RU2694908C2 - Способы одновременного электролитического декарбоксилирования и восстановления сахаров - Google Patents
Способы одновременного электролитического декарбоксилирования и восстановления сахаров Download PDFInfo
- Publication number
- RU2694908C2 RU2694908C2 RU2016104920A RU2016104920A RU2694908C2 RU 2694908 C2 RU2694908 C2 RU 2694908C2 RU 2016104920 A RU2016104920 A RU 2016104920A RU 2016104920 A RU2016104920 A RU 2016104920A RU 2694908 C2 RU2694908 C2 RU 2694908C2
- Authority
- RU
- Russia
- Prior art keywords
- acid
- carbohydrate
- hydroxide
- chamber
- anode
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 238000006114 decarboxylation reaction Methods 0.000 title claims abstract description 36
- 230000009467 reduction Effects 0.000 title abstract description 13
- 235000000346 sugar Nutrition 0.000 title description 8
- 150000008163 sugars Chemical class 0.000 title description 2
- 235000014633 carbohydrates Nutrition 0.000 claims abstract description 105
- 239000002253 acid Substances 0.000 claims abstract description 86
- 150000001720 carbohydrates Chemical class 0.000 claims abstract description 69
- -1 carbohydrate aldehyde Chemical class 0.000 claims abstract description 64
- 239000012528 membrane Substances 0.000 claims abstract description 44
- 150000001768 cations Chemical class 0.000 claims abstract description 27
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 24
- 150000003839 salts Chemical group 0.000 claims abstract description 19
- 125000002091 cationic group Chemical group 0.000 claims abstract description 16
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims abstract description 15
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 claims abstract description 12
- 150000005846 sugar alcohols Chemical class 0.000 claims abstract description 9
- 238000005349 anion exchange Methods 0.000 claims abstract description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000000908 ammonium hydroxide Substances 0.000 claims abstract description 5
- 206010056474 Erythrosis Diseases 0.000 claims description 27
- QXKAIJAYHKCRRA-JJYYJPOSSA-N D-arabinonic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C(O)=O QXKAIJAYHKCRRA-JJYYJPOSSA-N 0.000 claims description 25
- IAJILQKETJEXLJ-UHFFFAOYSA-N Galacturonsaeure Natural products O=CC(O)C(O)C(O)C(O)C(O)=O IAJILQKETJEXLJ-UHFFFAOYSA-N 0.000 claims description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 13
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 claims description 13
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 claims description 8
- 235000012208 gluconic acid Nutrition 0.000 claims description 8
- 229950006191 gluconic acid Drugs 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- AEMOLEFTQBMNLQ-DTEWXJGMSA-N D-Galacturonic acid Natural products O[C@@H]1O[C@H](C(O)=O)[C@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-DTEWXJGMSA-N 0.000 claims description 7
- AEMOLEFTQBMNLQ-WAXACMCWSA-N alpha-D-glucuronic acid Chemical compound O[C@H]1O[C@H](C(O)=O)[C@@H](O)[C@H](O)[C@H]1O AEMOLEFTQBMNLQ-WAXACMCWSA-N 0.000 claims description 7
- AEMOLEFTQBMNLQ-UHFFFAOYSA-N beta-D-galactopyranuronic acid Natural products OC1OC(C(O)=O)C(O)C(O)C1O AEMOLEFTQBMNLQ-UHFFFAOYSA-N 0.000 claims description 7
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 239000003054 catalyst Substances 0.000 claims description 7
- IAJILQKETJEXLJ-RSJOWCBRSA-N aldehydo-D-galacturonic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-RSJOWCBRSA-N 0.000 claims description 6
- 229910002804 graphite Inorganic materials 0.000 claims description 6
- 239000010439 graphite Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 4
- 150000002500 ions Chemical class 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 3
- RGHNJXZEOKUKBD-QTBDOELSSA-N L-gulonic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O RGHNJXZEOKUKBD-QTBDOELSSA-N 0.000 claims description 2
- 239000004744 fabric Substances 0.000 claims description 2
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000011521 glass Substances 0.000 claims description 2
- 238000011084 recovery Methods 0.000 claims description 2
- 238000012546 transfer Methods 0.000 claims description 2
- 238000005341 cation exchange Methods 0.000 abstract description 12
- 239000000126 substance Substances 0.000 abstract description 12
- 238000006386 neutralization reaction Methods 0.000 abstract description 7
- 230000000694 effects Effects 0.000 abstract description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 34
- 150000001875 compounds Chemical class 0.000 description 28
- 239000000243 solution Substances 0.000 description 26
- 238000006722 reduction reaction Methods 0.000 description 14
- 239000007858 starting material Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000007254 oxidation reaction Methods 0.000 description 12
- 239000002904 solvent Substances 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 10
- YTBSYETUWUMLBZ-UHFFFAOYSA-N D-Erythrose Natural products OCC(O)C(O)C=O YTBSYETUWUMLBZ-UHFFFAOYSA-N 0.000 description 9
- 239000004386 Erythritol Substances 0.000 description 9
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 9
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 9
- 235000019414 erythritol Nutrition 0.000 description 9
- 229940009714 erythritol Drugs 0.000 description 9
- 150000007513 acids Chemical class 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 8
- 239000012445 acidic reagent Substances 0.000 description 7
- 150000001323 aldoses Chemical class 0.000 description 7
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 7
- 150000001299 aldehydes Chemical class 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- YTBSYETUWUMLBZ-IUYQGCFVSA-N D-erythrose Chemical compound OC[C@@H](O)[C@@H](O)C=O YTBSYETUWUMLBZ-IUYQGCFVSA-N 0.000 description 5
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 5
- 230000001590 oxidative effect Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- QXKAIJAYHKCRRA-YVZJFKFKSA-N L-arabinonic acid Chemical compound OC[C@H](O)[C@H](O)[C@@H](O)C(O)=O QXKAIJAYHKCRRA-YVZJFKFKSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229930091371 Fructose Natural products 0.000 description 3
- 239000005715 Fructose Substances 0.000 description 3
- 229920001273 Polyhydroxy acid Polymers 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- 125000003172 aldehyde group Chemical group 0.000 description 3
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 125000000770 erythrosyl group Chemical group C1([C@H](O)[C@H](O)CO1)* 0.000 description 3
- 239000000174 gluconic acid Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- VCQNFTHBRZIIOF-UHFFFAOYSA-N 1-benzyl-4-oxopiperidine-3-carboxylic acid Chemical compound C1CC(=O)C(C(=O)O)CN1CC1=CC=CC=C1 VCQNFTHBRZIIOF-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- 229910000497 Amalgam Inorganic materials 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RFSUNEUAIZKAJO-VRPWFDPXSA-N D-Fructose Natural products OC[C@H]1OC(O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-VRPWFDPXSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 150000007522 mineralic acids Chemical class 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000000053 physical method Methods 0.000 description 2
- 150000003138 primary alcohols Chemical group 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- SRBFZHDQGSBBOR-HWQSCIPKSA-N L-arabinopyranose Chemical compound O[C@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-HWQSCIPKSA-N 0.000 description 1
