RU2698705C1 - Катализатор для получения синтетического низкозастывающего дизельного топлива и способ его приготовления - Google Patents

Катализатор для получения синтетического низкозастывающего дизельного топлива и способ его приготовления Download PDF

Info

Publication number
RU2698705C1
RU2698705C1 RU2018136715A RU2018136715A RU2698705C1 RU 2698705 C1 RU2698705 C1 RU 2698705C1 RU 2018136715 A RU2018136715 A RU 2018136715A RU 2018136715 A RU2018136715 A RU 2018136715A RU 2698705 C1 RU2698705 C1 RU 2698705C1
Authority
RU
Russia
Prior art keywords
catalyst
temperature
hours
aluminum
silica gel
Prior art date
Application number
RU2018136715A
Other languages
English (en)
Inventor
Роман Евгеньевич Яковенко
Григорий Борисович Нарочный
Вера Григорьевна Бакун
Иван Николаевич Зубков
Сергей Иванович Сулима
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" ЮРГПУ (НПИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" ЮРГПУ (НПИ) filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" ЮРГПУ (НПИ)
Priority to RU2018136715A priority Critical patent/RU2698705C1/ru
Application granted granted Critical
Publication of RU2698705C1 publication Critical patent/RU2698705C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к химической промышленности, в том числе нефтехимии, газохимии, углехимии и может быть использовано при приготовлении катализаторов для процесса получения синтетических углеводородов из СО и Н2 по методу Фишера-Тропша. Изобретение касается кобальтового катализатора, селективного в отношении образования углеводородов дизельной фракции С1118, обогащенной изопарафинами, и способа приготовления катализатора, включающего приготовление и термообработку - кобальтового катализатора методом пропитки и цеолита ZSM-5 методом ионного обмена, смешение порошков кобальтового катализатора, цеолита ZSM-5 и связующего бемита, получение однородной массы, формование гранул, термообработку, измельчение и активацию катализатора. Катализатор содержит следующие компоненты, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 30-40; связующее бемит - 30-40; цеолит ZSM-5 - остальное; причем кобальтовый катализатор с добавкой алюминия на силикагелевом носителе содержит, % масс.: кобальт - 6,5-8,7; добавка алюминия - 0,33-0,43; силикагелевый носитель - остальное; причем цеолит ZSM-5 содержит, % масс.: добавка палладия - 0,08-0,12; цеолит ZSM-5 в аммонийной форме - остальное. Катализатор, полученный указанным способом, обладает улучшенными каталитическими показателями. 2 н.п. ф-лы, 9 ил., 7 пр.

