую мРНК; последовательности, которые повышают эффективность трансляции (т.е. консенсусная последовательность Козака); последовательности, которые повышают стабильность белка; и, при желании, последовательности, которые усиливают секрецию белка. Характер таких контролирующих последовательностей различается в зависимости от организма-хозяина; в прокариотах такие контролирующие последовательности, как правило, включают промотор, сайт связывания рибосомы, а также последовательности терминации транскрипции; в эукариотах, как правило, такие контролирующие последовательности включают промоторы и последовательности терминации транскрипции. Термин «контролирующие последовательности» включает, как минимум, все компоненты, наличие которых имеет важное значение для экспрессии и процессинга, и может также включать дополнительные компоненты, чье присутствие является полезным, например, лидирующие последовательности и последовательности слившихся клеток.
Клетки-хозяева
Термин «рекомбинантная клетка-хозяин» (или просто «клетка-хозяин») при использовании в данном документе означает клетку, в которую введен рекомбинантный экспрессионный вектор. Настоящее изобретение относится к клеткам-хозяевам, которые могут включать, например, вектор в соответствии с настоящим изобретением, описанным выше. Следует понимать, что «рекомбинантная клетка-хозяин» и «клетка-хозяин» означают не только конкретную заявленную клетку, но также и потомство такой клетки. Поскольку модификации могут проходить в последующих поколениях вследствие мутации или воздействий окружающей среды, такое потомство не может, на самом деле, быть идентичным родительской клетке, но такие клетки по-прежнему включены в объем термина «клетка-хозяин» при использовании в настоящем документе.
Молекулы нуклеиновой кислоты, кодирующие нуклеазу PaCas9 по изобретению, и векторы, содержащие эти молекулы нуклеиновой кислоты, могут быть использованы для трансфекции подходящего млекопитающего или его клетки, растения или его клетки, бактериальной или дрожжевой клетки-хозяина. Преобразование может происходить любым известным способом для введения полинуклеотидов в клетку-хозяина. Способы введения гетерологичных полинуклеотидов в клетки млекопитающих хорошо известны в данной области и включают декстран-опосредованную трансфекцию, трансфекцию комплексом нуклеиновой кислоты и позитивно заряженного полимера, трансфекцию преципитатом нуклеиновой кислоты и фосфата кальция, полибрен-опосредованную трансфекцию, слияние протопластов, трансфекцию инкапсулированными в липосомы полинуклеотидами и прямую микроинъекцию ДНК в ядра. В дополнение, молекулы нуклеиновых кислот могут быть введены в клетки млекопитающих вирусными векторами. Способы трансфекции клеток хорошо известны в данной области техники. См., например, патенты США, 4,399,216, 4,912,040, 4,740,461 и 4,959,455. Способы трансформации клеток растений хорошо известны в данной области, включая, например, Agrobacterium-опосредованную трансформацию, биолистическую трансформацию, прямую инъекцию, электропорацию и вирусную трансформацию. Методы трансформации клеток бактерий и дрожжей также хорошо известны в данной области.
Клеточные линии млекопитающих, используемые в качестве хозяев для трансформации, хорошо известны в данной области и включают множество иммортализованных доступных клеточных линий. К ним относятся, например, клетки яичников китайского хомячка (CHO), NS0 клетки, клетки SP2, HEK-293T клетки, 293 Фристайл клетки (Invitrogen), NIH-3T3 клетки, клетки HeLa, клетки почек хомячка (BHK), клетки почек африканских зеленых мартышек (COS), клетки гепатоцеллюлярной карциномы человека (например, Hep G2), A549 клетки и ряд других клеточных линий. Клеточные линии выбираются путем определения, какие клеточные линии имеют высокие уровни экспрессии и обеспечивают необходимые характеристики продуцируемого белка. Другими клеточными линиями, которые могут быть использованы, являются клеточные линии насекомых, такие как Sf9 или Sf21 клетки. Когда векторы рекомбинантной экспрессии, кодирующие нуклеазу PaCas9, вводятся в клетки-хозяева млекопитающих, нуклеаза PaCas9 продуцируются путем культивирования клеток-хозяев в течение времени, достаточного для экспрессии нуклеазы PaCas9 в клетках-хозяевах или, предпочтительнее, выделения нуклеазы PaCas9 в питательную среду, в которой выращиваются клетки-хозяева. Нуклеаза PaCas9 может быть выделена из питательной среды с использованием стандартных методов очистки белка. Клетки-хозяева растений, например, включают Nicotiana, Arabidopsis, ряску, кукурузу, пшеницу, картофель и т.д. Клетки бактерий хозяина включают виды Escherichia и Streptomyces. Дрожжевые клетки-хозяева включают Schizosaccharomyces pombe, Saccharomyces cerevisiae и Pichia pastoris.