- YTBSYETUWUMLBZ-DMTCNVIQSA-N L-erythrose Chemical compound OC[C@H](O)[C@H](O)C=O YTBSYETUWUMLBZ-DMTCNVIQSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- IAJILQKETJEXLJ-QTBDOELSSA-N aldehydo-D-glucuronic acid Chemical compound O=C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C(O)=O IAJILQKETJEXLJ-QTBDOELSSA-N 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000005111 flow chemistry technique Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 150000002243 furanoses Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- HOVAGTYPODGVJG-WLDMJGECSA-N methyl D-glucoside Chemical compound COC1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O HOVAGTYPODGVJG-WLDMJGECSA-N 0.000 description 1
- HOVAGTYPODGVJG-UHFFFAOYSA-N methyl beta-galactoside Natural products COC1OC(CO)C(O)C(O)C1O HOVAGTYPODGVJG-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 238000005895 oxidative decarboxylation reaction Methods 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 150000003214 pyranose derivatives Chemical class 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 150000003538 tetroses Chemical class 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/23—Oxidation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B3/00—Electrolytic production of organic compounds
- C25B3/20—Processes
- C25B3/25—Reduction
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Изобретение относится к способу одновременного декарбоксилирования углеводной кислоты и восстановления углеводного альдегида в электрохимической ячейке. Способ включает: обеспечение электрохимической ячейки, содержащей три камеры, включающие анодную камеру, центральную камеру и катодную камеру, причем указанная электрохимическая ячейка дополнительно содержит катионную мембрану, расположенную между анодной камерой и центральной камерой и находящуюся в контакте с указанными камерами, биполярную мембрану, расположенную между центральной камерой и катодной камерой и находящуюся в контакте с указанными камерами, причем указанная катионная мембрана выполнена с возможностью пропускания одновалентных катионов, указанная катодная камера содержит указанный углеводный альдегид, католит и катод, а указанная анодная камера содержит углеводную кислоту, анолит и анод, при этом указанная биполярная мембрана включает анионообменную сторону, обращенную к аноду, и катионообменную сторону, обращенную к катоду; подачу электрического тока к указанной ячейке и получение углеводного альдегида в указанном анолите, гидроксида одновалентного катиона в растворе в центральной камере и сахарного спирта в указанном католите; и введение в указанный анолит гидроксида одновалентного катиона, выбранного из группы, состоящей из: гидроксида натрия, гидроксида калия, гидроксида лития и гидроксида аммония; и при этом указанная углеводная кислота по меньшей мере на 5% нейтрализована в виде соли, и где указанное отношение одновалентного катиона к указанной углеводной кислоте в анолите поддерживают для обеспечения протекания нейтрализации доступной углеводной кислоты для декарбоксилирования. Использование предложенного изобретения позволяет получать более чистое гидроксидное соединение. 13 з.п. ф-лы, 1 пр.
Description
ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к способам электролитического декарбоксилирования сахарных кислот, электролитического получения растворов гидроксидов щелочных металлов или гидроксида аммония, и электролитического восстановления Сахаров до сахарных спиртов.
УРОВЕНЬ ТЕХНИКИ
Экономически выгодный способ нейтрализации сахарных кислот в процессе декарбоксилирования сахара описан в заявке на патент США №61/777890. В этом способе сахарные кислоты можно декарбоксилировать с образованием углеводных альдегидов на аноде двухкамерной электролитической ячейки, которая может быть разделена катионообменной мембраной. В католите образуется гидроксидная соль. Нейтрализацию растворов сахарных кислот осуществляют путем обратной миграции гидроксида из католита в анолит и путем добавления гидроксида из католита в анолит.
Электролитическое восстановление сахарных альдегидов применяли при производстве сорбита, ксилита и маннита, как описано в патентах США №2303210, 2507973 и 2537304.
Электролитические ячейки могут быть выполнены в различных конфигурациях. Тем не менее, все описанные ранее примеры электролитического декарбоксилирования углеводных кислот и восстановления углеводных альдегидов осуществляли в однокамерных или двухкамерных ячейках.
Альдегидную функциональную группу углеводных альдегидов часто восстанавливают до спиртов для получения более ценных продуктов. При этом сохраняется потребность в экономически эффективных способах восстановления или устранении указанной технологической стадии.
КРАТКОЕ ОПИСАНИЕ
В одном из аспектов описан способ одновременного декарбоксилирования углеводной кислоты и восстановления углеводного альдегида в электрохимической ячейке. Указанный способ включает (А) обеспечение электрохимической ячейки, содержащей анодную камеру, центральную камеру и катодную камеру, причем электрохимическая ячейка дополнительно содержит катионную мембрану, расположенную между анодной камерой и центральной камерой и находящуюся в контакте с указанными камерами, биполярную мембрану, расположенную между центральной камерой и катодной камерой и находящуюся в контакте с указанными камерами, причем указанная катионная мембрана выполнена с возможностью пропускания одновалентных катионов, катодная камера содержит углеводный альдегид, католит и катод, и анодная камера содержит углеводную кислоту, анолит и анод; и (В) подачу электрического тока к указанной ячейке и получение углеводного альдегида в анолите, гидроксида одновалентного катиона в растворе в центральной камере и сахарного спирта в католите.
В некоторых вариантах реализации катод содержит рутениевый катализатор. В некоторых вариантах реализации углеводный альдегид в католите получают путем электролитического декарбоксилирования углеводной кислоты. В некоторых вариантах реализации соотношение одновалентного катиона и углеводной кислоты обеспечивает нейтрализацию доступной углеводной кислоты для декарбоксилирования.
В некоторых вариантах реализации катионная мембрана является проницаемой для гидроксильных ионов для по меньшей мере частичного поддержания соотношения одновалентного катиона и углеводной кислоты. В некоторых вариантах реализации эффективность по току для переноса одновалентного катиона через катионную мембрану составляет менее примерно 90%, предпочтительно менее примерно 80% и более предпочтительно менее примерно 75%.
В некоторых вариантах реализации соотношение одновалентного катиона и углеводной кислоты по меньшей мере частично поддерживают путем введения гидроксида катиона, выбранного из группы, состоящей из: гидроксида натрия, гидроксида калия, гидроксида лития и гидроксида аммония. В некоторых вариантах реализации гидроксид одновалентного катиона, вводимый в анолит, получают в центральной камере разделенной ячейки во время декарбоксилирования углеводной кислоты.
В некоторых вариантах реализации соотношение одновалентного катиона и углеводной кислоты по меньшей мере частично поддерживают путем осуществления одновременной циркуляции раствора углеводной кислоты через две группы электролитических ячеек, причем одна группа ячеек представляет собой разделенную ячейку с катионной и биполярной мембранами, а другая представляет собой неразделенную ячейку.