Description

Изобретение относится к химической промышленности, в том числе, нефтехимии, газохимии, углехимии и может быть использовано при приготовлении катализаторов для процесса получения синтетических углеводородов из СО и Н2 по методу Фишера-Тропша.
Известен кобальтовый катализатор для прямого получения синтетической нефти, обогащенной изопарафинами, полученный методом смешения порошков кобальта Ренея, металлического алюминия и связующего - цеолита в Н-форме и бемита, содержащий, % масс.: кобальт Ренея - 10-50, металлический алюминий - 10-50, связующий компонент - 15-80, в том числе цеолит в Н-форме (цеолит β и/или морденит, и/или ZSM-5 в Н-форме) - 20-70, бемит - остальное (Патент RU №2524217, B01J 21/02, B01J 25/00, B01J 29/04, С07С 1/04, 27.07.2014, Бюл. №21).
Недостатками катализатора являются: высокое содержание активного компонента - кобальта Ренея, дорогостоящего и дефицитного металла; высокое содержание металлического алюминия.
Известен кобальтовый катализатор синтеза жидких углеводородов по методу Фишера-Тропша, полученный методом смешения порошков кобальтового катализатора на оксидном носителе, цеолитов ZSM-5, Y, β и связующего, содержащий, % масс.: кобальтовый катализатор, в том числе кобальт - 20-30, промоторы, выбранные из группы рений, рутений, - 0,5-1,0, оксидный носитель, выбранный из группы оксид алюминия, диоксид кремния, диоксид титана, диоксид циркония или их смеси, - 80-70 - остальное; цеолит, выбранный из группы ZSM-5, Y, β, - 30-70, связующее бемит - 10-20, добавки палладия или металлов подгруппы железа Периодической системы Д.И. Менделеева - железо, кобальт, никель, - 0,5-8,0 (Патент RU №2493913, B01J 37/04, B01J 37/02, B01J 35/00, B01J 37/16, B01J 23/75, С07С 1/04, 27.09.2013, Бюл. №27).
Недостатками катализатора являются: использование ряда дорогостоящих и дефицитных оксидных носителей; высокое содержание активного компонента - кобальта, дорогостоящего и дефицитного металла; промотирование кобальтового катализатора на оксидном носителе рением или рутением - дорогостоящими и дефицитными металлами.
Наиболее близким аналогом (прототип) является кобальтовый катализатор для синтеза углеводородов из СО и Н2 по методу Фишера - Тропша, селективный в отношении образования углеводородов С510, С1118, включающий кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, цеолит ZSM-5 в Н-форме и связующее бемит, при следующем содержании компонентов, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 30-40, связующее бемит - 30-40, цеолит ZSM-5 в Н-форме - остальное; причем кобальтовый катализатор с добавкой алюминия на силикагелевом носителе содержит кобальт - 5,7-7,6, добавка алюминия - 0,3-0,4, силикагелевый носитель - остальное (Патент RU №2586069, B01J 23/75, B01J 21/04, B01J 21/08, B01J 37/02, B01J 37/08, B01J 37/18, С07С 1/04, С07С 9/00, 10.06.2016, Бюл. №16).
Недостатками катализатора являются: низкая селективность синтеза в отношении образования изопарафинов дизельной фракции С1118; высокое содержание олефинов в составе углеводородов дизельной фракции С1118; невозможность использования дизельной фракции С1118 в качестве синтетического дизельного топлива без изменения состава полученных углеводородов.
Известен кобальтовый катализатор для прямого получения синтетической нефти, обогащенной изопарафинами, и способ его получения, включающий смешение порошков связующих компонентов - цеолита в Н-форме и бемита; пептизацию смеси раствором азотной кислоты; смешения полученного геля с мелкодисперсными порошками кобальта Ренея, металлического алюминия и жидкой фазы - триэтиленгликоль и/или этиловый спирт, до однородной пасты; гранулирование (методом экструзии); прокаливание на воздухе или в инертной атмосфере (Патент RU №2524217, B01J 21/02, B01J 25/00, B01J 29/04, С07С 1/04, 27.07.2014, Бюл. №21).
Недостатками способа являются необходимость: получения гранулированного пористого композиционного материала, как смеси, в том числе, металлических компонентов; содержащего пространственную теплопроводящую сеть из металлического алюминия и кобальта Ренея с теплопроводностью не менее 4 Вт/м⋅К; формирования определенной пористой структуры гранул катализатора с заданной долей макропор и мезопор в открытой пористости.
Известен способ приготовления кобальтового катализатора синтеза жидких углеводородов по методу Фишера - Тропша, включающий: приготовление оксидного носителя - прекурсор основного компонента носителя прокаливают, измельчают, гранулируют, прокаливают; приготовление кобальтового катализатора на оксидном носителе - нанесение кобальта методом пропитки проводят в одну или несколько - не более трех, стадий, прокаливают после каждой стадии, введение промоторов проводят на последней стадии внесения активного компонента или после внесения активного компонента, прокаливают, измельчают; смешение порошков кобальтового катализатора на оксидном носителе и цеолита; гранулирование со связующим; прокаливание; проведение в растворе ионного обмена гранул полученного катализатора с добавками металлов - приготовление раствора добавок металлов, ионный обмен в суспензии гранул, сушку суспензии; прокаливание; активацию водородом (Патент RU №2493913, B01J 37/04, B01J 37/02, B01J 35/00, B01J 37/16, B01J 23/75, С07С 1/04, 27.09.2013, Бюл. №27).
Недостатками способа являются необходимость: получения носителя катализатора путем прокаливания прекурсора основного компонента, измельчения, гранулирования, прокаливания оксидного носителя; получения кобальтового катализатора методом пропитки оксидного носителя в одну или несколько стадий, прокаливания после каждой стадии, введения промоторов на последней стадии внесения активного компонента или после внесения активного компонента, прокаливания, измельчения; проведения в растворе ионного обмена гранул полученного катализатора с добавками металлов, сушки, прокаливания.
Наиболее близким аналогом (прототип) является способ получения кобальтового катализатора для синтеза углеводородов из СО и Н2 по методу Фишера - Тропша, селективного в отношении образования углеводородов С511, С1118, включающего кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, цеолит ZSM-5 в Н-форме и связующее бемит, согласно которому: получают кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, причем предварительную подготовку носителя проводят в режиме сушки 2-4 ч при температуре 140-160°С, на стадии пропитки носителя в водный раствор нитрата кобальта концентрацией 35-55% масс. вводят добавку алюминия в виде нитрата алюминия при массовом соотношении Со:Al2O3 в пропиточном растворе 100:5, термообработка катализатора включает сушку - сначала 2-4 ч при температурах 80-100°С, затем 2-4 ч при температуре 100-150°С, и прокаливание 4-6 ч при температуре 250-300°С; кобальтовый катализатор с добавкой алюминия на силикагелевом носителе измельчают до частиц размером менее 0,1 мм, смешивают с порошками цеолита ZSM-5 в Н-форме и связующего бемита с размерами частиц менее 0,1 мм, исходя из массового соотношения компонентов кобальтовый катализатор с добавкой алюминия на силикагелевом носителе: цеолит ZSM-5 в Н-форме: связующее бемит, и добавляют раствор азотной кислоты, который готовят внесением 1-2 мл азотной кислоты концентрацией 65% в 90-100 мл дистиллированной воды (на 100 г смеси порошков), и триэтиленгликоль, исходя из объемного соотношения азотная кислота : триэтиленгликоль в смеси 1:3, перемешивают до получения однородной массы, при постоянном перемешивании массу нагревают и выдерживают при температуре 60-70°С до остаточной влажности 70% масс., формуют гранулы катализатора диаметром менее 2 мм, сушат 20-24 ч при температуре 20-25°С, 4-6 ч при температуре 80-100°С, 2-4 ч при температуре 100-150°С, прокаливают 4-6 ч при температуре 340-360°С, измельчают до частиц размером 2-3 мм, а затем проводят активацию водородом в течение 0,75-1 ч при объемной скорости газа 3000 ч-1 и температуре 380-400°С (Патент RU №2586069, B01J 23/75, B01J 21/04, B01J 21/08, B01J 37/02, B01J 37/08, B01J 37/18, С07С 1/04, С07С 9/00, 10.06.2016, Бюл. №16).