Кроме того, уровень продукции нуклеазы PaCas9 по данному изобретению из продуцирующей клеточной линии можно усилить с помощью ряда известных методов. Например, система экспрессии гена глутамин синтетазы (система GS) является достаточно распространенной для усиления экспрессии при определенных условиях. Система GS обсуждается в целом или частично в связи с патентами ЕР 0216846, 0256055, 0323997 и 0338841.
Вполне вероятно, что нуклеаза PaCas9, полученная из различных клеточных линий или трансгенных животных, будет отличаться друг от друга профилем гликозилирования. Однако нуклеаза PaCas9, кодируемая молекулами нуклеиновой кислоты, описанными в данном документе, является частью данного изобретения, независимо от состояния гликозилирования и в целом, независимо от наличия или отсутствия пост-трансляционных модификаций.
Липосома
В одном аспекте настоящее изобретение настоящее изобретение относится к липосомам, в которые инкапсулирована нуклеаза PaCas9 с аминокислотной последовательностью SEQ ID NO: 2 или выделенная молекула нуклеиновой кислоты, которая кодирует нуклеазу PaCas9, с нуклеотидной последовательностью SEQ ID NO: 1.
Липосомы - это микроскопические замкнутые везикулы, имеющие внутреннюю фазу, окруженную одним или несколькими липидными бислоями, и способные удерживать водорастворимый материал во внутренней фазе, а маслорастворимый материал - в фосфолипидном бислое. При заключении активного вещества в липосому и доставке его в ткани-мишени, важными задачами являются высокоэффективный захват активного соединения в липосому и обеспечение устойчивого удержания активного соединения липосомой.
В целом, считается, что липосома представляет собой частицу с преимущественным размером от нескольких десятков нанометров вплоть до десятых долей микрон, внутри оболочки которой, располагаются молекулы другого вещества (веществ). Оболочка липосом является «полупроницаемой» для молекул воды и ионов.
Для липосом характерна способность включать в себя и удерживать вещества различной природы. Круг веществ, включаемых в липосомы, достаточно широк - от неорганических ионов и низкомолекулярных органических соединений до крупных белков и нуклеиновых кислот.
Липосомы обеспечивают пролонгированное высвобождение заключенного в носителе вещества.
Липосомы могут быть выполнены из фосфолипида, в частности из фосфатидилхолина, фосфатидилэтаноламина, фосфатидилсерина, фосфатидилинозитола, фосфатидилглицерина, фосфатидовой кислоты, сфингофосфолипида, фосфолипидов яиц или соевых бобов или их смесей.
Примеры
Для наилучшего понимания изобретения приводятся следующие примеры. Эти примеры приведены только в иллюстративных целях и не должны толковаться как ограничивающие сферу применения изобретения в любой форме.
Все публикации, патенты и патентные заявки, указанные в этой спецификации включены в данный документ путем отсылки. Хотя вышеупомянутое изобретение было довольно подробно описано путем иллюстрации и примера в целях исключения двусмысленного толкования, специалистам в данной области на основе идей, раскрытых в данном изобретении, будет вполне понятно, что могут быть внесены определенные изменения и модификации без отклонения от сущности и объема прилагаемых вариантов осуществления изобретения.
Материалы и общие методы
Методы рекомбинантной ДНК
Для манипуляций с ДНК использовали стандартные методы, описанные у Sambrook J. и др., Molecular cloning: A laboratory manual; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989. Реагенты для молекулярной биологии использовали согласно инструкциям производителей.
Синтез генов
Требуемые сегменты генов получали из олигонуклеотидов, созданных путем химического синтеза. Генные сегменты длиной от 300 до 4000 т.п.н., которые фланкированы уникальными сайтами рестрикции, собирали путем отжига и лигирования олигонуклеотидов, включая ПЦР-амплификацию и последующее клонирование через указанные сайты рестрикции. Последовательности ДНК субклонированных генных фрагментов подтверждали путем секвенирования ДНК.
Определение последовательностей ДНК
Последовательности ДНК определяли путем секвенирования по Сенгеру.
Анализ последовательностей ДНК и белков и обработка данных о последовательностях
Применяли пакет программ фирмы Infomax's Vector NTI Advance suite, версия 8.0 для создания, картирования, анализа, аннотирования и иллюстрации последовательностей.
Экспрессионные векторы
Для экспрессии нуклеазы PaCas9 использовали варианты экспрессионных плазмид, предназначенных для экспрессии в клетках прокариот (E. coli), кратковременной экспрессии в клетках эукариот (например, в клетках CHO). Помимо кассеты экспрессии нуклеазы PaCas9 векторы содержали: сайт инициации репликации, обеспечивающий репликацию указанной плазмиды в Е. coli, гены, придающие устойчивость в Е.coli к различным антибиотикам (например, к ампициллину и/или канамицину).
Пример 1
Способ получения нуклеазы PaCas9