В некоторых вариантах реализации углеводная кислота выбрана из группы, состоящей из: арабиновой кислоты, d-глюконовой кислоты, метил-d-глюкуронозида, d-глюкуроновой кислоты, d-галактуроновой кислоты, l-гулоновой кислоты. В некоторых вариантах реализации углеводная кислота представляет собой арабиноновую кислоту. В некоторых вариантах реализации углеводный альдегид представляет собой эритрозу.
В некоторых вариантах реализации углеводную кислоту получают с использованием гидроксильного иона, полученного в центральной камере.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ РЕАЛИЗАЦИИ НАСТОЯЩЕГО ИЗОБРЕТЕНИЯ
Определения
В настоящем описании термин «углеводная кислота» относится к любой альдоновой кислоте, уроновой кислоте или альдаровой кислоте.
«Альдоновая кислота» относится к любому полигидрокси-кислотному соединению, включающему общую формулу НОСН2[СН(ОН)]nC(=O)ОН (где n представляет собой любое целое число, включая 1-20, предпочтительно 1-12, более предпочтительно 4-7), а также производным, аналогам и солям указанных соединений. Альдоновые кислоты могут быть получены, например, из альдозы путем окисления альдегидной функциональной группы (например, D-глюконовая кислота).
«Уроновая кислота» относится к любому полигидрокси-кислотному соединению, включающему общую формулу O=СН[СН(ОН)]nC(=O)ОН (где n представляет собой любое целое число, включая 1-20, предпочтительно 1-12, более предпочтительно 4-7), а также производным, аналогам и солям указанных соединений. Уроновые кислоты могут быть получены, например, из альдозы путем окисления первичной спиртовой функциональной группы (например, D-глюкуроновая кислота).
«Альдаровая кислота» относится к любому полигидрокси-кислотному соединению, включающему общую формулу НО(O=)С[СН(ОН)]nC(=O)ОН (где n представляет собой любое целое число, включая 1-20, предпочтительно 1-12, более предпочтительно 4-7), а также производным, аналогам и солям указанных соединений. Альдаровые кислоты могут быть получены, например, из альдозы путем окисления одновременно альдегидной функциональной группы и первичной спиртовой функциональной группы (например, D-глутаровая кислота).
«Арабиноновая кислота» относится к углеводу альдоновой кислоте с химической формулой С5Н10О6, включая любые стереоизомеры, производные, аналоги и соли указанных соединений. Если не указано иное, указание на «арабиноновую кислоту» а настоящем описании предназначено включать, без ограничения, следующие молекулы: D-(-)-арабиноновая кислота, L(+)-арабиноновая кислота, D(-)-арабиноновая кислота, D-арабиноновая кислота, L-арабиноновая кислота, Б(-)-арабиноновая кислота и мезо-арабиноновая кислота. Арабиноновую кислоту также называют арабоновой кислотой и арабиновой кислотой.
«Глюконовая кислота» относится к углеводу альдоновой кислоте с химической формулой С6Н12О7, включая производные, аналоги и соли указанных соединений. Если не указано иное, указание на «глюконовую кислоту» в настоящем описании предназначено указывать на D-глюконовую кислоту, D-(-) - глюконовую кислоту, D(-) - глюконовую кислоту.
«D-глюкуроновая кислота» относится к углеводу уроновой кислоте с химической формулой С6Н10С7, включая производные, аналоги и соли указанных соединений. Если не указано иное, указание на «d-глюкуроновую кислоту» в настоящем описании предназначено включать, без ограничения, молекулы d-(-)-глюкуроновой кислоты, d-глюкуроновой кислоты, (альфа)-d- глюкуроновой кислоты, (бета)-d-глюкуроновой кислоты и (альфа,бета)-d-глюкуроновой кислоты.
«Метил-d-глюкуронозид» относится к углеводу уроновой кислоте с химической формулой С7Н12О7, включая производные, аналоги и соли указанных соединений. Если не указано иное, указание на «метил-d-глюкуронозид» в настоящем описании предназначено включать, без ограничения, молекулы 1-O-метил-(альфа)-d-глюкопиранозидуроновой кислоты, 1-O-метил-(бета)-d-глюкопиранозидуроновой кислоты и 1-О-метил-(альфа,бета)-d-глюкопиранозидуроновой кислоты.
«D-галактуроновая кислота» относится к углеводу уроновой кислоте с химической формулой С6Н10С7, включая производные, аналоги и соли указанных соединений. Если не указано иное, указание на «d-галактуроновую кислоту» в настоящем описании предназначено включать, без ограничения, молекулы d-(-)-d-галактуроновой кислоты, d-галактуроновой кислоты, (альфа)-d-галактуроновой кислоты, (бета)-d-галактуроновой кислоты и (альфа,бета)-d-галактуроновой кислоты.
«Углеводный альдегид» относится к полигидрокси-альдегидному соединению, включающему общую формулу НОСН2[СН(ОН)]nC(=O)Н или (O=)СН[СН(ОН)]nC(=O)Н (где n представляет собой любое целое число, включая 1-20, предпочтительно 1-12, более предпочтительно 3-6), а также производные и аналоги указанных соединений. Углеводные альдегиды с одной альдегидной группой часто называют альдозами, а углеводные альдегиды с двумя альдегидными группами называют диальдозами. Углеводные альдегиды могут встречаться в природе или могут быть получены, например, путем электролитического декарбоксилирования углеводной кислоты.
«Эритроза» относится к альдозе (тетрозе), углеводному альдегиду с химической формулой С4Н8О4, включая любые стереоизомеры, производные и аналоги указанных соединений. Если не указано иное, указание на «эритрозу» в настоящем описании предназначено включать, без ограничения, следующие молекулы: D-(-)-эритроза, L(+)-эритроза, D(-)-эритроза, D-эритроза, L-эритроза, D(-)-эритроза и мезо-эритроза. Проекция Фишера для структуры D-эритрозы (1) представлена ниже.
«Сахарный спирт» относится к любому полигидрокси-спиртовому соединению, включающему общую формулу НОСН2[СН(ОН)]nCH2OH (где n представляет собой любое целое число, включая 1-20, предпочтительно 1-12, более предпочтительно 4-7), а также производным и аналогам указанных соединений. Сахарные спирты могут быть получены, например, из альдозы путем восстановления альдегидной функциональной группы.
«Эритрит» относится к углеводу сахарному спирту с формулой С4Н10О4, включая производные и аналоги указанных соединений. Эритрит представляет собой сахарный спирт, получаемый при восстановлении альдегида эритрозы до спирта.
«Декарбоксилирование» в настоящем описании относится к удалению карбоксильной группы (-СООН) путем химической реакции или физического способа. Типичные продукты реакции декарбоксилирования могут включать диоксид углерода (СО3) или муравьиную кислоту.