Недостатками способа получения катализатора являются: низкая селективность синтеза в отношении образования изопарафинов дизельной фракции С1118; высокое содержание олефинов в составе углеводородов дизельной фракции С1118; невозможность использования дизельной фракции С1118 в качестве синтетического дизельного топлива без изменения состава полученных углеводородов.
Задачей настоящего изобретения при изменении состава и способа приготовления является создание кобальтового катализатора для процесса получения синтетических углеводородов из СО и Н2 по методу Фишера - Тропша с повышенными каталитическими свойствами в отношении образования углеводородов дизельной фракции С1118, обогащенной изопарафинами, обеспечивающего: высокую активность и селективность в отношении образования углеводородов дизельной фракции С1118, обогащенной изопарафинами; высокое качество углеводородов синтезированной дизельной фракции С1118, оцениваемое по содержанию изопарафинов и олефинов; высокое качество углеводородов синтезированной дизельной фракции С1118, оцениваемое по низкотемпературным показателям; получение экономического эффекта от использования катализатора за счет проведения синтеза с высокой производительностью в отношении образования углеводородов С5+ при повышенных - температуре и конверсии синтез-газа в продукты реакции.
Поставленная задача, согласно предлагаемому изобретению, в части состава, достигается тем, что кобальтовый катализатор для процесса получения синтетических углеводородов из СО и Н2 по методу Фишера-Тропша, селективный в отношении образования углеводородов дизельной фракции С1118, обогащенной изопарафинами, включает кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, цеолит ZSM-5 и связующее бемит, причем цеолит ZSM-5 дополнительно содержит добавку палладия, при следующем содержании компонентов, % масс.:
кобальтовый катализатор с добавкой алюминия
на силикагелевом носителе - 30-40;
связующее бемит - 30-40;
цеолит ZSM-5 - остальное;
причем кобальтовый катализатор с добавкой алюминия
на силикагелевом носителе содержит, % масс.:
кобальт - 6,5-8,7;
добавка алюминия - 0,33-0,43;
силикагелевый носитель - остальное;
причем цеолит ZSM-5 содержит, % масс:
добавка палладия - 0,08-0,12;
цеолит ZSM-5 в аммонийной форме - остальное.
Поставленная задача, согласно предлагаемому изобретению, в части способа получения кобальтового катализатора для процесса получения синтетических углеводородов из СО и Н2 по методу Фишера-Тропша, селективного в отношении образования углеводородов дизельной фракции С1118, обогащенной изопарафинами, включающего кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, цеолит ZSM-5 и связующее бемит, решается тем, что используется способ, согласно которому: получают кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, причем предварительную подготовку носителя проводят в режиме сушки 2-4 ч при температуре 140-160°С, на стадии пропитки носителя в водный раствор нитрата кобальта концентрацией 35-55% масс. вводят добавку алюминия в виде нитрата алюминия при массовом соотношении Со:Al2O3 в пропиточном растворе 100:5, термообработка катализатора включает сушку - сначала 2-4 ч при температуре 80-100°С, затем 2-4 ч при температуре 100-150°С, и прокаливание 4-6 ч при температуре 250-300°С; при этом кобальтовый катализатор с добавкой алюминия на силикагелевом носителе измельчают до частиц размером менее 0,1 мм, смешивают с порошками цеолита ZSM-5 и связующего бемита с размерами частиц менее 0,1 мм, исходя из массового соотношения компонентов кобальтовый катализатор с добавкой алюминия на силикагелевом носителе : цеолит ZSM-5: связующее бемит, и добавляют раствор азотной кислоты, который готовят внесением 1-2 мл азотной кислоты концентрацией 65% в 90-100 мл дистиллированной воды (на 100 г смеси порошков), и триэтиленгликоль, исходя из объемного соотношения азотная кислота : триэтиленгликоль в смеси 1:3, перемешивают до получения однородной массы, при постоянном перемешивании массу нагревают и выдерживают при температуре 60-70°С до остаточной влажности 70% масс., формуют гранулы катализатора диаметром менее 2 мм, сушат 20-24 ч при температуре 20-25°С, 4-6 ч при температуре 80-100°С, 2-4 ч при температуре 100-150°С, прокаливают 4-6 ч при температуре 340-360°С, измельчают до частиц размером 2-3 мм, а затем проводят активацию водородом в течение 0,75-1 ч при объемной скорости газа 3000 ч-1 и температуре 380-400°С, причем используют цеолит ZSM-5 с добавкой палладия, который получают методом ионного обмена, при этом на стадии ионного обмена порошок цеолита ZSM-5 в аммонийной форме с размером частиц менее 0,1 мм помещают в водный раствор хлорида палладия - PdCl2, который готовят внесением хлорида палладия в 190-200 мл дистиллированной воды, исходя из массового соотношения, соответствующего 0,08-0,12% масс. палладия в готовом катализаторе, нагревают до температуры 60-70°С, перемешивают 3-4 ч, после чего цеолит ZSM-5 с добавкой палладия отфильтровывают и промывают 1,5 л дистиллированной воды, сушат 10-12 ч при температуре 20-25°С и 14-16 ч при температуре 100-120°С, прокаливают 4-6 ч при температуре 540-560°С.
Предлагаемый состав кобальтового катализатора для процесса получения синтетических углеводородов из СО и Н2 по методу Фишера-Тропша с повышенными каталитическими свойствами в отношении образования углеводородов дизельной фракции С1118, обогащенной изопарафинами, характеризуется: высокой активностью и селективностью в отношении образования углеводородов дизельной фракции С1118, обогащенной изопарафинами; высоким качеством углеводородов синтезированной дизельной фракции С1118, оцениваемым по содержанию изопарафинов и олефинов; высоким качеством углеводородов синтезированной дизельной фракции С1118, оцениваемым по низкотемпературным показателям; получением экономического эффекта от использования катализатора за счет проведения синтеза с высокой производительностью в отношении образования углеводородов С5+ при повышенных - температуре и конверсии синтез-газа в продукты реакции.
Предлагаемый способ приготовления кобальтового катализатора для процесса получения синтетических углеводородов из СО и Н2 по методу Фишера-Тропша обеспечивает получение катализатора с повышенными каталитическими свойствами в отношении образования углеводородов дизельной фракции С1118, обогащенной изопарафинами, и, благодаря выбранному способу приготовления, характеризуется: высокой активностью и селективностью в отношении образования углеводородов дизельной фракции С1118, обогащенной изопарафинами; высоким качеством углеводородов синтезированной дизельной фракции С1118, оцениваемым по содержанию изопарафинов и олефинов; высоким качеством углеводородов синтезированной дизельной фракции С1118, оцениваемым по низкотемпературным показателям; получением экономического эффекта от использования катализатора за счет проведения синтеза с высокой производительностью в отношении образования углеводородов С5+ при повышенных - температуре и конверсии синтез-газа в продукты реакции.