Для получения метагеномных последовательностей образцы губок Homoeodictya palmata собирали с участков Белого моря, материал фракционировали центрифугированием, после чего производилось выделение тотальной ДНК и ее последующее секвенирование.
В метагеномных последовательностях биоинформатическими методами была обнаружена открытая рамка считывания белка PaCas9, а также находящиеся по соседству остальные компоненты CRISPR Cas системы: CRISPR кассета, а также последовательности  crRNA и tracrRNA.
ДНК нуклеазы PaCas9 представлена в SEQ ID NO:1.
Аминокислотная последовательность нуклеазы PaCas9 представлена в SEQ ID NO:2.
Нуклеотидная последовательность, кодирующая tracrRNA, представлена в SEQ ID NO:3.
Нуклеотидная последовательность, кодирующая прямой повтор DR, представлена в SEQ ID NO:4.
Пример 2
Описание клонирования
Последовательность гена нуклеазы PaCas9 была получена биоинформатическим поиском. Последовательность была кодон-оптимизирована для обеспечения оптимальной экспрессии в клетках млекопитающих, после чего собрана de novo из химически синтезированных олигонуклеотидов по методу Гибсона. Синтезированный ген PaCas9 был заклонирован в генетическую конструкцию с 3’-конца от промотора CMV. С 5’-конца гена были добавлены последовательности Kozak и сигналы ядерной локализации (NLS), а с 3’-конца – последовательность эпитопа FLAG для детекции белка. После последовательности PaCas9 и относящихся к ней перечисленных выше элементов, в конструкции в той же рамке считывания помещены элементы T2A и открытая рамка считывания зелёного флуоресцентного белка (EGFP) в качестве маркера экспрессии.
После рамок считывания с 3’-конца помещена последовательность поли-А сигнала тимидинкиназы для повышения стабильности мРНК. В области бактериального кора генетической конструкции находится тандем из двух кассет для экспрессии малых молекул РНК. Каждая кассета содержит U6 промотор и терминатор транскрипции РНК полимеразы III. Данные кассеты необходимы для экспрессии молекул РНК, которые обеспечивают специфичное взаимодействие белка PaCas9 с целевой молекулой ДНК (клеточным геномом). Карта конструкции приведена на Фиг. 1. Данная конструкция позволяет экспрессировать в клетках эукариот одновременно как белок PaCas9 (который благодаря NLS транспортируется в ядро), так и направляющие его молекулы РНК (направляющие РНК), а также детектировать белок по эпитопу FLAG и определять эффективность доставки генетической конструкции по детекции EGFP.
Пример 3
Ферментативная активность белка PaCas9
Аминокислоты, участвующие в ферментативном гидролизе ДНК/РНК, были выявлены с помощью сравнения гомологии доменов HNH и RuvC различных белков семейства Cas9 с доменами PaCas9 (распределение по доменам указано на Фиг. 2). Консервативные аминокислоты, для которых ранее было показано участие в ферментативной активности белков Cas9, были выделены в PaCas9. Таким образом, аналитическими методами было установлено, что необходимыми для ферментативной активности белка PaCas9 являются аминокислотные остатки данного белка (аминокислота – положение): D 9; E 527; H 750; D 753; H 613; N 636.
Пример 4
Определение ферментативной активности белка PaCas9
Для определения PAM последовательности ((Protospaсer Adjacent Motif) - последовательность, прилегающая к протоспейсеру) проведены in vitro реакции разрезания библиотек ДНК с рекомбинантным белком-нуклеазой (SEQ ID NO: 2), crRNA (состоит из вариабельной части, зависящей от мишени, и последовательности прямого повтора, представленной в SEQ ID NO:4) и tracrRNA (SEQ ID NO:3). Библиотека ДНК – ПЦР фрагмент, содержащий семибуквенную рандомизированную последовательность, и узнаваемую последовательность, протоспейсер.
После инкубации PaCas9-РНК-белкового комплекса с библиотекой ДНК продукты реакции наносятся на гель-электрофорез. Не порезанные фрагменты экстрагируются из геля и подвергаются секвенированию на платформе Illumina. Сравнение PAM последовательностей, содержащихся в не порезанных продуктах реакции PaCas9 и контрольной реакции, позволят определить PAM исследуемого белка.
После выявления PAM последовательности, проводиться оценка активности нуклеазы in vitro. Для этого белок в комплексе с направляющими РНК инкубируется с ДНК-фрагментом, несущим последовательность протоспейсера и выявленный PAM. Определено оптимальное соотношение РНК-белкового комплекса к разрезаемой ДНК. Оценка активности нуклеазы определена исходя из количества белка PaCas9, необходимого для 50% разрезания 200 нг ДНК мишени, длиной около 400 пар нуклеотидов, содержащей оптимальный PAM.
Таким образом, подтверждено, что нуклеаза PaCas9 обладает ферментативной активность и создает двуцепочечный разрыв в ДНК.
Более того, подтверждено что нуклеаза PaCas9 способна создавать двухцепочечный разрыв в ДНК с высокоспецифичным сайтом узнавания (16-20 букв).