«Восстановление» в настоящем описании относится к химическому или физическому способу превращения альдегидной группы (-СН=O) в спиртовую группу (-СН2ОН).
Термин «электрохимический» относится к химическим реакциям, которые могут протекать на поверхности соприкосновения электрического проводника (электрода) и ионного проводника (электролита). Электрохимические реакции могут создавать потенциал между двумя проводящими материалами (или двумя частями одного проводящего материала), или могут быть вызваны приложением внешнего напряжения. В целом, электрохимия имеет дело с ситуациями, когда реакция окисления и реакция восстановления разделены в пространстве.
Термин «электролитический» в настоящем описании относится к электрохимической реакции окисления или восстановления, которая приводит к разрыву одной или более химических связей. Электролитические реакции в настоящем описании описывают реакции, протекающие как результат взаимодействия с катодом или анодом.
В настоящем описании термин «производное» относится к химически или биологически модифицированному варианту химического соединения, который по структуре подобен исходному соединению и получен (практически или теоретически) из исходного соединения. Производное может обладать или не обладать химическим или физическими свойствами, отличными от свойств исходного соединения. Например, производное может являться более гидрофильным или может обладать измененной активностью по сравнению с исходным соединением. Образование производного (т.е. модификация) может включать замещение одного или более фрагментов молекулы (например, изменение функциональной группы), которое по существу не изменяет функцию молекулы для заданной цели. Термин «производное» также применяют для описания всех сольватов, например, гидратов или аддуктов (например, аддуктов со спиртами), активных метаболитов и солей исходного соединения. Тип соли, которая может быть получена, зависит от природы фрагментов, входящих в соединение. Например, кислотные группы, например, группы карбоновой кислоты, могут образовывать, например, соли щелочных металлов или соли щелочноземельных металлов (например, соли натрия, соли калия, соли магния и соли кальция, а также соли четвертичных ионов аммония и кислотно-аддитивные соли с аммиаком и физиологически приемлемыми органическими аминами, такими как, например, триэтиламин, этаноламин или трис-(2-гидроксиэтил)-амин). Основные группы могут образовывать кислотно-аддитивные соли, например, с неорганическими кислотами, такими как соляная кислота, серная кислота или фосфорная кислота, или с органическими карбоновыми кислотами и сульфоновыми кислотами, такими как уксусная кислота, лимонная кислота, бензойная кислота, малеиновая кислота, фумаровая кислота, винная кислота, метансульфоновая кислота или пара-толуолсульфоновая кислота. Соединения, одновременно содержащие основную группу и кислотную группу, например, карбоксильную группу в дополнение к основным атомам азота, могут присутствовать в виде цвиттер-ионов. Соли могут быть получены общеупотребительными способами, известными специалистам в данной области техники, например, путем объединения соединения с неорганической или органической кислотой или основанием в растворителе или разбавителе, или из других солей путем катионного обмена или анионного обмена.
В настоящем описании термин «аналог» относится к химическому соединению, которые по структуре подобно другому соединению, но незначительно отличается по составу (например, заменой одного из атомов на атом другого элемента или присутствием определенной функциональной группы), и может быть получено или не может быть получено из исходного соединения. «Производное» отличается от «аналога» тем, что исходное соединение может представлять собой исходный материал для получения «производного», в то время как для получения «аналога» не обязательно можно использовать в качестве исходного материала исходное соединение.
Следует понимать, что любые диапазоны концентраций, диапазоны процентных содержаний или диапазоны соотношений, указанные в настоящем описании, включают концентрации, процентные содержания или соотношения, соответствующие любому целому числу внутри указанного диапазона и его долям, таким как одна десятая и одна сотая целого числа, если не указано иное. Также следует понимать, что любой числовой диапазон, указанный в настоящем описании, относящийся к любой физической величине, такой как число субъединиц полимера, размер или толщина, включает любое целое число внутри указанного диапазона, если не указано иное. Следует понимать, что термины в единственном числе, использованные выше и где-либо еще, относятся к «одному или более» указанных компонентов. Например, «полимер» относится к одному полимеру или к смеси, содержащей два или более полимеров. В настоящем описании термин «примерно» относится к различиям, несущественным для рассматриваемой цели или функции.
В настоящем описании термины «по существу» или «примерно», относящиеся к количеству, включают вариации указанного количества, эквивалентные указанному количеству, такие как количество, эквивалентное указанному количеству для заданной цели или функции.
Электрохимическое декарбоксилирование
Ниже описан способ электролитического декарбоксилирования углеводной кислоты в электрохимической ячейке. Электрохимическое окислительное декарбоксилирование субстрата реагента можно осуществлять на субстрате реагента. В некоторых вариантах реализации способ включает стадию, включающую электролитическое декарбоксилирование реагента углеводной кислоты с образованием углеводного альдегида.
Реагент может находиться в растворе, приводимом в контакт с электродом. Раствор содержит реагент и растворитель. Реагент может быть растворен в растворителе любым подходящим способом, включая перемешивание, нагревание или комбинацию указанных способов. Растворитель может представлять собой любой растворитель, способный растворять реагент в желаемой степени. Предпочтительно растворитель является водным.
В одном из вариантов реализации, в качестве реагента можно применять любую подходящую углеводную кислоту, способную образовывать углевод в качестве продукта стадии электролитического декарбоксилирования. В одном из вариантов реализации реагент представляет собой арабиноновую кислоту, а также подходящие производные, аналоги и соли реагентов. Подходящие реагенты, включая производные и аналоги реагента углеводной кислоты, могут включать реагенты с вариантами химической структуры, которые незначительно изменяют активность молекулы от участия в способе электролитического декарбоксилирования до образования эритрозы или промежуточного соединения, которое может быть превращено в эритрозу.
Реакцию декарбоксилирования осуществляют электрохимически. В одном из аспектов в ходе электролитического декарбоксилирования реагента в растворе может быть получен желаемый продукт или промежуточное соединение, которое может быть впоследствии превращено в желаемый продукт. В некоторых вариантах реализации реагент представляет собой арабиноновую кислоту, такую как D- или L-арабиноновая кислота, и продукт представляет собой эритрозу, такую как D- или L-эритроза.
В некоторых вариантах реализации по меньшей мере примерно 5% кислоты может быть нейтрализовано. При нейтрализации кислоты она существует в виде соответствующей соли, а не в виде самой кислоты. Например, в растворе кислотного реагента можно обеспечить примерно 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 или 100% нейтрализованных эквивалентов одной или более реагирующих кислот.В некоторых вариантах реализации нейтрализованными являются 10%-100% по меньшей мере одного из реагентов рибоновой кислоты или арабиноновой кислоты.