Полученный технический результат - создание катализатора с повышенными каталитическими свойствами в отношении образования углеводородов дизельной фракции С1118, обогащенной изопарафинами, для получения низкозастывающего дизельного топлива обеспечивается тем, что промотирование катализатора введением палладия предложенным способом способствует формированию оптимального состава и изменению свойств бифункционального активного компонента катализатора, а в процессе приготовления создаются условия для образования такого активного компонента, который, в свою очередь, определяет: получение углеводородов целевой фракции с высокой активностью и селективностью в отношении образования парафинов изостроения С1118 - большей, чем в известном способе; высокое качество углеводородов синтезированной целевой фракции - повышенное содержание парафинов изостроения С1118 и пониженное содержание олефинов, что подтверждается низкотемпературными показателями качества углеводородов дизельной фракции С1118 (температура помутнения и температура застывания) и характеризует качество продуктов синтеза в рамках действующих стандартов на дизельное низкозастывающее топливо, и особенно важно для однореакторного процесса Фишера-Тропша; получение экономического эффекта от использования катализатора за счет проведения синтеза с высокой производительностью в отношении образования углеводородов С5+ в режиме интенсивного ведения процесса при температуре 250-260°С.
Исследование свойств катализаторов в процессе синтеза углеводородов из СО и Н2 по методу Фишера-Тропша проводили в трубчатом реакторе со стационартным слоем катализатора при давлении 2,0 МПа и объемной скорости газа 1000 ч-1 в интервале температур 220-260°С. Мольное соотношение СО:Н2 в синтез-газе составляло 1:2. Состав газообразных продуктов определяли комплексом приемов, принятых в газовой хроматографии. Состав жидкофазных углеводородов С5+ определяли методом капиллярной газожидкостной хромато-масс-спектрометрии на хроматографе Agilent GC 7890 с масс-селективным детектором MSD 5975С и капиллярной колонкой HP-5MS.
Низкотемпературные показатели качества синтезированной дизельной фракции определяли на автоматическом аппарате определения температуры помутнения и температуры застывания нефтепродуктов ТПЗ-ЛАБ-12 (параметры точности определения эквиваленты и соответствуют результатам, получаемым в соответствии со стандартами ASTM D6749-02, ASTM D7683-11 или ГОСТ 20287-91, ГОСТ 5066-91).
Об активности катализаторов судили по конверсии СО, селективности, производительности катализаторов в расчете на кг/нм3⋅ч газовой смеси и удельной производительности в расчете на кг/кгкобальта⋅ч, фракционному и углеводородному составу продуктов синтеза. Низкотемпературные показатели качества синтезированной дизельной фракции оценивали по величине температуры помутнения и температуры застывания углеводородов.
Обобщенные сравнительные данные по оценке активности и селективности известного и предлагаемого катализаторов, полученные в процессе синтеза углеводородов из СО и Н2 по методу Фишера-Тропша, приведены на фиг. 1 в таблице 1. На фиг. 2 в таблице 2 на примере катализатора 4 представлены аналогичные данные в зависимости от изменения температуры синтеза углеводородов (от 240°С до 260°С). На фиг. 3 в таблице 3 для катализаторов по примерам 1 и 4 представлен фракционный состав синтезированных углеводородов, на фиг. 4 в виде таблицы 4 - углеводородный состав. На фиг. 5 приведено молекулярно-массовое распределение углеводородов для катализатора в соответствии с примером 1. На фиг. 6-8 в виде молекулярно-массового распределения углеводородов для катализатора в соответствии с примером 4 - дополнительные данные об изменении в составе продуктов синтеза при повышении температуры синтеза от 240°С до 260°С. На фиг. 9 в таблице 5 для катализатора в соответствии с примером 4 представлены результаты оценки качества углеводородов синтезированной дизельной фракции с температурой кипения в интервале 180-280°С по низкотемпературным показателям.
Изобретение осуществляется следующим способом.
Для приготовления кобальтового катализатора с добавкой алюминия на силикагелевом носителе расчетное количество нитрата кобальта при температуре 70-80°С, перемешивая, растворяют в дистиллированной воде, после чего в пропиточный раствор вводят добавку алюминия, в виде нитрата алюминия, расчетное количество которого определяют, исходя из массового соотношения Со:Al2O3 в растворе 100:5. В пропиточный раствор погружают 50 см3 силикагелевого носителя с температурой 60-80°С, высушенного 2-4 ч при температуре 140-160°С. Пропитывание ведут 0,5 ч при температуре 70-80°С, перемешивая. Влажный катализатор сушат 2-4 ч при температуре 80-100°С, до устранения слипания гранул; термообрабатывают - сначала 2-4 ч при температуре 100-150°С, затем 4-6 ч при температуре 250-300°С.
Для приготовления цеолита ZSM-5 с добавкой палладия методом ионного обмена порошок цеолита ZSM-5 в аммонийной форме с размером частиц менее 0,1 мм помещают в водный раствор хлорида палладия - PdCl2, который готовят внесением хлорида палладия в 190-200 мл дистиллированной воды, исходя из массового соотношения, соответствующего 0,08-0,12% масс. палладия в готовом катализаторе, нагревают до температуры 60-70°С, перемешивают 3-4 ч, после чего цеолит ZSM-5 с добавкой палладия отфильтровывают и промывают 1,5 л дистиллированной воды, сушат 10-12 ч при температуре 20-25°С и 14-16 ч при температуре 100-120°С, прокаливают 4-6 ч при температуре 540-560°С.
Полученный катализатор с добавкой алюминия на силикагелевом носителе измельчают до частиц размером менее 0,1 мм и смешивают с порошками цеолита ZSM-5 с добавкой палладия и связующего бемита с размерами частиц менее 0,1 мм, исходя из массового соотношения кобальтовый катализатор с добавкой алюминия на силикагелевом носителе : 16цеолит ZSM-5 добавкой палладия : связующее бемит, и добавляют раствор азотной кислоты, который готовят внесением 1-2 мл азотной кислоты концентрацией 65% в 90-100 мл дистиллированной воды (на 100 г смеси порошков), и триэтиленгликоль, исходя из объемного соотношения азотная кислота : триэтиленгликоль в смеси 1:3, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм, например, экструдером с диаметром фильеры 2 мм. Катализатор сушат 20-24 ч при температуре 20-25°С, 4-6 ч при температуре 80-100°С, 2-4 ч при температуре 100-150°С, прокаливают 4-6 ч при температуре 340-360°С; измельчают до частиц размером 2-3 мм. Активацию катализатора проводят водородом в течение 0,75-1 ч при объемной скорости газа 3000 ч-1 и температуре 380-400°С.
Для осуществления способа в качестве носителя кобальтового катализатора синтеза Фишера-Тропша с добавкой алюминия на силикагелевом носителе используют силикагель с размером гранул 2-3 мм, в частности, крупнопористый, гранулированный, марки КСКГ в соответствии с ГОСТ 3956-76.
Синтез углеводородов по методу Фишера-Тропша проводят в трубчатом реакторе со стационарным слоем катализатора при давлении 2,0 МПа и объемной скорости газа 1000 ч-1 в интервале температур 220-260°С. Мольное соотношение СО:Н2 в синтез-газе составляло 1:2.
Пример 1.
