RU2706086C1 - Мутантная рекомбинантная термостабильная фитаза - Google Patents

Мутантная рекомбинантная термостабильная фитаза Download PDF

Info

Publication number
RU2706086C1
RU2706086C1 RU2018138040A RU2018138040A RU2706086C1 RU 2706086 C1 RU2706086 C1 RU 2706086C1 RU 2018138040 A RU2018138040 A RU 2018138040A RU 2018138040 A RU2018138040 A RU 2018138040A RU 2706086 C1 RU2706086 C1 RU 2706086C1
Authority
RU
Russia
Prior art keywords
amino acid
phytase
phycf
acid residue
sequence
Prior art date
Application number
RU2018138040A
Other languages
English (en)
Inventor
Татьяна Леонидовна Гордеева
Лариса Николаевна Борщевская
Анна Николаевна Калинина
Сергей Павлович Синеокий
Сергей Петрович Воронин
Маргарита Дмитриевна Каширская
Original Assignee
Акционерное Общество "Биоамид"
Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ГосНИИгенетика)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное Общество "Биоамид", Федеральное государственное бюджетное учреждение "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ГосНИИгенетика) filed Critical Акционерное Общество "Биоамид"
Priority to RU2018138040A priority Critical patent/RU2706086C1/ru
Application granted granted Critical
Publication of RU2706086C1 publication Critical patent/RU2706086C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/030083-Phytase (3.1.3.8)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Изобретение относится к области биотехнологии. Мутантная рекомбинантная термостабильная фитаза PhyCf-t, зрелая часть которой имеет аминокислотную последовательность, приведенную в перечне последовательностей под номером SEQ ID NO: 3, начиная с 23 аминокислотного остатка, отличается от последовательности фитазы PhyCf из Citrobacter freundii заменой аминокислотного остатка лизина в положении 46, соответствующего в зрелой части белка положению 24, на аминокислотный остаток метионина, и заменой аминокислотного остатка лизина в положении 138, соответствующего в зрелой части белка положению 116, на аминокислотный остаток глутаминовой кислоты. Изобретение обеспечивает расширение арсенала термостабильных фитаз. 3 пр.