В одном из аспектов, рН или процент нейтрализации можно обеспечивать или поддерживать в желаемом диапазоне во время реакции, например, путем использования разделенной электролитической ячейки с катионообменной мембраной и введением в анолит гидроксида щелочного металла. В другом аспекте, рН или процент нейтрализации можно обеспечивать и/или поддерживать в желаемом диапазоне во время реакции, например, при помощи одновременного пропускания анолита через первую электролитическую ячейку и вторую электролитическую ячейку, причем первая электролитическая ячейка представляет собой разделенную электролитическую ячейку с катионообменной мембраной, а вторая электролитическая ячейка представляет собой однокамерную ячейку. Раствор реагента углеводной кислоты может иметь любую подходящую величину рН для обеспечения желаемой концентрации диссоциированного реагента. Для раствора реагента, содержащего реагент арабиноновую кислоту, величина рН может находиться между 3,0 и 6,0 до начала реакции декарбоксилирования.
Необязательно, оставшийся реагент можно рециркулировать путем отделения исходного материала от продуктов, например, при помощи катионообменной хроматографической смолы. Частично декарбоксилированный раствор углеводной кислоты может содержать одновременно исходную углеводную кислоту (например, арабиноновую кислоту) и продукт (например, эритрозу). Частично прореагировавший раствор можно пропускать через слой или колонку гранул ионообменной смолы для хроматографического разделения реагента и продукта.
Электрохимическое восстановление
В одном из вариантов реализации ниже описан способ электролитического восстановления углеводного альдегида в электрохимической ячейке. Стадию электрохимического восстановления субстрата реагента можно осуществлять на субстрате реагента. В некоторых вариантах реализации способ включает стадию электролитического восстановления альдегида из углеводного альдегида до спирта.
Реагент можно обеспечивать в растворе, помещенном в контакт с электродом. Раствор содержит реагент и растворитель. Реагент может быть растворен в растворителе любым подходящим способом, включая перемешивание, нагревание или комбинацию указанных способов. Растворитель может представлять собой любой растворитель, способный растворять реагент в желаемой степени. Предпочтительно растворитель является водным. В одном из аспектов углеводный альдегид получают путем электролитического декарбоксилирования углеводной кислоты.
В одном из вариантов реализации в качестве реагента можно применять любой подходящий углеводный альдегид, способный образовывать углеводный спирт в качестве продукта стадии электролитического восстановления. В одном из вариантов реализации реагент представляет собой эритрозу, а также подходящие производные и аналоги указанного соединения. Подходящие реагенты, включая производные и аналоги реагента углеводного альдегида, могут включать реагенты с вариантами химической структуры, которые незначительно изменяют активность молекулы от участия в способе электролитического восстановления до образования эритрита или промежуточного соединения, которое может быть превращено в эритрит.
Реакцию восстановления осуществляют электрохимически. В одном из аспектов электролитическое восстановление реагента в растворе обеспечивает желаемый продукт или промежуточное соединение, которое может быть впоследствии превращено в желаемый продукт. В некоторых вариантах реализации реагент представляет собой эритрозу и продукт представляет собой эритрит.
Электролитическая установка
Электрохимическое декарбоксилирование реагента углеводной кислоты можно осуществлять с использованием трехкамерной электролитической ячейки, разделенной катионообменной мембраной и биполярной мембраной. Электрохимическое декарбоксилирование осуществляют путем осуществления контакта раствора, содержащего углеводную кислоту, с анодом, на котором реагент может подвергаться декарбоксилированию. Контакт между реагирующим материалом и анодом может вызывать декарбоксилирование с образованием диоксида углерода и углеводного продукта.
Ячейка содержит анод. Анод может быть изготовлен из любого подходящего материала, включая, без ограничения, графит, пироуглерод, импрегнированный или наполненный графит, стеклоуглерод, углеродную ткань или платину. В некоторых вариантах реализации анод предпочтительно включает углеродную активную поверхность, на которой может происходить окисление реагирующей кислоты. В одном из вариантов реализации поверхность анода содержит высококристаллический графитовый материал, такой как графитовая пленка. Другие материалы, такие как платина или золото, также можно применять для изготовления активной поверхности анода. В одном из вариантов реализации углеводный реагент представляет собой арабиноновую кислоту и подвергается окислению на активной поверхности анода или вблизи указанной поверхности с образованием эритрозы.
Ячейка также может включать катионоселективную мембрану, отделяющую анолит от центральной камеры и раствора. Мембрана может включать, например, гетерогенные или гомогенные мембраны. Последние могут представлять собой полимерную мембрану с сульфонатными или карбоксилатными ионообменными группами. В качестве полимеров могут быть использованы полимеры на основе углеводорода или фторуглерода. Например, мембрана Nafion(R) 115 (DuPont(™) Fuel Cell) представляет собой мембрану из перфторсульфоновой кислоты, которая осуществляет селективный транспорт катионов.
Ячейка также включает биполярную мембрану, отделяющую католит от центральной камеры и раствора. Мембрана изготовлена из анионо- и катионообменного слоев, соединенных между собой физически или химически, и тонкой границы взаимодействия, в которую диффундирует вода из внешних водных растворов. Ионы гидроксония и гидроксида, полученные в реакции разложения воды, могут транспортироваться через биполярную мембрану при ее правильной ориентации. Если анионообменная сторона обращена к аноду и катионообменная сторона обращена к катоду, гидроксильные анионы могут транспортироваться через анионообменный слой, и катионы водорода могут транспортироваться через катионообменный слой.
Ячейка может включать катод, на котором может протекать восстановительная полуреакция в электрохимической ячейке. Катод может быть изготовлен из любого подходящего материала, имеющего желаемый уровень электропроводности, включая, без ограничения, по меньшей мере один из следующих: губчатый никель, никель, рутений, амальгама свинца, амальгама цинка, цинк и нержавеющая сталь. В одном из вариантов реализации реакция декарбоксилирования на аноде может быть следующей:
Арабиноновая кислота - 2е--------> эритроза + СО2 + 2Н+
На противоположном электроде может протекать следующая реакция:
Эритроза + 2е- + 2Н+ -----> эритрит
Обычно некоторое количество тока теряется на выделение газообразного О2 на аноде и газообразного Н2 на катоде.
В одном из аспектов углеводный альдегид восстанавливается на поверхности катода или вблизи указанной поверхности до сахарного спирта. В одном из вариантов реализации реагент углеводный альдегид представляет собой эритрозу и восстанавливается на активной поверхности катода или вблизи указанной поверхности с образованием эритрита. По мере протекания реакции одновалентные катионы проникают из анолита в раствор в центральной камере через катионообменную мембрану, вода диссоциирует на биполярной мембране, передавая ионы гидроксида в раствор в центральной камере, где они действуют как противоионы для одновалентного катиона, с образованием раствора гидроксида одновалентного катиона. В одном из вариантов реализации одновалентный катион может представлять собой натрий или калий. Ион гидроксония, транспортируемый в католит через биполярную мембрану, может образовывать ион гидроксония, расходуемый в ходе восстановления.