Для приготовления кобальтового катализатора с добавкой алюминия на силикагелевом носителе 222,32 г нитрата кобальта в виде Co(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 36,58 г дистиллированной воды, после чего в пропиточный раствор вводят добавку алюминия в виде 17,78 г нитрата алюминия - Al(NO3)3⋅9H2O, и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат 4 ч при температуре 80°С, до устранения слипания гранул; термообрабатывают сначала 4 ч при температурах 100-125°С, затем 6 ч при температуре 300°С.
Затем 35 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц размером менее 0,1 мм и смешивают с порошками 30 г цеолита ZSM-5 в Н-форме и 35 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм. Катализатор сушат 24 ч при температуре 20-25°С, 4 ч при температуре 80-100°С, 4 ч при температуре 100-150°С, прокаливают 4 ч при температуре 340-360°С, измельчают до частиц размером 2-3 мм. Активацию катализатора проводят в течение 1 ч при объемной скорости водорода 3000 ч-1 при температуре 380-400°С.
Катализатор содержит, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 35, в том числе кобальт - 7,6, добавка алюминия - 0,38, силикагелевый носитель - остальное; связующее бемит - 35; цеолит ZSM-5 в Н-форме - остальное. Степень восстановленности катализатора 52%.
Пример 2.
Для приготовления кобальтового катализатор с добавкой алюминия на силикагелевом носителе 222,32 г нитрата кобальта в виде Со(NO3)2⋅6H2O при температуре 80°С, перемешивая, растворяют в 36,58 г дистиллированной воды, после чего в пропиточный раствор вводят добавку алюминия в виде 17,78 г нитрата алюминия - Al(NO3)3⋅9H2O, и погружают 50 см3 силикагеля с температурой 80°С, высушенного 4 ч при температуре 150°С. Пропитывают 0,5 ч при температуре 80°С, перемешивая. Влажный катализатор сушат 4 ч при температуре 80°С, до устранения слипания гранул; термообрабатывают сначала 4 ч при температуре 100-125°С, затем 6 ч при температуре 300°С.
Для приготовления цеолита ZSM-5 с добавкой палладия методом ионного обмена порошок цеолита ZSM-5 в аммонийной форме с размером частиц менее 0,1 мм помещают в водный раствор хлорида палладия - PdCl2, который готовят внесением хлорида палладия в 200 мл дистиллированной воды, исходя из массового соотношения, соответствующего 0,10% масс. палладия в готовом катализаторе, нагревают до температуры 60-70°С, перемешивают 4 ч, после чего цеолит ZSM-5 с добавкой палладия отфильтровывают и промывают 1,5 л дистиллированной воды, сушат 10 ч при температуре 20-25°С и 16 ч при температуре 100-120°С, прокаливают 6 ч при температуре 550°С.
Затем 30 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 30 г цеолита ZSM-5 с добавкой палладия и 40 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм. Катализатор сушат 24 ч при температуре 20-25°С, 4 ч при температуре 80-100°С, 4 ч при температуре 100-150°С, прокаливают 4 ч при температуре 340-360°С, измельчают до частиц размером 2-3 мм. Активацию катализатора проводят в течение 1 ч при объемной скорости водорода 3000 ч-1 при температуре 380-400°С.
Катализатор содержит, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 30, в том числе кобальт - 6,5, добавка алюминия - 0,33, силикагелевый носитель - остальное; связующее бемит - 40; цеолит ZSM-5 с добавкой палладия - остальное, в том числе добавка палладия - 0,10, цеолит ZSM-5 в аммонийной форме - остальное. Степень восстановленности катализатора 56%.
Пример 3.
Прокаленный кобальтовый катализатор с добавкой алюминия на силикагелевом носителе готовят, как указано в примере 2.
Для приготовления цеолита ZSM-5 с добавкой палладия методом ионного обмена порошок цеолита ZSM-5 в аммонийной форме с размером частиц менее 0,1 мм помещают в водный раствор хлорида палладия - PdCl2, который готовят внесением хлорида палладия в 200 мл дистиллированной воды, исходя из массового соотношения, соответствующего 0,10% масс. палладия в готовом катализаторе, нагревают до температуры 60-70°С, перемешивают 4 ч, после чего цеолит ZSM-5 с добавкой палладия отфильтровывают и промывают 1,5 л дистиллированной воды, сушат 10 ч при температуре 20-25°С и 16 ч при температуре 100-120°С, прокаливают 6 ч при температуре 550°С.
Затем 30 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 35 г цеолита ZSM-5 с добавкой палладия и 35 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм.
Гранулы катализатора сушат, прокаливают, измельчают и активируют водородом, как указано в примере 2.
Катализатор содержит, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 30, в том числе кобальт - 6,5, добавка алюминия - 0,33, силикагелевый носитель - остальное; связующее бемит - 35; цеолит ZSM-5 с добавкой палладия - остальное, в том числе добавка палладия - 0,10, цеолит ZSM-5 в аммонийной форме - остальное. Степень восстановленности катализатора 57%.
Пример 4.
Прокаленный кобальтовый катализатор с добавкой алюминия на силикагелевом носителе готовят, как указано в примере 2.
Для приготовления цеолита ZSM-5 с добавкой палладия методом ионного обмена порошок цеолита ZSM-5 в аммонийной форме с размером частиц менее 0,1 мм помещают в водный раствор хлорида палладия - PdCl2, который готовят внесением хлорида палладия в 200 мл дистиллированной воды, исходя из массового соотношения, соответствующего 0,10% масс. палладия в готовом катализаторе, нагревают до температуры 60-70°С, перемешивают 4 ч, после чего цеолит ZSM-5 с добавкой палладия отфильтровывают и промывают 1,5 л дистиллированной воды, сушат 10 ч при температуре 20-25°С и 16 ч при температуре 100-120°С, прокаливают 6 ч при температуре 550°С.
Затем 35 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 30 г цеолита ZSM-5 с добавкой палладия и 35 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм.
Гранулы катализатора сушат, прокаливают, измельчают и активируют водородом, как указано в примере 2.
Катализатор содержит, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 35, в том числе кобальт - 7,6, добавка алюминия - 0,38, силикагелевый носитель - остальное; связующее бемит - 35; цеолит ZSM-5 с добавкой палладия - остальное, в том числе добавка палладия - 0,10, цеолит ZSM-5 в аммонийной форме - остальное. Степень восстановленности катализатора 54%.
Пример 5.
Прокаленный кобальтовый катализатор с добавкой алюминия на силикагелевом носителе готовят, как указано в примере 2.
Для приготовления цеолита ZSM-5 с добавкой палладия методом ионного обмена порошок цеолита ZSM-5 в аммонийной форме с размером частиц менее 0,1 мм помещают в водный раствор хлорида палладия - PdCl2, который готовят внесением хлорида палладия в 200 мл дистиллированной воды, исходя из массового соотношения, соответствующего 0,10% масс. палладия в готовом катализаторе, нагревают до температуры 60-70°С, перемешивают 4 ч, после чего цеолит ZSM-5 с добавкой палладия отфильтровывают и промывают 1,5 л дистиллированной воды, сушат 10 ч при температуре 20-25°С и 16 ч при температуре 100-120°С, прокаливают 6 ч при температуре 550°С.
Затем 40 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 30 г цеолита ZSM-5 с добавкой палладия и 30 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм.
Гранулы катализатора сушат, прокаливают, измельчают и активируют водородом, как указано в примере 2.
Катализатор содержит, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 40, в том числе кобальт - 8,7, добавка алюминия - 0,43, силикагелевый носитель - остальное; связующее бемит - 30; цеолит ZSM-5 с добавкой палладия - остальное, в том числе добавка палладия - 0,10, цеолит ZSM-5 в аммонийной форме - остальное. Степень восстановленности катализатора 52%.