Description

Изобретение относится к области биотехнологии, а именно к получению новых термостабильных фитаз методами генетической инженерии.
Фитазы представляют собой ферменты, катализирующие последовательный гидролиз фитатов до мио-инозитола и неорганического фосфата.
Известно, что более 70% фосфора, содержащегося в растительных кормах для цыплят бройлеров, находится в форме фитиновой кислоты и ее солей фитатов. Так как животные с однокамерным желудком не способны усваивать фитатный фосфор, то не усвоенные фитаты, попадая в почву и водоемы, вызывают загрязнение окружающей среды. Кроме того, фитаты уменьшают доступность белков и микроэлементов в кормах.
В связи с этим, фитазы, отщепляющие фосфатные группы от фитатов, с успехом используют в животноводстве в качестве кормовой добавки, значительно повышая усвояемость фосфора.
Для практического использования препараты фитаз должны быть устойчивы к высушиванию и действию высоких температур (60-80°С) в процессе приготовления комбикормов, а также обладать высокой удельной активностью и эффективно функционировать при температуре, соответствующей физиологической температуре животных.
Получить термостабильные варианты фитаз можно путем замены аминокислотных остатков в последовательности ферментов, применяя различные методы мутагенеза.
Известно [J. Mol. Biol, 1998, v. 278, р. 279-289], что вклад аминокислоты в формирование третичной структуры фермента определяется не только ее природой, но и ее положением в аминокислотной последовательности и, следовательно, осуществляя точечные замены аминокислот, находящихся в значимых положениях аминокислотной последовательности, можно добиться изменения структурных свойств белка (и его термостабильности). Однако, увеличение термостабильности белка приводит к снижению его удельной активности, поэтому создание ферментов с оптимальным соотношением значений активности и термостабильности является актуальной задачей.
Так, методом насыщающего мутагенеза были заменены некоторые аминокислотные остатки в аминокислотной последовательности фитазы Escherichia coli и была получена мутантная термостабильная фитаза [US 20060183213]. Такая фитаза способна работать в условиях низких рН в гастроэнтеральном тракте животных, однако имеет небольшую удельную активность (800 ед/мг белка при 37°С) и термостабильность (сохраняет 40% активности после воздействия на нее температуры 60°С в течение 30 минут).
Известна мутантная термостабильная фитаза [Appl Microbiol Biotechnol, 2008, v. 79, p. 69-75], полученная путем применения метода error-prone PCR к гену, кодирующему фитазу аррА E.coli. Фитаза сохраняет 60% активности после воздействия на нее температуры 80°С в течение 10 минут, однако также имеет небольшую удельную активность (905 ед/мг белка при 37°С), и способна работать только в очень узком диапазоне рН (2,5-4,0).
Известна [Биотехнология, 2003, №2, с. 3-10, AAR89622.1, GenBank] фитаза PhyCf, выделенная из бактерий Citrobacter freundii. Удельная активность рекомбинантного фермента, экспрессированного в дрожжах Pichia pastoris, составляет 2770 ед/мг белка Определение устойчивости такой фитазы к действию высокой температуры показало, что после прогрева в течение 10 минут при 60°С фермент сохраняет около 10% активности, а после прогрева в течение 10 минут при 80°С фермент инактивируется полностью, т.е. термостабильность фермента низка [Гордеева Т.Л. Разработка молекулярно-генетических подходов для оптимизации промышленно-важных характеристик фитазы Citrobacter freundii. Автореферат на соискание ученой степени кандидата биологических наук, Москва, 2010, с. 17.].
Путем замены некоторых аминокислотных остатков в аминокислотной последовательности фитазы из Citrobacter freundii методом мутагенеза были получены различные варианты этой фитазы с повышенной термостабильностью [Патент №2472855, US 9.273,295 В2 DuPont Nutrition Biosciences APS]. Была получена мутантная фитаза с аминокислотными заменами V41D/K46M/P128S остаточная активность которой после прогрева при 80°С в течение 10 минут составляла 35% [Гордеева Т.Л. Разработка молекулярно-генетических подходов для оптимизации промышленно-важных характеристик фитазы Citrobacter freundii. Автореферат на соискание ученой степени кандидата биологических наук, Москва, 2010, с. 17].
Задачей заявляемого изобретения является расширение арсенала термостабильных фитаз.
Поставленная задача решена тем, что получена мутантная рекомбинантная термостабильная фитаза PhyCf-t, имеющая аминокислотную последовательность, соответствующую аминокислотной последовательности фитазы PhyCf из Citrobacter freundii [AAR89622.1, GenBank],, в которой аминокислотный остаток лизина в положении 46, соответствующий в зрелой части белка положению 24, заменен на аминокислотный остаток метионина, а аминокислотный остаток лизина в положении 138, соответствующий в зрелой части белка положению 116, заменен на аминокислотный остаток глутаминовой кислоты.