Электрохимическая ячейка с электрической точки зрения может быть выполнена в монополярной или биполярной конфигурации. В монополярной конфигурации электрический контакт выполнен для каждого электрода. В биполярной конфигурации каждый электрод имеет анодную и катодную стороны, и электрическое соединение выполнено только для электродов, расположенных на краях группы ячеек, содержащей множество электродов.
Щелочное окисление углевода
В другом аспекте углеводную кислоту можно получить из подходящего углеводного исходного материала посредством щелочного окисления. В одном из вариантов реализации углеводная кислота представляет собой арабиноновую кислоту, которую получают путем окисления исходного материала, содержащего глюкозу или фруктозу, газообразным кислородом в щелочном водном растворе (например, как описано в патентах США №№4125559 и 5831078, включенных в настоящее описание посредством ссылок). Исходный материал может включать глюкозу, фруктозу или смесь указанных соединений, и исходный материал может взаимодействовать с гидроксидом щелочного металла и газообразным кислородом в водном растворе посредством первоначального нагревания гидроксида щелочного металла в водном растворе до температуры от примерно 30 С до примерно 100 С. Исходный материал может представлять собой D-гексозу, такую как D-глюкозу, D-фруктозу или D-маннозу, которая может присутствовать в различных циклических формах (пиранозы и фуранозы) и в виде различных диастереомеров, таких как (альфа)-D-глюкопираноза и (бета)-D-глюкопираноза. Исходный материал может взаимодействовать с гидроксидом щелочного металла в стехиометрическом количестве или в избытке, с использованием, например, примерно от 2 до 5 эквивалентов щелочного металла на моль D-гексозы. Например, гидроксиды щелочного металла могут представлять собой гидроксид натрия или гидроксид калия. Кислород предпочтительно применяют в стехиометрическом количестве или в избытке, но предпочтительно в количестве от примерно 1 до примерно 20 моль О2 на моль исходного материала D-гексозы. Реакцию можно проводить при температуре свыше примерно 30°С и давлении от примерно 1 до примерно 50 бар. Реакцию можно осуществлять непрерывно или периодически, в подходящем растворителе.
Как вариант, фруктозу (такую как D-фруктоза) можно превратить в D-арабиноновую кислоту посредством реакции с газообразным кислородом в щелочном водном растворе, как описано в работе J. Dubourg и P. Naffa, «Oxydation des hexoses reducteur par l'oxygene en milieu alcalin», Memoires Presentes a la Societe Chimique, стр. 1353, содержание которой включено в настоящее описание посредством ссылки. Углеводную кислоту также можно получить в результате катализируемого благородными металлами щелочного окисления альдоз и альдозидов. В конкретном варианте реализации углеводная кислота представляет собой арабиноновую кислоту, которая может быть получена путем окисления исходного материала, такого как D- или L-арабиноза, газообразным кислородом в присутствии катализатора благородного металла в щелочном водном растворе, см. работу Bright Т. Kusema, Betiana С. Campo, Paivi Tapio Salmi, Dmitry Yu. Murzin, «Selective catalytic oxidation of arabinose-A comparison of gold and palladium catalysts», Applied Catalysis A: General 386 (2010): 101-108, содержание которой включено в настоящее описание посредством ссылки.
Глюконовую кислоту можно получить путем окисления глюкозы газообразным кислородом в присутствии катализатора благородного металла в щелочном водном растворе, например, как описано в работе Ivana Dencicl, Jan Meuldijkl, Mart Croonl, Volker Hessel «From a Review of Noble Metal versus Enzyme Catalysts for Glucose Oxidation Under Conventional Conditions Towards a Process Design Analysis for Continuous-flow Operations Journal of Flow Chemistry 1 (August 2011) : 13-23, содержание которой включено в настоящее описание посредством ссылки. Метил-d-глюкуронопиранозид можно получить путем окисления глюкозы газообразным кислородом в присутствии катализатора благородного металла в щелочном водном растворе, как описано, например, в работе А.Р. Markusse, B.F.M. Kuster, J.С. Schouten, «Platinum catalysed aqueous methyl-d-glucopyranoside oxidation in a multiphase redox-cycle reactor», Catalysis Today 66 (2001) 191-197, содержание которой включено в настоящее описание посредством ссылки.
Гидроксид щелочного металла, применяемый для получения реагента углеводной кислоты, может быть получен в катодной камере электролитической ячейки согласно настоящему описанию во время предварительного или одновременного декарбоксилирования углеводной кислоты.
Примеры
Пример 1
Опыт проводили в трехкамерной ячейке Microflow (ElectroCell Denmark) содержащей углеродный анод (SGL Carbon), катионообменную мембрану (Astom СМВ), биполярную мембрану (Astom BP-IE) и катод (Ru, электроосажденный на субстрате Ni). Исходный раствор готовили из 1,5 М арабиноновой кислоты, которую нейтрализовывали на 100% в форме натриевой соли, и 0,67 М эритрозы; полученный раствор перекачивали из одного резервуара через камеры для анолита и католита. В центральную камеру первоначально подавали исходный раствор 1 М гидроксида натрия. Ток плотностью 150 мА/см2 пропускали через ячейку при постоянном контроле тока до пропускания необходимого заряда (измеряли при помощи цифрового кулометра ESC модели 640). Нейтрализацию арабиноновой кислоты в объединенных потоках анолита и католита поддерживали между 5,3 и 5,4 при помощи автоматического управления рН путем добавления 10М NaOH. По окончании опыта концентрации арабоната и эритрозы падали до 0,89 М и 1,45 М соответственно. Концентрация эритрита возрастала от нуля до 0,75 М. Все анализы проводили на приборе Dionex Ultimate 3000 с импульсным амперометрическим детектированием (ИАД) и осуществляли количественное определение по отношению к известным стандартам. Эффективность по току для окисления арабиноновой кислоты до эритрозы составляла 87%. Эффективность по току для восстановления эритрозы до эритрита составляла 73%. Конечная концентрация гидроксида натрия в центральной камере достигала 3,4 М и эффективность по току составляла 68%.
ПРЕДЛОЖЕНЫ:
1. Способ одновременного декарбоксилирования углеводной кислоты и восстановления углеводного альдегида в электрохимической ячейке, включающий:
обеспечение электрохимической ячейки, содержащей три камеры, включающие анодную камеру, центральную камеру и катодную камеру, причем электрохимическая ячейка дополнительно содержит катионную мембрану, расположенную между анодной камерой и центральной камерой и находящуюся в контакте с указанными камерами, биполярную мембрану, расположенную между центральной камерой и катодной камерой и находящуюся в контакте с указанными камерами, причем указанная катионная мембрана выполнена с возможностью пропускания одновалентных катионов, катодная камера содержит углеводный альдегид, католит и катод, и анодная камера содержит углеводную кислоту, анолит и анод;
обеспечения электрического тока в указанной ячейке и получение углеводного альдегида в анолите, гидроксида одновалентного катиона в растворе в центральной камере и сахарного спирта в католите;
2. Способ по п. 1, отличающийся тем, что катод содержит рутениевый катализатор.