Пример 6.
Прокаленный кобальтовый катализатор с добавкой алюминия на силикагелевом носителе готовят, как указано в примере 2.
Для приготовления цеолита ZSM-5 с добавкой палладия методом ионного обмена порошок цеолита ZSM-5 в аммонийной форме с размером частиц менее 0,1 мм помещают в водный раствор хлорида палладия - PdCl2, который готовят внесением хлорида палладия в 200 мл дистиллированной воды, исходя из массового соотношения, соответствующего 0,08% масс. палладия в готовом катализаторе, нагревают до температуры 60-70°С, перемешивают 4 ч, после чего цеолит ZSM-5 с добавкой палладия отфильтровывают и промывают 1,5 л дистиллированной воды, сушат 10 ч при температуре 20-25°С и 16 ч при температуре 100-120°С, прокаливают 6 ч при температуре 550°С.
Затем 35 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 30 г цеолита ZSM-5 с добавкой палладия и 35 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм.
Гранулы катализатора сушат, прокаливают, измельчают и активируют водородом, как указано в примере 2.
Катализатор содержит, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 35, в том числе кобальт - 7,6, добавка алюминия - 0,38, силикагелевый носитель - остальное; связующее бемит - 35; цеолит ZSM-5 с добавкой палладия - остальное, в том числе добавка палладия - 0,08, цеолит ZSM-5 в аммонийной форме - остальное. Степень восстановленности катализатора 53%.
Пример 7.
Прокаленный кобальтовый катализатор с добавкой алюминия на силикагелевом носителе готовят, как указано в примере 2.
Для приготовления цеолита ZSM-5 с добавкой палладия методом ионного обмена порошок цеолита ZSM-5 в аммонийной форме с размером частиц менее 0,1 мм помещают в водный раствор хлорида палладия - PdCl2, который готовят внесением хлорида палладия в 200 мл дистиллированной воды, исходя из массового соотношения, соответствующего 0,12% масс. палладия в готовом катализаторе, нагревают до температуры 60-70°С, перемешивают 4 ч, после чего цеолит ZSM-5 с добавкой палладия отфильтровывают и промывают 1,5 л дистиллированной воды, сушат 10 ч при температуре 20-25°С и 16 ч при температуре 100-120°С, прокаливают 6 ч при температуре 550°С.
Затем 35 г кобальтового катализатора с добавкой алюминия на силикагелевом носителе измельчают до частиц с размером менее 0,1 мм, смешивают с порошками 30 г цеолита ZSM-5 с добавкой палладия и 35 г связующего бемита с размерами частиц менее 0,1 мм и добавляют раствор азотной кислоты, который готовят внесением 1 мл азотной кислоты концентрацией 65% в 90 мл дистиллированной воды, и 3 мл триэтиленгликоля, перемешивают до получения однородной массы. При постоянном перемешивании массу нагревают на водяной бане и выдерживают при температуре 60-70°С до остаточной влажности 70% масс. Формуют гранулы катализатора диаметром менее 2 мм.
Гранулы катализатора сушат, прокаливают, измельчают и активируют водородом, как указано в примере 2.
Катализатор содержит, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 35, в том числе кобальт - 7,6, добавка алюминия - 0,38, силикагелевый носитель - остальное; связующее бемит - 35; цеолит ZSM-5 с добавкой палладия - остальное, в том числе добавка палладия - 0,12, цеолит ZSM-5 в аммонийной форме - остальное. Степень восстановленности катализатора 55%.
Обобщенные сравнительные данные по оценке каталитических свойств, полученные с использованием известного и предлагаемого катализаторов в процессе синтеза углеводородов из СО и Н2, приведены на фиг. 1 в таблице 1. На фиг. 2 в виде табл. 2 для катализатора 4 представлены аналогичные данные, полученные при повышенной температуре проведения синтеза. На фиг. 3 в таблице 3 на примере катализаторов 1 и 4 - результаты влияния температуры на фракционный состав полученных продуктов синтеза.
Приведенные результаты показывают, что предложенные состав и способ приготовления позволяют вести процесса получения синтетических углеводородов из СО и Н2 по методу Фишера-Тропша производительно и получить катализатор, характеризующийся высокой селективностью в отношении образования углеводородов дизельной фракции С1118, обогащенной изопарафинами, в том числе, при повышенной температуре синтеза.
На фиг. 4 в таблице 4 на примере катализаторов 1 и 4 обобщены сравнительные данные о компонентном составе углеводородных фракциий, полученных с использованием известного и предлагаемого катализаторов; а на фиг. 5-8 - эти результаты представлены в виде молекулярного-массового распределения углеводородов.
Приведенные результаты показывают, что предложенный катализатор позволяет значительно повысить содержание изопарафинов в составе синтезированных углеводородов (более, чем вдвое, при температурах 240-250°С), в том числе в составе дизельной фракции С1118 (до 50%), при снижении содержания н-парафинов и существенном снижении содержания олефинов (практически в 5 и 2,5 раза при температурах 240°С и 250°С - до уровня 8 и 17%). Присутствие последних в топливах. как правило, ухудшает их эксплуатационные свойства (в том числе стабильность при хранении из-за окисляемости и осмоления) и, например, по ГОСТ 32513-2013 на моторные топлива (бензин неэтилированный) объемная доля олефиновых углеводородов не должна превышать 18%.
На фиг. 9 в таблице 5 для катализатора в соответствии с примером 4 представлены результаты оценки низкотемпературных показателей качества топливных продуктов (температуры помутнения и температуры застывания), определяющих особенности применения, транспортировки и т.д. топлив в условиях низких температур, для углеводородов синтезированной дизельной фракции с температурой кипения в интервале 180-280°С.
Приведенные результаты показывают, что предложенный катализатор позволяет получать компоненты синтетической дизельной фракции с низкотемпературными показателями, соответствующими действующим стандартам на дизельное низкозастывающее топливо, например, для классов 1 и 3 по ГОСТ 32511-2013 на дизельное топливо ЕВРО для холодного и арктического климата.
Оптимальное содержание компонентов в катализаторе составляет соответственно, % масс.: кобальтовый катализатор с добавкой алюминия на силикагелевом носителе - 30-40, в том числе кобальта - 6,5-8,7, алюминия -0,33-0,43, носитель - остальное; связующее бемит - 30-40; цеолит ZSM-5 с добавкой палладия - остальное, в том числе добавка палладия - 0,08-0,12, цеолит ZSM-5 в аммонийной форме - остальное.
Введение компонентов катализатора - кобальтового катализатора с добавкой алюминия на силикагелевом носителе и цеолита ZSM-5 с добавкой палладия, в меньшем количестве является недостаточным для улучшения свойств катализатора. Изменение содержания компонентов - увеличение содержания кобальтового катализатора с добавкой алюминия на силикагелевом носителе и цеолита ZSM-5 с добавкой палладия, не обеспечивает улучшения показателей селективности и производительности катализатора в процессе процесса получения синтетических углеводородов; снижает качество синтезируемой дизельной фракции С1118, оцениваемое по содержанию изопарафинов и олефинов; будет влиять на топливные и низкотемпературные характеристики синтезируемой дизельной фракции; повышать стоимость катализатора.
Изобретение позволяет повысить: селективность процесса получения синтетических углеводородов по методу Фишера-Тропша в отношении образования углеводородов дизельной фракции С1118, обогащенной изопарафинами; качество и низкотемпературные характеристики топливной дизельной фракции; эффективность процесса синтеза.

