RU2696976C1 - Способ фазовой синхронизации спутникового сигнала с ГММС-модуляцией - Google Patents

Способ фазовой синхронизации спутникового сигнала с ГММС-модуляцией Download PDF

Info

Publication number
RU2696976C1
RU2696976C1 RU2018129807A RU2018129807A RU2696976C1 RU 2696976 C1 RU2696976 C1 RU 2696976C1 RU 2018129807 A RU2018129807 A RU 2018129807A RU 2018129807 A RU2018129807 A RU 2018129807A RU 2696976 C1 RU2696976 C1 RU 2696976C1
Authority
RU
Russia
Prior art keywords
signal
phase
frequency
multiplication
feedback
Prior art date
Application number
RU2018129807A
Other languages
English (en)
Inventor
Евгений Вадимович Дереча
Original Assignee
Акционерное общество "Омский научно-исследовательский институт приборостроения" (АО "ОНИИП")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Омский научно-исследовательский институт приборостроения" (АО "ОНИИП") filed Critical Акционерное общество "Омский научно-исследовательский институт приборостроения" (АО "ОНИИП")
Priority to RU2018129807A priority Critical patent/RU2696976C1/ru
Application granted granted Critical
Publication of RU2696976C1 publication Critical patent/RU2696976C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers without distortion of the input signal
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3052Automatic control in amplifiers having semiconductor devices in bandpass amplifiers (H.F. or I.F.) or in frequency-changers used in a (super)heterodyne receiver
    • H03G3/3078Circuits generating control signals for digitally modulated signals

Abstract

Изобретение относится к радиотехнике и может быть использовано в приемниках спутниковых сигналов с ГММС-модуляцией. Технический результат состоит в уменьшении порядка астатизма системы с обратной связью, что повышает устойчивость системы по сравнению с системой ФАПЧ 3-го порядка. Для этого в способе фазовой и тактовой синхронизации, основанном на использовании системы фазовой автоподстройки частоты 1-го порядка, состоящем из вычисления фазовой ошибки, равной четырехкратной оценке фазы, развертывания фазовой ошибки, умножения фазовой ошибки на масштабирующий коэффициент, получения генератором обратной связи моногармонического комплексного сигнала с фазой, равной по величине проинтегрированному значению развернутой и отмасштабированной фазы, перемножения входного сигнала с сигналом с выхода генератора обратной связи, согласно изобретению после перемножения осуществляют возведение результирующего сигнала в квадрат, переносят частоту полученного сигнала на половину частоты следования символов вверх для формирования первой компоненты и аналогично переносят частоту вниз для формирования второй компоненты, фильтруют с помощью ФНЧ и перемножают обе компоненты для получения сигнала, содержащего четырехкратную оценку фазы, уменьшают частоту полученного сигнала в 4 раза, осуществляют его комплексное сопряжение и перемножение с результирующим сигналом для получения сигнала с нулевым частотным и фазовым сдвигом. 1 ил.