3. Способ по любому из пп. 1 и 2, отличающийся тем, что углеводный альдегид в католите получают путем электролитического декарбоксилирования углеводной кислоты.
4. Способ по любому из пп. 1-3, отличающийся тем, что отношение одновалентного катиона к углеводной кислоте обеспечивает нейтрализацию доступной углеводной кислоты для декарбоксилирования.
5. Способ по любому из пп. 1-4, отличающийся тем, что катионная мембрана является проницаемой для гидроксидных ионов для по меньшей мере частичного поддержания соотношения одновалентного катиона и углеводной кислоты.
6. Способ по п. 5, отличающийся тем, что эффективность по току для переноса одновалентного катиона через катионную мембрану составляет менее 90%, предпочтительно менее 80% и более предпочтительно менее 75%.
7. Способ по любому из пп. 1-6, отличающийся тем, что соотношение одновалентного катиона к углеводной кислоте по меньшей мере частично поддерживают путем введения гидроксида катиона, выбранного из группы, состоящей из: гидроксида натрия, гидроксида калия, гидроксида лития и гидроксида аммония.
8. Способ по п. 7, отличающийся тем, что гидроксид одновалентного катиона, вводимый в анолит, получают в центральной камере разделенной ячейки во время декарбоксилирования углеводной кислоты.
9. Способ по любому из пп. 1-8, отличающийся тем, что отношение одновалентного катиона к углеводной кислоте по меньшей мере частично поддерживают посредством одновременной циркуляции раствора углеводной кислоты через две группы электролитических ячеек, причем одна группа ячеек представляет собой разделенную ячейку с катионной и биполярной мембранами, и вторая представляет собой неразделенную ячейку.
10. Способ по любому из пп. 1-9, отличающийся тем, что углеводная кислота выбрана из группы, состоящей из: арабиноновой кислоты, d-глюконовой кислоты, метил-d-глюкуронозида, d-глюкуроновой кислоты, d-галактуроновой кислоты, 1-гулоновой кислоты.
11. Способ по п. 10, отличающийся тем, что углеводная кислота представляет собой арабиноновую кислоту.
12. Способ по п. 11, отличающийся тем, что углеводный альдегид представляет собой эритрозу.
13. Способ по любому из пп. 1-12, отличающийся тем, что углеводную кислоту получают с использованием гидроксидного иона, полученного в центральной камере.
Claims (18)
1. Способ одновременного декарбоксилирования углеводной кислоты и восстановления углеводного альдегида в электрохимической ячейке, включающий:
обеспечение электрохимической ячейки, содержащей три камеры, включающие анодную камеру, центральную камеру и катодную камеру, причем указанная электрохимическая ячейка дополнительно содержит катионную мембрану, расположенную между анодной камерой и центральной камерой и находящуюся в контакте с указанными камерами, биполярную мембрану, расположенную между центральной камерой и катодной камерой и находящуюся в контакте с указанными камерами, причем указанная катионная мембрана выполнена с возможностью пропускания одновалентных катионов, указанная катодная камера содержит указанный углеводный альдегид, католит и катод, а указанная анодная камера содержит углеводную кислоту, анолит и анод, при этом указанная биполярная мембрана включает анионообменную сторону, обращенную к аноду, и катионообменную сторону, обращенную к катоду;
подачу электрического тока к указанной ячейке и получение углеводного альдегида в указанном анолите, гидроксида одновалентного катиона в растворе в центральной камере и сахарного спирта в указанном католите; и
введение в указанный анолит гидроксида одновалентного катиона, выбранного из группы, состоящей из: гидроксида натрия, гидроксида калия, гидроксида лития и гидроксида аммония; и
при этом указанная углеводная кислота по меньшей мере на 5% нейтрализована в виде соли, и где указанное соотношение одновалентного катиона к указанной углеводной кислоте в анолите поддерживают для обеспечения протекания нейтрализации доступной углеводной кислоты для декарбоксилирования.
2. Способ по п. 1, отличающийся тем, что катод содержит рутениевый катализатор.
3. Способ по п. 1, отличающийся тем, что углеводный альдегид в католите получают путем электролитического декарбоксилирования углеводной кислоты.
4. Способ по п. 1, отличающийся тем, что катионная мембрана является проницаемой для гидроксидных ионов для по меньшей мере частичного поддержания соотношения одновалентного катиона и углеводной кислоты.
5. Способ по п. 4, отличающийся тем, что эффективность по току для переноса одновалентного катиона через катионную мембрану составляет менее 90 %, предпочтительно менее 80 % и более предпочтительно менее 75 %.
6. Способ по п. 1, отличающийся тем, что гидроксид одновалентного катиона, вводимый в анолит, получают в центральной камере указанной разделенной ячейки во время декарбоксилирования углеводной кислоты.
7. Способ по п. 1, отличающийся тем, что соотношение одновалентного катиона и углеводной кислоты по меньшей мере частично поддерживают посредством одновременной циркуляции раствора углеводной кислоты через две электролитические ячейки, причем одна электролитическая ячейка представляет собой разделенную ячейку с указанными катионной мембраной и биполярной мембраной, а другая электролитическая ячейка представляет собой неразделенную ячейку.
8. Способ по п. 1, отличающийся тем, что углеводная кислота выбрана из группы, состоящей из: арабиноновой кислоты, d-глюконовой кислоты, метил-d-глюкуронозида, d-глюкуроновой кислоты, d-галактуроновой кислоты, l-гулоновой кислоты.
9. Способ по п. 8, отличающийся тем, что углеводная кислота представляет собой арабиноновую кислоту.
10. Способ по п. 9, отличающийся тем, что углеводный альдегид, содержащийся в катодной камере и получаемый в анолите, представляет собой эритрозу.
11. Способ по п. 1, отличающийся тем, что углеводную кислоту получают с использованием гидроксидного иона, полученного в центральной камере.
12. Способ по п. 1, отличающийся тем, что анод содержит материал, выбранный из графита, пироуглерода, импрегнированного или наполненного графита, стеклоуглерода, углеродной ткани или платины.
13. Способ по п. 1, отличающийся тем, что анод содержит графитовую пленку.