Claims (10)

1. Нуклеаза PaCas9 с аминокислотной последовательностью SEQ ID NO: 2.
2. Выделенная молекула нуклеиновой кислоты, которая кодирует нуклеазу PaCas9 по п. 1, с нуклеотидной последовательностью SEQ ID NO: 1.
3. Экспрессионный вектор, содержащий нуклеиновую кислоту по п. 2.
4. Экспрессионный вектор по п. 3, который представляет собой генетическую конструкцию, указанную на фиг. 1.
5. Экспрессионный вектор для доставки терапевтического агента, содержащего нуклеиновую кислоту по п. 2.
6. Экспрессионный вектор по п. 5, где терапевтический агент доставляется в клетки-мишени или ткани-мишени.
7. Способ доставки в клетки-мишени или ткани-мишени терапевтического агента, который включает введение вектора по любому из пп. 3-6 в клетки-мишени или ткани-мишени.
8. Способ получения клетки-хозяина для получения нуклеазы PaCas9 по п. 1, включающий трансформирование клетки вектором по любому из пп. 3-6.
9. Клетка-хозяин для получения нуклеазы PaCas9 по п. 1, содержащая нуклеиновую кислоту по п. 2.
10. Способ получения нуклеазы PaCas9 по п. 1, заключающийся в культивировании клетки-хозяина по п. 9 в культуральной среде в условиях, достаточных для получения указанной нуклеазы PaCas9, при необходимости, с последующим выделением и очисткой полученной нуклеазы PaCas9.
RU2018132816A 2018-09-14 2018-09-14 НУКЛЕАЗА PaCas9 RU2706298C1 (ru)