Для получения мутантной фитазы синтетический ген phyCf-mod, имеющий нуклеотидную последовательность, приведенную в перечне последовательностей под номером SEQ ID NO: 1, и кодирующий фитазу PhyCf из бактерий Citrobacter freundii, подвергают сайт-направленному мутагенезу [Archives of Biochemistry and Biophysics, 2000, v. 382, №1, p. 105-112], и получают мутантный синтетический ген phyCf-t SEQ ID NO: 2 кодирующий мутантную рекомбинантную фитазу PhyCf-t, начиная с 23 аминокислотного остатка последовательности SEQ ID NO: 3.
Полученный ген phyCf-t клонируют в вектор, подходящий для ее трансформации в клетки Pichia pastor is. Так как в силу «вырожденности» генетического кода одна и та же аминокислотная последовательность может кодироваться большим числом нуклеотидных последовательностей, для клонирования может быть использована не только сама вышеуказанная нуклеотидная последовательность (ген phyCf-t), но и все ее формы, определяемые вырожденностью генетического кода.
Полученной рекомбинантной плазмидой осуществляют трансформацию штамма-реципиента и получают трансформанты. Отбирают клон, продуцирующий термостабильную фитазу, наличие которой определяют в культуральной жидкости по методу Фиске-Суббароу [J. Biol. Chem., v. 66, p. 376-400].
Пример 1. Конструирование рекомбинантной плазмиды pP10-PhyCf-ts
1. Получение мутантного гена phyCf-ts
Мутантный ген phyCf-ts, содержащий нуклеотидные замены в положениях А71/Т и A346/G, получают применяя метод сайт-направленного мутагенеза к синтетическому гену phyCf-mod, кодирующему фитазу PhyCf.
Для этого ПЦР методом синтезируют три фрагмента ДНК, используя следующие праймеры (нуклеотидные замены в приведенных последовательностях подчеркнуты):
а) Для синтеза первого фрагмента
прямой -PhyCf-ts-D (5'-aggaattcGAAGAACAAAATGGTATGAA-3')
обратный - А71/Т-r (5'-TCATGATTGGAGTGAATATGGTA-3')
в) Для синтеза второго фрагмента
прямой - А71/T-f (5'-GTTCGTGCACCTACCATATTCA-3')
обратный - A346/G-r (5'-GTCTTTTCCTCGTCCTCTTGGTA-3')
с) Для синтеза третьего фрагмента
прямой - A346/G-f (5'-ATTCAAGTACACTACCAAGAGGA-3')
обратный - PhyCf-ts-R (5'-agcggccgcAGTGTGCAGTAACGGAATAA-3').
В качестве матрицы для проведения полимеразной цепной реакции используют синтетическую ДНК последовательность, приведенную в перечне последовательностей под номером SEQ ID NO: 1, имеющую размер 1236 п.н.
Для проведения полимеразной цепной реакции используют 100 мкл реакционной смеси содержащей 0,5 нг ДНК-матрицы, по 1 мкМ соответствующего прямого и обратного праймеров, 2,5 ед. Pfu-полимеразы, 10 мкл 10х Pfu-буфера, 0,8 мМ dNTP. Реакцию осуществляют по следующей схеме: 94°С - денатурирование (1 мин.), 57°С -отжиг (1 мин.), 72°С - полимеризация (50 сек.). Всего проводят 30 циклов амплификации. Амплифицированные фрагменты ДНК очищают в агарозном геле и затем при помощи «DNA extraction KIT» (Thermd Scientific). Наработанные фрагменты имеют следующие размеры:
- первый фрагмент 88 пар нуклеотидов;
- второй фрагмент 308 пар нуклеотидов;
- третий фрагмент 909 пар нуклеотидов
Мутантный ген phyCf-t синтезируют методом полимеразной цепной реакции из трех вышеописанных фрагментов. Для проведения ПЦР используют 100 мкл реакционной смеси содержащей 0,2 нг каждого ДНК-фрагмента, по 2 мкМ соответствующего прямого PhyCf-t-D и обратного PhyCf-t-R праймеров, 2,5ед. Pfu-полимеразы, 10 мкл 10x Pfu-буфера, 0,8 мМ dNTP. Реакцию осуществляют по следующей схеме: 94°С - денатурирование (1 мин.), 57°С - отжиг (1 мин.), 72°С - полимеризация (1 мин.). Всего проведено 30 циклов амплификации. Из агарозного геля выделен амплифицированный фрагмент ДНК, размером 1236 пар нуклеотидов, соответствующий мутантному гену phyCf-ts, который очищен при помощи «DNA extraction KIT»
2. Конструирование плазмиды pP10-PhyCf-ts.
Полученный фрагмент ДНК phyCf-t гидролизуют эндонуклеазами рестрикции EcoR1 и Not1 (Thermo Scientific), очищают в агарозном геле и лигируют с вектором рР10 (описан в RU 2388823), который в качестве сайта интеграции содержит последовательность ДНК, кодирующую область 18S рРНК, в качестве селективного маркера для отбора трансформантов в клетках Escherichia coli содержит селективный маркер bla, в качестве сайта начала репликации содержит pUC ori, в состав экспрессионной кассеты входит промотор GAP, терминатор транскрипции АОХ1, селективный маркер HIS4, а в качестве сигнального пептида вектор содержит
Figure 00000001
-амилазный сигнальный пептид.
Предварительно вектор рР10 расщепляют ферментами рестрикции по сайтам EcoR1-Not1. Лигазной смесью трансформируют компетентные клетки E.coli С600 [Т.Маниатис, Э.Фрич, Дж.Сэмбрук, Молекулярное клонирование, Москва, "Мир", 1984, с. 84], приготовленные накануне обработкой хлористым кальцием. После стандартной процедуры трансформации (0°С - 40 мин, 42°С - 2 мин, 0°С - 5 мин) клетки разводят в 10 раз средой LB [Т.Маниатис, Э.Фрич, Дж.Сэмбрук, Молекулярное клонирование, Москва, "Мир", 1984, с. 84], подращивают в течение одного часа и высевают на плотную агаризованную среду LB [Т.Маниатис, Э.Фрич, Дж.Сэмбрук, Молекулярное клонирование, Москва, "Мир", 1984, с. 84], содержащую ампициллин в концентрации 50 мкг/мл. Посевы инкубируют при 37°С.