Description

Изобретение относится к радиотехнике и может быть использовано в приемниках спутниковых сигналов с ГММС-модуляцией. Способ относится к классу замкнутых методов цифровой синхронизации сигналов. Способ основан на восстановлении несущей частоты путем возведения сигнала во 2-ую степень и дальнейшей фазовой синхронизации с помощью прямой и обратной связей.
Известны способы восстановления несущей частоты [1, 2, 3].
На практике, фаза спутникового сигнала под действием эффекта Доплера приобретает искажение вида ϕ(k)= аk2 /2+ν0k+ϕ0 [1, с. 28], где ϕ0 и ν0 - фаза и частота сигнала в начальный момент времени, а - скорость изменения частоты сигнала. Исходя из этого, недостатком способа, описанного в патенте [2], является отсутствие обратной связи, но имеются фильтры нижних частот (ФНЧ), что может привести к выходу полосы сигнала за пределы полосы пропускания ФНЧ, и как следствие, к неработоспособности системы. Также в этом способе используется вычисление быстрого преобразования Фурье, что требует достаточно больших вычислительных затрат и может быть неприемлемым в системах реального времени.
Из известных способов наиболее близким к предлагаемому является способ восстановления несущей, описанный в [3 с. 90, 4 с. 292]. Данный способ основан на возведении сигнала в квадрат. В результате чего, в спектре сигнала появляются частоты, соответствующие верхней и нижней частотам передачи дискретных символов «0» и «1». Далее сигнал разделяется на 2 канала и в каждом из каналов фильтруется с помощью систем фазовой автоподстройки частоты (ФАПЧ). Системы ФАПЧ настроены соответственно на частоту несущей ± половина от частоты смены символов. Далее происходит деление частоты на 2, сложение сигналов в каждом из каналов для получения несущей частоты и перемножение сигналов в каждом из каналов для получения тактовой частоты. Затем, полученная несущая частота перемножается с исходным сигналом, тем самым устраняя частотный и фазовый сдвиги.
Недостатком способа-прототипа является необходимость построения системы ФАПЧ с порядком астатизма равным 3, для того, чтобы скомпенсировать до нуля фазовую ошибку при линейно изменяющемся частотном сдвиге. Однако система ФАПЧ 3-го порядка менее устойчива, чем ФАПЧ 1-го порядка.
Поэтому за прототип был выбран способ фазовой синхронизации, основанный на ФАПЧ 1-го порядка [5 с. 29]. Способ-прототип основан на вычислении фазовой ошибки, которая далее подвергается нелинейному преобразованию и умножению на масштабирующий коэффициент. Далее сигнал подается на генератор, управляемый напряжением (ГУН), который на выходе производит моногармонический сигнал с частотой равной величине входного сигнала.
Предлагаемый способ базируется на использовании петли обратной связи с астатизмом 1-го порядка для коррекции изменения частоты и использовании прямой связи для коррекции фазы и остаточного частотного сдвига сигнала.
Задача, решаемая предлагаемым изобретением, - уменьшение порядка астатизма системы с обратной связью.
Решение поставленной задачи достигается тем, что в способе фазовой и тактовой синхронизации, основанном на использовании системы фазовой автоподстройки частоты 1-го порядка, состоящем из вычисления фазовой ошибки равной четырехкратной оценке фазы, развертывания фазовой ошибки, умножения фазовой ошибки на масштабирующий коэффициент, получении генератором обратной связи моногармонического комплексного сигнала с фазой равной по величине проинтегрированному значению развернутой и отмасштабированной фазы, перемножения входного сигнала с сигналом с выхода генератора обратной связи, согласно изобретению после перемножения осуществляют возведение результирующего сигнала в квадрат, переносят частоту полученного сигнала на половину частоты следования символов вверх для формирования первой компоненты и аналогично переносят частоту вниз для формирования второй компоненты, фильтруют с помощью ФНЧ и перемножают обе компоненты для получения сигнала, содержащего четырехкратную оценку фазы, уменьшают частоту полученного сигнала в 4 раза, осуществляют его комплексное сопряжение и перемножение с результирующим сигналом для получения сигнала с нулевым частотным и фазовым сдвигом.
Технический результат изобретения заключается в уменьшении астатизма контура обратной связи до 1-го порядка, что повышает устойчивость системы, по сравнению с системой ФАПЧ 3-го порядка [5 с. 39].
На фигуре представлена схема фазовой синхронизации, обеспечивающая работу данного способа.
Предлагаемый способ работает следующим образом. Поступающие на вход отсчеты смеси комплексного сигнала и шума
Figure 00000001
, где n(k) - шумовая компонента, Es - энергия сигнала на символ, T - символьный период, τ - временная задержка между генератором тактовых импульсов в приемнике и передатчике, α -значение бита ±1, перемножаются в смесителе 1 с сигналом с выхода ГУН 13.
Затем сигнал с выхода перемножителя 1 возводится в квадрат блоком 2. В результате возведения в квадрат у сигнала частично снимается модуляция, его фаза, а, следовательно, и частота, удваиваются, и в спектре сигнала появляются две частоты 2dϕ(k) / dk ± ƒsym /2, а сигнал приобретает вид
Figure 00000002
где знак «+» или «-», зависит от передаваемых битов, и показывает, увеличивается или уменьшается фаза сигнала, ƒsym - символьная скорость сигнала.