Claims (14)

1. Катализатор для процесса получения синтетических углеводородов из СО и Н2 по методу Фишера-Тропша, селективный в отношении образования углеводородов дизельной фракции С11-C18, обогащенной изопарафинами, включающий кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, цеолит ZSM-5 и связующее бемит, отличающийся тем, что цеолит ZSM-5 дополнительно содержит добавку палладия, при следующем содержании компонентов, % масс.:
кобальтовый катализатор с добавкой алюминия
на силикагелевом носителе - 30-40;
связующее бемит - 30-40;
цеолит ZSM-5 - остальное;
причем кобальтовый катализатор с добавкой алюминия
на силикагелевом носителе содержит, % масс.:
кобальт - 6,5-8,7;
добавка алюминия - 0,33-0,43;
силикагелевый носитель - остальное;
причем цеолит ZSM-5 содержит, % масс.:
добавка палладия - 0,08-0,12;
цеолит ZSM-5 в аммонийной форме - остальное.
2. Способ получения катализатора по п. 1, селективного в отношении образования углеводородов дизельной фракции C11-C18, обогащенной изопарафинами, включающий кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, цеолит ZSM-5 и связующее бемит, согласно которому: получают кобальтовый катализатор с добавкой алюминия на силикагелевом носителе, причем предварительную подготовку носителя проводят в режиме сушки 2-4 ч при температуре 140-160°С, на стадии пропитки носителя в водный раствор нитрата кобальта концентрацией 35-55% масс. вводят добавку алюминия в виде нитрата алюминия при массовом соотношении Со:Al2O3 в пропиточном растворе 100:5, термообработка катализатора включает сушку - сначала 2-4 ч при температуре 80-100°С, затем 2-4 ч при температуре 100-150°С, и прокаливание 4-6 ч при температуре 250-300°С; при этом кобальтовый катализатор с добавкой алюминия на силикагелевом носителе измельчают до частиц размером менее 0,1 мм, смешивают с порошками цеолита ZSM-5 и связующего бемита с размерами частиц менее 0,1 мм, исходя из массового соотношения компонентов кобальтовый катализатор с добавкой алюминия на силикагелевом носителе : цеолит ZSM-5 : связующее бемит, и добавляют раствор азотной кислоты, который готовят внесением 1-2 мл азотной кислоты концентрацией 65% в 90-100 мл дистиллированной воды (на 100 г смеси порошков), и триэтиленгликоль, исходя из объемного соотношения азотная кислота : триэтиленгликоль в смеси 1:3, перемешивают до получения однородной массы, при постоянном перемешивании массу нагревают и выдерживают при температуре 60-70°С до остаточной влажности 70% масс., формуют гранулы катализатора диаметром менее 2 мм, сушат 20-24 ч при температуре 20-25°С, 4-6 ч при температуре 80-100°С, 2-4 ч при температуре 100-150°С, прокаливают 4-6 ч при температуре 340-360°С, измельчают до частиц размером 2-3 мм, а затем проводят активацию водородом в течение 0,75-1 ч при объемной скорости газа 3000 ч-1 и температуре 380-400°С, отличающийся тем, что используют цеолит ZSM-5 с добавкой палладия, который получают методом ионного обмена, причем на стадии ионного обмена порошок цеолита ZSM-5 в аммонийной форме с размером частиц менее 0,1 мм помещают в водный раствор хлорида палладия - PdCl2, который готовят внесением хлорида палладия в 190-200 мл дистиллированной воды, исходя из массового соотношения, соответствующего 0,08-0,12% масс. палладия в готовом катализаторе, нагревают до температуры 60-70°С, перемешивают 3-4 ч, после чего цеолит ZSM-5 с добавкой палладия отфильтровывают и промывают 1,5 л дистиллированной воды, сушат 10-12 ч при температуре 20-25°С и 14-16 ч при температуре 100-120°С, прокаливают 4-6 ч при температуре 540-560°С.
RU2018136715A 2018-10-17 2018-10-17 Катализатор для получения синтетического низкозастывающего дизельного топлива и способ его приготовления RU2698705C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018136715A RU2698705C1 (ru) 2018-10-17 2018-10-17 Катализатор для получения синтетического низкозастывающего дизельного топлива и способ его приготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018136715A RU2698705C1 (ru) 2018-10-17 2018-10-17 Катализатор для получения синтетического низкозастывающего дизельного топлива и способ его приготовления