Priority Applications (20)

Application Number Priority Date Filing Date Title
RU2018132816A RU2706298C1 (ru) 2018-09-14 2018-09-14 НУКЛЕАЗА PaCas9
TW108133034A TW202016130A (zh) 2018-09-14 2019-09-12 PaCas9核酸酶
CA3113215A CA3113215A1 (en) 2018-09-14 2019-09-13 Pacas9 nuclease
PCT/RU2019/050154 WO2020055293A1 (ru) 2018-09-14 2019-09-13 Нуклеаза pаcas9
BR112021004746-8A BR112021004746A2 (pt) 2018-09-14 2019-09-13 pacas9 nuclease
JP2021513998A JP2022500044A (ja) 2018-09-14 2019-09-13 PaCas9ヌクレアーゼ
AU2019341014A AU2019341014A1 (en) 2018-09-14 2019-09-13 PaCas9 nuclease
ARP190102604A AR116403A1 (es) 2018-09-14 2019-09-13 Nucleasa pacas9
PE2021000323A PE20211111A1 (es) 2018-09-14 2019-09-13 Nucleasa pacas9
EA202190676A EA202190676A1 (ru) 2018-09-14 2019-09-13 НУКЛЕАЗА PaCas9
US17/276,016 US20220064612A1 (en) 2018-09-14 2019-09-13 PaCas9 nuclease
CN201980075402.9A CN113272425A (zh) 2018-09-14 2019-09-13 PaCas9核酸酶
KR1020217011069A KR20210062040A (ko) 2018-09-14 2019-09-13 PaCas9 뉴클레아제
MA53045A MA53045B1 (fr) 2018-09-14 2019-09-13 Nucléase p?Cas9
MX2021002933A MX2021002933A (es) 2018-09-14 2019-09-13 Nucleasa pacas9.
EP19858873.3A EP3851522A4 (en) 2018-09-14 2019-09-13 NUCLEASE PACAS9
ZA2021/01681A ZA202101681B (en) 2018-09-14 2021-03-12 Pacas9 nuclease
CONC2021/0003285A CO2021003285A2 (es) 2018-09-14 2021-03-12 Nucleasa pacas9
CL2021000610A CL2021000610A1 (es) 2018-09-14 2021-03-12 Nucleasa pacas9
PH12021550563A PH12021550563A1 (en) 2018-09-14 2021-03-15 Pacas9 nuclease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018132816A RU2706298C1 (ru) 2018-09-14 2018-09-14 НУКЛЕАЗА PaCas9

Publications (1)

Publication Number Publication Date
RU2706298C1 true RU2706298C1 (ru) 2019-11-15

Family

ID=68580023

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018132816A RU2706298C1 (ru) 2018-09-14 2018-09-14 НУКЛЕАЗА PaCas9

Country Status (20)

Country Link
US (1) US20220064612A1 (ru)
EP (1) EP3851522A4 (ru)
JP (1) JP2022500044A (ru)
KR (1) KR20210062040A (ru)
CN (1) CN113272425A (ru)
AR (1) AR116403A1 (ru)
AU (1) AU2019341014A1 (ru)
BR (1) BR112021004746A2 (ru)
CA (1) CA3113215A1 (ru)
CL (1) CL2021000610A1 (ru)
CO (1) CO2021003285A2 (ru)
EA (1) EA202190676A1 (ru)
MA (1) MA53045B1 (ru)
MX (1) MX2021002933A (ru)
PE (1) PE20211111A1 (ru)
PH (1) PH12021550563A1 (ru)
RU (1) RU2706298C1 (ru)
TW (1) TW202016130A (ru)
WO (1) WO2020055293A1 (ru)
ZA (1) ZA202101681B (ru)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2015102810A (ru) * 2012-06-29 2016-08-20 Консехо Супериор Де Инвестигасионес Сьентификас (Ксис) Функционализированные липосомы, пригодные для доставки биоактивных соединений
WO2017048969A1 (en) * 2015-09-17 2017-03-23 The Regents Of The University Of California Variant cas9 polypeptides comprising internal insertions
RU2634395C1 (ru) * 2015-12-01 2017-10-26 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Балтийский Федеральный Университет имени Иммануила Канта" (БФУ им. И. Канта) Генетическая конструкция на основе системы редактирования генома crispr/cas9, кодирующая нуклеазу cas9, специфически импортируемую в митохондрии клеток человека