На следующие сутки выросшие устойчивые к ампициллину колонии тестируют с помощью вышеприведенных праймеров и отбирают позитивные клоны, из которых выделяют плазмидную ДНК по стандартной методике (Т.Маниатис, Э.Фрич, Дж.Сэмбрук, Молекулярное клонирование, Москва, "Мир", 1984, с. 89). Выделенные плазмидные ДНК гидролизуют эндонуклеазами рестрикции EcoR1 и Not1, размер полученных фрагментов определяют с помощью гель-электрофореза. Затем отбирают клон, плазмидная ДНК которого содержит последовательность, соответствующую размеру последовательности (1236 пар нуклеотидов), кодирующей ген phyCf-t.
Из отобранного клона выделяют рекомбинантную плазмиду рР10-PhyCf-t. Ген phyCf-t секвенируют. Нуклеотидная последовательность гена phyCf-t соответствует последовательности, приведенной в перечне последовательностей под номером SEQ ID NO: 2, и кодирует аминокислотную последовательность, соответствующую зрелой части фитазы PhyCf-t (с 23 аминокислотного остатка), приведенную в перечне последовательностей под номером SEQ ID NO: 3, отличающуюся от последовательности фитазы из Citrobacter freundii заменой в позициях 46 и 138.
Пример 2. Конструирование штамма Pichia pas tor is PhyCf-ts - продуцента заявляемой фитазы
Для получения штамма Pichia pastoris PhyCf-t, клетки штамма Pichia pastoris GS115 (his4-) ВКПМ Y-2837 трансформируют плазмидой рР10-PhyCf-t которую предварительно гидролизуют рестриктазой Bglll.
1 мл ночной культуры клеток Pichia pastoris Y-2837 выращивают в 100 мл среды YEPD [https://ru.wikipedia.org/wiki/YEPD] при 30°С до достижения культурой оптической плотности, соответствующей 2 ед. поглощения при длине волны 600 нм. Клетки дважды промывают стерильной водой, после чего суспендируют в 0,3 мл 100 мМ раствора ацетата лития и инкубируют при 30°С в течение 30 мин. К 50 мкл полученной суспензии клеток добавляют 1 мкг плазмидной ДНК, 50 мкг ДНК спермы лосося, предварительно денатурированной нагреванием (10 мин при 100°С), и 0,3 мл раствора 100 мМ ацетата лития, содержащего 40% полиэтиленгликоля 4000. Далее пробу инкубируют 30 мин при 30°С и 20 минут при 42°С, помещают на 15 секунд в ледяную баню и отделяют клетки центрифугированием в течение 10 секунд при 10000 об/мин. Клетки суспендируют в 1 мл стерильной воды и высевают на твердую среду М9 [Т.Маниатис, Э.Фрич, Дж.Сэмбрук, Молекулярное клонирование, Москва, "Мир", 1984, с. 84] без источника гистидина с добавлением 0,3 об. % микроэлементов). Клоны трансформантов выращивают 2 суток.
Полученные трансформанты высевают в жидкую среду YEPD и выращивают при 30°С до стационарной фазы роста в течение 2 суток. Далее клетки осаждают центрифугированием при 10000 об/мин в течение 5 минут, отбирают 100 мкл супернатанта и определяют фитазную активность по накоплению в реакционной среде свободного фосфат-иона, детектируемого методом Фиске-Субарроу. Одна единица активности фермента соответствует высвобождению 1 мкМоль фосфата за 1 минуту. Активность фермента измеряют при помощи спектрофотометра при длине волны 700 нм.
Трансформант, показавший наибольшую фитазную активность культуральной жидкости 11-3, выбран для наработки фермента фитазы с целью определения ее термостабильности.
Пример 3. Оценка свойств заявляемой фитазы
Посевную культуру трансформанта 11-3 выращивают в 5 мл жидкой среды YEPD при 30°С в течение ночи. Полученную ночную культуру переносят в колбу Эрленмейера, объемом 750 мл, содержащую 100 мл среды YEPD, в соотношении 1:100. Культуру инкубируют при 30°С и интенсивном встряхивании (240 об/мин) до достижения стационарной фазы в течение 2 суток. Фитазную активность трансформанта измеряют как описано выше. Активность составляет 200 ед/мл культуральной жидкости.
Для определения удельной активности фитазу PhyCf-t очищают, используя метод гель-хроматографии [Юркевич В.В., Малый практикум по биохимии. Издательство МГУ, 1979. стр. 159-175.]. Образцы готовят с помощью диализа против буфера (50 тМ Tris-HCl, рН 7.0, 1М NaCl) в течение ночи и наносят на колонку Superdex 75-HR, уравновешенную при помощи того же буфера. Колонку предварительно калибруют с использованием белковых маркеров #SM0431 (Thermo Scientific). Количество белка на выходе колонки измеряют при помощи УФ-детектора при длине волны 280 нм. От солей буфера образец фитазы очищают диализом против воды в течение ночи. Количество белка определяют по методу Бредфорда согласно инструкции к Bradford Reagent В 6916 (Sigma) [https://www.sigmaaldrich.com/catalog/product/sigma/b6916?lang=en&region=RU].
Затем отбирают аликвоту, содержащую 30 мкг очищенного фермента и измеряют его фитазную активность по методу Фиске-Субарроу.
Активность отобранного образца составила 69,1 единиц, т.е. удельная активность фермента PhyCf-t равна 2303 ед/мг белка.
Для определения устойчивости к действию высокой температуры образец фитазы PhyCf-t инкубируют при температуре 80°С в течение 10 мин, а затем при 5°С в течение 30 мин с целью ренатурации белка. Остаточная удельная активность составляет 875 ед/мг белка, т.е. мутантная термостабильная фитаза PhyCf-t после прогрева при температуре 80°С в течение 10 минут сохраняет 38% активности.