Publications (1)

Publication Number Publication Date
RU2698705C1 true RU2698705C1 (ru) 2019-08-29

Family

ID=67851772

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018136715A RU2698705C1 (ru) 2018-10-17 2018-10-17 Катализатор для получения синтетического низкозастывающего дизельного топлива и способ его приготовления

Country Status (1)

Country Link
RU (1) RU2698705C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738366C1 (ru) * 2020-02-06 2020-12-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Катализатор для получения синтетических углеводородов из CO и H2 и способ его приготовления
RU2775691C1 (ru) * 2021-04-30 2022-07-06 Роман Евгеньевич Яковенко Катализатор для синтеза углеводородов из co и h2 и способ его получения

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090554A2 (en) * 2009-12-30 2011-07-28 Chevron U.S.A. Inc. Process of synthesis gas conversion to liquid hydrocarbon mixtures using synthesis gas conversion catalyst and hydroisomerization catalyst
RU2455066C1 (ru) * 2011-03-16 2012-07-10 Общество с ограниченной ответственностью "СинТоп" Катализатор синтеза фишера-тропша и способ его получения
WO2014186172A1 (en) * 2013-05-14 2014-11-20 Chevron U.S.A. Inc. Processes and systems for synthesis gas conversion using a hybrid fischer-tropsch catalyst in a compact heat exchange reactor
RU2586069C1 (ru) * 2015-06-15 2016-06-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Катализатор для синтеза углеводородов из co и н2 и способ его получения
RU2639155C1 (ru) * 2016-12-20 2017-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Катализатор для синтеза углеводородов по методу Фишера-Тропша и способ его получения

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011090554A2 (en) * 2009-12-30 2011-07-28 Chevron U.S.A. Inc. Process of synthesis gas conversion to liquid hydrocarbon mixtures using synthesis gas conversion catalyst and hydroisomerization catalyst
RU2455066C1 (ru) * 2011-03-16 2012-07-10 Общество с ограниченной ответственностью "СинТоп" Катализатор синтеза фишера-тропша и способ его получения
WO2014186172A1 (en) * 2013-05-14 2014-11-20 Chevron U.S.A. Inc. Processes and systems for synthesis gas conversion using a hybrid fischer-tropsch catalyst in a compact heat exchange reactor
RU2586069C1 (ru) * 2015-06-15 2016-06-10 федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Катализатор для синтеза углеводородов из co и н2 и способ его получения
RU2639155C1 (ru) * 2016-12-20 2017-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Катализатор для синтеза углеводородов по методу Фишера-Тропша и способ его получения

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N. Tsubaki, Y. Yoneyama, K. Michiki, K. Fujimoto "Three-component hybrid catalyst for direct synthesis of isoparaffin via modified Fischer-Tropsch synthesis", Catalysis Communications. 2003. V. 4. P. 108-111. *
X. Li, K. Asamia, M. Luoa, K. Michiki, N. Tsubaki, K. Fujimoto "Direct synthesis of middle iso-paraffins from synthesis gas", Catalysis Today. 2003. V. 84. P. 59-65. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2738366C1 (ru) * 2020-02-06 2020-12-11 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Катализатор для получения синтетических углеводородов из CO и H2 и способ его приготовления
RU2775691C1 (ru) * 2021-04-30 2022-07-06 Роман Евгеньевич Яковенко Катализатор для синтеза углеводородов из co и h2 и способ его получения
RU2823566C1 (ru) * 2023-12-28 2024-07-24 Федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" (RU) Способ получения церезина
RU2828690C1 (ru) * 2023-12-28 2024-10-16 федеральное государственное бюджетное образовательное учреждение высшего образования "Южно-Российский государственный политехнический университет (НПИ) имени М.И. Платова" Способ получения арктического дизельного топлива

Similar Documents

Publication Publication Date Title
CN107837818A (zh) 一种二氧化碳加氢直接制取汽油馏分烃的方法
EP2514525B1 (en) Catalyst composition for production of hydrocarbons and method for producing hydrocarbons
Sineva et al. Zeolites as a tool for intensification of mass transfer on the surface of a cobalt Fischer–Tropsch synthesis catalyst
Bi et al. Hydroisomerization of long chain n-paraffins: the role of the acidity of the zeolite
CN104549376B (zh) 一种烷烃异构化催化剂的制备方法
RU2639155C1 (ru) Катализатор для синтеза углеводородов по методу Фишера-Тропша и способ его получения
RU2698705C1 (ru) Катализатор для получения синтетического низкозастывающего дизельного топлива и способ его приготовления
TWI553114B (zh) Paraffin Hydrocarbon Selective Isomerization Catalyst and Its Preparation and Application
Asalieva et al. Effect of zeolite on Fischer–Tropsch synthesis in the presence of a catalyst based on skeletal cobalt
RU2524217C2 (ru) Катализатор для прямого получения синтетической нефти, обогащенной изопарафинами, и способ его получения
Karakhanov et al. Hydroisomerization of n-dodecane on bifunctional catalysts containing mesoporous aluminosilicates
Dzhikiya et al. A study of fluorine-containing catalysts based on MOR and BEA zeolites in isomerization of n-hexane
Khandan et al. Dehydration of methanol to dimethyl ether employing modified H-ZSM-5 catalysts
Ferreira et al. Nickel-doped small pore zeolite bifunctional catalysts: A way to achieve high activity and yields into olefins
Sineva et al. Role of Zeolites in Heat and Mass Transfer in Pelletized Multifunctional Cobalt-Based Fischer–Tropsch Catalysts
RU2775691C1 (ru) Катализатор для синтеза углеводородов из co и h2 и способ его получения
RU2738366C1 (ru) Катализатор для получения синтетических углеводородов из CO и H2 и способ его приготовления
RU2821943C2 (ru) Катализатор для синтеза углеводородов из СО и Н2 и способ его получения
US9878314B2 (en) Catalyst for direct production of isoparaffins-rich synthetic oil and a method for preparing the catalyst
Matieva et al. Conversion of syngas to triptane-rich liquid hydrocarbons via oxygenates
RU2792823C1 (ru) Катализатор для синтеза углеводородов из со и н2 и способ его получения
Savost’yanov et al. Development of a Highly Productive Supported Bifunctional Catalyst Based on Zeolite ZSM-5 for the Production of Fuel Grade Hydrocarbon Fractions from CO and H 2
CN112654691B (zh) 用于由高沸点烃原料生产高产率的中间馏分的低压加氢裂化方法
Yakovenko et al. Effects of Zeolite Type on Integrated Fischer–Tropsch Synthesis and Hydroprocessing
JP7160604B2 (ja) 1,3-ブタジエン及びアセトアルデヒドジエチルアセタールの製造方法