Далее сигнал разделяется на два канала. В первом канале сигнал с выхода устройства возведения в квадрат 2 подается на вход смесителя 4, где перемножается с комплексным гармоническим сигналом частоты
Figure 00000003
с выхода тактового генератора 3, в результате чего на выходе получается сигнал частоты
Figure 00000004
Figure 00000005
Также сигнал с выхода тактового генератора 3 подается на вход блока комплексного сопряжения 5. Во втором канале сигнал с выхода устройства возведения в квадрат 2 подается на вход смесителя 6, где перемножается с комплексным сигналом отрицательной частоты
Figure 00000006
с выхода блока 5.
Figure 00000007
Сигнал с выхода смесителя 4 в первом канале подается на вход ФНЧ 7, а сигнал во втором канале с выхода смесителя 6 подается на вход аналогичного ФНЧ 8. На блок умножения 9 подаются сигналы с выходов ФНЧ 7 и 8, которые имеют вид
Figure 00000008
и
Figure 00000009
соответственно, где
Figure 00000010
и
Figure 00000011
- шумовые компоненты на выходе фильтров.
В результате чего на выходе перемножителя 9 получается сигнал частоты 4dϕ(k)/dk, который имеет вид
Figure 00000012
. Пренебрегая шумовой компонентой
Figure 00000013
, сигнал примет вид
Figure 00000014
, где
Figure 00000015
является оценкой фазы сигнала.
Сигнал с выхода перемножителя 9 подается на вход фазового детектора 10. В фазовом детекторе от входного сигнала берется аргумент, который представляет собой ошибку слежения за фазой. Полученная фаза с выхода фазового детектора подается на блок развертывания фазы 11, где она переводится из разрывной функции со значениями в интервале (-π, π) в непрерывную функцию без разрывов. В результате на выходе блока 11 получается ошибка слежения за фазой вида
Figure 00000016
.
С выхода блока 11 сигнал подается на вход умножителя 12, который осуществляет умножение сигнала на коэффициент K. Сигнал с выхода умножителя 11 подается на вход ГУН 13, в котором генерируется комплексный гармонический сигнал с фазой ϕГУН(k), пропорциональной проинтегрированному входному сигналу. Также, сигнал с выхода перемножителя 9 подается на блок 14, в котором комплексно сопрягается, также в этом блоке частота и фаза сигнала уменьшается в 4 раза, и на выходе получается сигнал вида
Figure 00000017
.
На блок умножения 15 подается сигнал с выхода блока предварительного переноса частоты 1 и с выхода блока 14, а на выходе получается сигнал вида
Figure 00000018
, имеющий нулевую частоту и неопределенность фазы (для способов, основанных на возведении сигнала в степень [3 с. 90], к которым относится предложенный способ), равную ±π/4.
Доказательство того, что обратная связь компенсирует изменение частоты, получается из решения уравнения для ошибки слежения за фазой
Figure 00000019
. Если положить, что е(k) в стационарном состоянии имеет вид е(k)=αk+β, а также, что при прохождении сигнала через ФНЧ, фаза сигнала приобретает фазовый сдвиг ψ, который зависит от фазо-частотной характеристики ФНЧ, то сигнал с выхода ГУН имеет фазу
Figure 00000020
, где C0 - сдвиг фазы ГУН относительно фазы несущей. Тогда уравнение для ошибки слежения за фазой перепишется следующим образом
Figure 00000021
или, после подстановок,
Figure 00000022
. Откуда, после сравнения коэффициентов при одинаковых степенях k, следует, что в установившемся состоянии синхронизма ошибка слежения за фазой имеет вид е(k)=αk/K+ν0/K-α/K2. А сигнал после входного переноса частоты будет иметь фазовый сдвиг ν0k+ϕ0-Kβk-C0, который устраняется в выходном умножителе 15.
Формула изобретения
Способ фазовой и тактовой синхронизации, основанный на использовании системы фазовой автоподстройки частоты 1-го порядка, состоящий из вычисления фазовой ошибки равной четырехкратной оценке фазы, развертывания фазовой ошибки, умножения фазовой ошибки на масштабирующий коэффициент, получении генератором обратной связи моногармонического комплексного сигнала с фазой равной по величине проинтегрированному значению развернутой и отмасштабированной фазы, перемножения входного сигнала с сигналом с выхода генератора обратной связи, отличающийся тем, что после перемножения осуществляется возведение результирующего сигнала в квадрат, перенос частоты полученного сигнала на половину частоты следования символов вверх для формирования первой компоненты и аналогичный перенос частоты вниз для формирования второй компоненты, фильтрация с помощью ФНЧ и перемножение обоих компонент для получения сигнала, содержащего четырехкратную оценку фазы, уменьшение частоты полученного сигнала в 4 раза, его комплексное сопряжение и перемножение с результирующим сигналом для получения сигнала с нулевым частотным и фазовым сдвигом.
Источники информации
1. I. АН [et al.] Doppler application in LEO satellite communication systems. Kluwer Academic Publisher, 2002. 121 p.
2. Патент RU №2233452, Способ извлечения информации о доплеровском сдвиге частоты несущей сигнала и устройство для его осуществления.
3. Банкет В.Л., Дорофеев В.М. Цифровые методы в спутниковой связи. -М.: Радио и связь, 1988. - 240 с.
4. Спилкер Дж. Цифровая спутниковая связь. Пер. с англ./Под ред. В. В. Маркова. - М.: Связь, 1979. - 592 с.
5. Э. Витерби. Принципы когерентной связи: пер. с англ. / под ред. Б. Р. Левина. М.: Сов. радио, 1966. 392 с.