Claims (1)

  1. Мутантная рекомбинантная термостабильная фитаза PhyCf-t, зрелая часть которой имеет аминокислотную последовательность, приведенную в перечне последовательностей под номером SEQ ID NO: 3, начиная с 23 аминокислотного остатка, отличающуюся от последовательности фитазы PhyCf из Citrobacter freundii заменой аминокислотного остатка лизина в положении 46, соответствующего в зрелой части белка положению 24, на аминокислотный остаток метионина, и заменой аминокислотного остатка лизина в положении 138, соответствующего в зрелой части белка положению 116, на аминокислотный остаток глутаминовой кислоты.
RU2018138040A 2018-10-29 2018-10-29 Мутантная рекомбинантная термостабильная фитаза RU2706086C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018138040A RU2706086C1 (ru) 2018-10-29 2018-10-29 Мутантная рекомбинантная термостабильная фитаза

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018138040A RU2706086C1 (ru) 2018-10-29 2018-10-29 Мутантная рекомбинантная термостабильная фитаза

Publications (1)

Publication Number Publication Date
RU2706086C1 true RU2706086C1 (ru) 2019-11-13

Family

ID=68579965

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018138040A RU2706086C1 (ru) 2018-10-29 2018-10-29 Мутантная рекомбинантная термостабильная фитаза

Country Status (1)

Country Link
RU (1) RU2706086C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038062A1 (en) * 2004-10-04 2006-04-13 Danisco A/S Microbial phytase as supplement to food or fodder
WO2007112739A1 (en) * 2006-04-04 2007-10-11 Novozymes A/S Phytase variants
RU2409670C1 (ru) * 2009-07-10 2011-01-20 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП ГосНИИгенетика) Рекомбинантная плазмида для экспрессии в дрожжах pichia pastoris гена фитазы (варианты), штамм дрожжей pichia pastoris - продуцент фитазы (варианты)
RU2472855C2 (ru) * 2009-12-15 2013-01-20 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП ГосНИИгенетика) МУТАНТНАЯ РЕКОМБИНАНТНАЯ ТЕРМОСТАБИЛЬНАЯ ФИТАЗА (ВАРИАНТЫ), ФРАГМЕНТ ДНК, КОДИРУЮЩИЙ УКАЗАННУЮ ФИТАЗУ (ВАРИАНТЫ), ШТАММ Pichia pastoris - ПРОДУЦЕНТ УКАЗАННОЙ ФИТАЗЫ (ВАРИАНТЫ)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006038062A1 (en) * 2004-10-04 2006-04-13 Danisco A/S Microbial phytase as supplement to food or fodder
US9273295B2 (en) * 2004-10-04 2016-03-01 Dupont Nutrition Biosciences Aps Mutant citrobacter freundii phytase polypeptide
WO2007112739A1 (en) * 2006-04-04 2007-10-11 Novozymes A/S Phytase variants
RU2409670C1 (ru) * 2009-07-10 2011-01-20 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП ГосНИИгенетика) Рекомбинантная плазмида для экспрессии в дрожжах pichia pastoris гена фитазы (варианты), штамм дрожжей pichia pastoris - продуцент фитазы (варианты)
RU2472855C2 (ru) * 2009-12-15 2013-01-20 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт генетики и селекции промышленных микроорганизмов" (ФГУП ГосНИИгенетика) МУТАНТНАЯ РЕКОМБИНАНТНАЯ ТЕРМОСТАБИЛЬНАЯ ФИТАЗА (ВАРИАНТЫ), ФРАГМЕНТ ДНК, КОДИРУЮЩИЙ УКАЗАННУЮ ФИТАЗУ (ВАРИАНТЫ), ШТАММ Pichia pastoris - ПРОДУЦЕНТ УКАЗАННОЙ ФИТАЗЫ (ВАРИАНТЫ)