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399216A (en) 1980-02-25 1983-08-16 The Trustees Of Columbia University Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US5179017A (en) 1980-02-25 1993-01-12 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4634665A (en) 1980-02-25 1987-01-06 The Trustees Of Columbia University In The City Of New York Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials
US4510245A (en) 1982-11-18 1985-04-09 Chiron Corporation Adenovirus promoter system
US4740461A (en) 1983-12-27 1988-04-26 Genetics Institute, Inc. Vectors and methods for transformation of eucaryotic cells
US5168062A (en) 1985-01-30 1992-12-01 University Of Iowa Research Foundation Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence
GB2183662B (en) 1985-04-01 1989-01-25 Celltech Ltd Transformed myeloma cell-line and a process for the expression of a gene coding for a eukaryotic polypeptide employing same
US4968615A (en) 1985-12-18 1990-11-06 Ciba-Geigy Corporation Deoxyribonucleic acid segment from a virus
GB8601597D0 (en) 1986-01-23 1986-02-26 Wilson R H Nucleotide sequences
US4959455A (en) 1986-07-14 1990-09-25 Genetics Institute, Inc. Primate hematopoietic growth factors IL-3 and pharmaceutical compositions
US4912040A (en) 1986-11-14 1990-03-27 Genetics Institute, Inc. Eucaryotic expression system
GB8717430D0 (en) 1987-07-23 1987-08-26 Celltech Ltd Recombinant dna product
GB8809129D0 (en) 1988-04-18 1988-05-18 Celltech Ltd Recombinant dna methods vectors and host cells
CA2871524C (en) * 2012-05-07 2021-07-27 Sangamo Biosciences, Inc. Methods and compositions for nuclease-mediated targeted integration of transgenes
US11801313B2 (en) * 2016-07-06 2023-10-31 Vertex Pharmaceuticals Incorporated Materials and methods for treatment of pain related disorders
SG10202110491PA (en) * 2017-03-24 2021-11-29 Curevac Ag Nucleic acids encoding crispr-associated proteins and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2015102810A (ru) * 2012-06-29 2016-08-20 Консехо Супериор Де Инвестигасионес Сьентификас (Ксис) Функционализированные липосомы, пригодные для доставки биоактивных соединений
WO2017048969A1 (en) * 2015-09-17 2017-03-23 The Regents Of The University Of California Variant cas9 polypeptides comprising internal insertions
RU2634395C1 (ru) * 2015-12-01 2017-10-26 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Балтийский Федеральный Университет имени Иммануила Канта" (БФУ им. И. Канта) Генетическая конструкция на основе системы редактирования генома crispr/cas9, кодирующая нуклеазу cas9, специфически импортируемую в митохондрии клеток человека

Also Published As

Publication number Publication date
CA3113215A1 (en) 2020-03-19
JP2022500044A (ja) 2022-01-04
CL2021000610A1 (es) 2021-09-24
AU2019341014A1 (en) 2021-05-13
MA53045A1 (fr) 2022-02-28
US20220064612A1 (en) 2022-03-03
EP3851522A1 (en) 2021-07-21
KR20210062040A (ko) 2021-05-28
PE20211111A1 (es) 2021-06-21
WO2020055293A1 (ru) 2020-03-19
EA202190676A1 (ru) 2021-06-08
TW202016130A (zh) 2020-05-01
CO2021003285A2 (es) 2021-06-10
ZA202101681B (en) 2022-06-29
PH12021550563A1 (en) 2022-02-14
MA53045B1 (fr) 2022-08-31
BR112021004746A2 (pt) 2021-06-08
AR116403A1 (es) 2021-05-05
MX2021002933A (es) 2021-06-15
CN113272425A (zh) 2021-08-17
EP3851522A4 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
EP3152312B1 (en) Methods and compositions for modifying a targeted locus
CN107109422B (zh) 使用由两个载体表达的拆分的Cas9的基因组编辑
JP2016523084A (ja) 標的組込み
CN111448313A (zh) 用于改善基于Cas9的敲入策略的有效性的组合物和方法
EP4025691B1 (en) Novel, non-naturally occurring crispr-cas nucleases for genome editing
US20230046668A1 (en) Targeted integration in mammalian sequences enhancing gene expression
RU2706298C1 (ru) НУКЛЕАЗА PaCas9
US20230113805A1 (en) CRISPR-Cas NUCLEASES FROM CPR-ENRICHED METAGENOME
JP2024501892A (ja) 新規の核酸誘導型ヌクレアーゼ
EA043898B1 (ru) НУКЛЕАЗА PaCas9
OA20101A (en) Pacas9 nuclease.
CN113795588A (zh) 用于在靶向性载体中无瘢痕引入靶向修饰的方法
AU2019359383A1 (en) Compositions and methods for modifying regulatory T cells
JP2024509139A (ja) メタゲノム由来の新規のcrispr-casヌクレアーゼ
WO2023177424A1 (en) Integration of large nucleic acids into genomes
KR20210078894A (ko) 크리스퍼 간섭을 이용한 유전자 발현 억제용 조성물