Claims (1)

  1. Способ фазовой и тактовой синхронизации, основанный на использовании системы фазовой автоподстройки частоты 1-го порядка, состоящий из вычисления фазовой ошибки, равной четырехкратной оценке фазы, развертывания фазовой ошибки, умножения фазовой ошибки на масштабирующий коэффициент, получения генератором обратной связи моногармонического комплексного сигнала с фазой, равной по величине проинтегрированному значению развернутой и отмасштабированной фазы, перемножения входного сигнала с сигналом с выхода генератора обратной связи, отличающийся тем, что после перемножения осуществляют возведение результирующего сигнала в квадрат, переносят частоту полученного сигнала на половину частоты следования символов вверх для формирования первой компоненты и аналогично переносят частоту вниз для формирования второй компоненты, фильтруют с помощью ФНЧ и перемножают обе компоненты для получения сигнала, содержащего четырехкратную оценку фазы, уменьшают частоту полученного сигнала в 4 раза, осуществляют его комплексное сопряжение и перемножение с результирующим сигналом для получения сигнала с нулевым частотным и фазовым сдвигом.
RU2018129807A 2018-08-15 2018-08-15 Способ фазовой синхронизации спутникового сигнала с ГММС-модуляцией RU2696976C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018129807A RU2696976C1 (ru) 2018-08-15 2018-08-15 Способ фазовой синхронизации спутникового сигнала с ГММС-модуляцией

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018129807A RU2696976C1 (ru) 2018-08-15 2018-08-15 Способ фазовой синхронизации спутникового сигнала с ГММС-модуляцией

Publications (1)

Publication Number Publication Date
RU2696976C1 true RU2696976C1 (ru) 2019-08-08

Family

ID=67586732

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018129807A RU2696976C1 (ru) 2018-08-15 2018-08-15 Способ фазовой синхронизации спутникового сигнала с ГММС-модуляцией

Country Status (1)

Country Link
RU (1) RU2696976C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998029756A1 (en) * 1997-01-02 1998-07-09 Raytheon Company Digital direction finding receiver
US5940451A (en) * 1996-08-23 1999-08-17 Daewoo Electronics Co., Ltd. Automatic gain control in quadrature phase shift keying demodulator
EP1107531A2 (en) * 1999-12-09 2001-06-13 Nec Corporation Quadrature demodulator with phase-locked loop
RU2393641C1 (ru) * 2008-12-23 2010-06-27 Открытое Акционерное Общество "Конструкторское Бюро "Луч" Демодулятор фазоманипулированных сигналов
RU2518428C2 (ru) * 2012-06-26 2014-06-10 Закрытое акционерное общество "Комплексный технический сервис" Фазовый способ пеленгации и фазовый пеленгатор для его осуществления

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5940451A (en) * 1996-08-23 1999-08-17 Daewoo Electronics Co., Ltd. Automatic gain control in quadrature phase shift keying demodulator
WO1998029756A1 (en) * 1997-01-02 1998-07-09 Raytheon Company Digital direction finding receiver
EP1107531A2 (en) * 1999-12-09 2001-06-13 Nec Corporation Quadrature demodulator with phase-locked loop
RU2393641C1 (ru) * 2008-12-23 2010-06-27 Открытое Акционерное Общество "Конструкторское Бюро "Луч" Демодулятор фазоманипулированных сигналов
RU2518428C2 (ru) * 2012-06-26 2014-06-10 Закрытое акционерное общество "Комплексный технический сервис" Фазовый способ пеленгации и фазовый пеленгатор для его осуществления

Similar Documents

Publication Publication Date Title
JPH01212108A (ja) Ssb信号発生器
US7751503B2 (en) Method for acquiring timing and carrier synchronization of offset-QPSK modulated signals
WO2021073461A1 (zh) 调制器、解调器以及无线通信系统
JPH0583313A (ja) 復調回路
RU2431919C1 (ru) Корреляционный приемник шумоподобных сигналов
US5115208A (en) Pll clock signal regenerator using a phase correlator
RU2696976C1 (ru) Способ фазовой синхронизации спутникового сигнала с ГММС-модуляцией
AU639874B2 (en) A demodulation circuit
CN107733824A (zh) 一种基于afc环路的载波同步方法
US8107582B2 (en) Methods and apparatus for digital clock recovery
EP0479305B1 (en) Rate conversion apparatus
EP3191912B1 (en) Generation of high-rate sinusoidal sequences
US8686800B2 (en) Frequency reference signal generating system and method for frequency synthesizers
JP2994836B2 (ja) 復調器のafc回路
EP2003779B1 (en) Pll device
JPH0590903A (ja) 分周回路
JPS5890854A (ja) サンプリング位相同期回路
JPH0770995B2 (ja) 位相同期ループ
JP2855915B2 (ja) 位相同期回路
RU2187901C1 (ru) Способ инверсно-квадратурного восстановления несущей частоты фазоманипулированных сигналов
RU183917U1 (ru) Устройство слежения за частотой сигнала опорной станции радионавигационной системы
Shevyakov et al. Carrier recovery techniques analysis for PSK signals
Reis et al. Carrier phase synchronizers
RU2548010C1 (ru) Корреляционный приемник шумоподобных сигналов с минимальной частотной модуляцией
SU1628218A1 (ru) Устройство дл приема сигналов с синхронной манипул цией