Similar Documents

Publication Publication Date Title
Rey et al. A novel thioredoxin-like protein located in the chloroplast is induced by water deficit in Solanum tuberosum L. plants.
ES2263171T3 (es) Mejoras en o relativas al contenido de almidon de plantas.
JP2011224002A5 (ru)
CN109072262A (zh) 用于生产芳基硫酸酯的改进的生物方法
TW201512400A (zh) 植酸酶
Lum et al. Cloning and characterization of Arabidopsis thaliana pyridoxal kinase
JP2005537796A (ja) 変性剤安定および/またはプロテアーゼ耐性シャペロン様オリゴマータンパク質、これらをコードするポリヌクレオチド、これらの使用、およびこれらの比活性を増加させる方法
Lee et al. Molecular cloning of cDNA for trehalase from the European honeybee, Apis mellifera L., and its heterologous expression in Pichia pastoris
RU2706086C1 (ru) Мутантная рекомбинантная термостабильная фитаза
RU2472855C2 (ru) МУТАНТНАЯ РЕКОМБИНАНТНАЯ ТЕРМОСТАБИЛЬНАЯ ФИТАЗА (ВАРИАНТЫ), ФРАГМЕНТ ДНК, КОДИРУЮЩИЙ УКАЗАННУЮ ФИТАЗУ (ВАРИАНТЫ), ШТАММ Pichia pastoris - ПРОДУЦЕНТ УКАЗАННОЙ ФИТАЗЫ (ВАРИАНТЫ)
WO2012154024A1 (en) Cis-prenyl transferase from the plant hevea brasiliensis
KR20160085208A (ko) 코르코루스 올리토리우스 및 코르코루스 캡슐라리스로부터의 wuschel-관련 호메오박스4(wox4) 단백질을 암호화하는 뉴클레오타이드 서열 및 이의 사용 방법
CN109136209B (zh) 肠激酶轻链突变体及其应用
RU2409671C1 (ru) Рекомбинантная плазмида для экспрессии в дрожжах pichia pastoris гена фосфолипазы, штамм дрожжей pichia pastoris - продуцент фосфолипазы
RU2658758C1 (ru) Рекомбинантная плазмида для экспрессии в дрожжах Pichia pastoris гена химерного белка ангиогенина человека и штамм дрожжей Pichia pastoris - продуцент рекомбинантного химерного белка ангиогенина человека
Hinck et al. Overexpression and purification of avian ovomucoid third domains in Escherichia coli
CN110066817B (zh) 海带α型碳酸酐酶基因Sjα-CA2及其编码蛋白和应用
KR100803095B1 (ko) 바실러스 서브틸리스 ch2 유래의 키토산아제를 코딩하는유전자, 이 유전자를 포함하는 발현벡터, 이 발현벡터로형질전환된 형질전환체 및 이로부터 생산되는 단백질의정제방법
Bojko et al. Expression of three diadinoxanthin de-epoxidase genes of Phaeodacylum tricornutum in Escherichia coli Origami b and BL21 strain
CN110819645B (zh) 锦鲤Gtpch2基因、编码蛋白及其应用
KR101724614B1 (ko) 신규 카탈라아제 신호서열 및 이를 이용한 카탈라아제 발현방법
Kwon et al. Role of disulfide bond of arylsulfate sulfotransferase in the catalytic activity
RU2435863C2 (ru) Способ продукции белка
CN111269923B (zh) 缺刻缘绿藻cdp-乙醇胺:二酰甘油乙醇胺磷酸转移酶的基因序列和应用
Mullaney et al. Elimination of a disulfide bridge in Aspergillus niger NRRL 3135 Phytase (PhyA) enhances heat tolerance and optimizes its temperature versus activity profile

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20200731

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20200924

Effective date: 20200924