14. Способ по п. 1, отличающийся тем, что катионная мембрана представляет собой мембрану из перфторсульфоновой кислоты.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361866908P | 2013-08-16 | 2013-08-16 | |
US61/866,908 | 2013-08-16 | ||
PCT/US2014/051023 WO2015023828A1 (en) | 2013-08-16 | 2014-08-14 | Methods for the simultaneous electrolytic decarboxylation and reduction of sugars |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2016104920A RU2016104920A (ru) | 2017-09-21 |
RU2694908C2 true RU2694908C2 (ru) | 2019-07-18 |
Family
ID=52468685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2016104920A RU2694908C2 (ru) | 2013-08-16 | 2014-08-14 | Способы одновременного электролитического декарбоксилирования и восстановления сахаров |
Country Status (13)
Country | Link |
---|---|
US (1) | US9957620B2 (ru) |
EP (1) | EP3033442B1 (ru) |
JP (1) | JP6517805B2 (ru) |
KR (1) | KR102078600B1 (ru) |
CN (1) | CN105473765B (ru) |
AU (1) | AU2014306635B2 (ru) |
BR (1) | BR112016003144B1 (ru) |
CA (1) | CA2921238C (ru) |
DK (1) | DK3033442T3 (ru) |
HK (1) | HK1225763A1 (ru) |
MX (1) | MX371528B (ru) |
RU (1) | RU2694908C2 (ru) |
WO (1) | WO2015023828A1 (ru) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109748403B (zh) * | 2018-12-08 | 2021-10-08 | 上海电力学院 | 一种用于抑止硫酸钙垢形成的高分子阻垢剂及其制备方法 |
US11999687B2 (en) * | 2020-08-28 | 2024-06-04 | Dfi Usa, Llc | Methods for the production of L-threonic acid salts from L-xylonic acid |
CN113403637A (zh) * | 2021-05-31 | 2021-09-17 | 中国科学院金属研究所 | pH不对称成对电合成体系及其应用 |
CN114959748B (zh) * | 2022-04-28 | 2024-06-25 | 万华化学集团股份有限公司 | 一种赤藓糖醇的电化学制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5753097A (en) * | 1996-10-03 | 1998-05-19 | Sachem, Inc. | Process for purifying hydroxide compounds |
RU2433211C2 (ru) * | 2006-02-08 | 2011-11-10 | Дайнэмик Фуд Ингридиентс Корп. | Способы электролитического получения эритрозы или эритритола |
US20110272291A1 (en) * | 2006-02-08 | 2011-11-10 | Stapley Jonathan A | Methods for the electrolytic production of erythritol |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2303210A (en) | 1939-10-20 | 1942-11-24 | Atlas Powder Co | Electrolysis of sugars |
US2537304A (en) | 1946-10-07 | 1951-01-09 | California Research Corp | Electrolytic process and apparatus |
US2507973A (en) | 1948-10-27 | 1950-05-16 | Hefti Hans Rudolf | Electrolytic reduction of sugars |
JPS5550471A (en) * | 1978-10-11 | 1980-04-12 | Tokuyama Soda Co Ltd | Electrolyzing method |
US4547273A (en) * | 1984-06-07 | 1985-10-15 | Energy Conversion Devices, Inc. | Mobile atom insertion reaction, mobile atom transmissive membrane for carrying out the reaction, and reactor incorporating the mobile atom transmissive membrane |
CS271428B1 (en) * | 1987-12-03 | 1990-09-12 | Vladimir Ing Csc Jiricny | Method of d-arabinose production |
US4950368A (en) * | 1989-04-10 | 1990-08-21 | The Electrosynthesis Co., Inc. | Method for paired electrochemical synthesis with simultaneous production of ethylene glycol |
NL1035340C2 (nl) * | 2008-04-24 | 2009-10-27 | Stichting Wetsus Ct Of Excelle | Inrichting en werkwijze voor het uitvoeren van een biologisch gekatalyseerde elektrochemische reactie. |
US8845877B2 (en) * | 2010-03-19 | 2014-09-30 | Liquid Light, Inc. | Heterocycle catalyzed electrochemical process |
CN105283585B (zh) * | 2013-03-12 | 2019-01-18 | Dfi 美国有限责任公司 | 糖类电解脱羧方法 |
-
2014
- 2014-08-14 AU AU2014306635A patent/AU2014306635B2/en active Active
- 2014-08-14 CN CN201480045558.XA patent/CN105473765B/zh active Active
- 2014-08-14 MX MX2016002030A patent/MX371528B/es active IP Right Grant
- 2014-08-14 CA CA2921238A patent/CA2921238C/en active Active
- 2014-08-14 WO PCT/US2014/051023 patent/WO2015023828A1/en active Application Filing
- 2014-08-14 RU RU2016104920A patent/RU2694908C2/ru active
- 2014-08-14 US US14/911,810 patent/US9957620B2/en active Active
- 2014-08-14 KR KR1020167006682A patent/KR102078600B1/ko active IP Right Grant
- 2014-08-14 BR BR112016003144-0A patent/BR112016003144B1/pt active IP Right Grant
- 2014-08-14 JP JP2016534830A patent/JP6517805B2/ja active Active
- 2014-08-14 DK DK14836449.0T patent/DK3033442T3/da active
- 2014-08-14 EP EP14836449.0A patent/EP3033442B1/en active Active
-
2016
- 2016-12-13 HK HK16114173A patent/HK1225763A1/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5753097A (en) * | 1996-10-03 | 1998-05-19 | Sachem, Inc. | Process for purifying hydroxide compounds |
RU2433211C2 (ru) * | 2006-02-08 | 2011-11-10 | Дайнэмик Фуд Ингридиентс Корп. | Способы электролитического получения эритрозы или эритритола |
US20110272291A1 (en) * | 2006-02-08 | 2011-11-10 | Stapley Jonathan A | Methods for the electrolytic production of erythritol |
Also Published As
Publication number | Publication date |
---|---|
JP2016532009A (ja) | 2016-10-13 |
DK3033442T3 (da) | 2019-06-17 |
AU2014306635B2 (en) | 2018-10-18 |
US20160194765A1 (en) | 2016-07-07 |
US9957620B2 (en) | 2018-05-01 |
RU2016104920A (ru) | 2017-09-21 |
CA2921238C (en) | 2020-10-20 |
MX371528B (es) | 2020-01-31 |
CN105473765A (zh) | 2016-04-06 |
EP3033442A4 (en) | 2017-01-25 |
MX2016002030A (es) | 2016-06-17 |
CA2921238A1 (en) | 2015-02-19 |
HK1225763A1 (zh) | 2017-09-15 |
BR112016003144B1 (pt) | 2021-07-27 |
KR102078600B1 (ko) | 2020-02-19 |
JP6517805B2 (ja) | 2019-05-22 |
EP3033442B1 (en) | 2019-04-03 |
CN105473765B (zh) | 2019-03-29 |
AU2014306635A1 (en) | 2016-03-10 |
BR112016003144A2 (pt) | 2017-08-01 |
EP3033442A1 (en) | 2016-06-22 |
KR20160044521A (ko) | 2016-04-25 |
WO2015023828A1 (en) | 2015-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10968525B2 (en) | Device and method of obtaining diols and other chemicals using decarboxylation | |
JP5579990B2 (ja) | エリスロースまたはエリスリトールの電解製造法 | |
RU2694908C2 (ru) | Способы одновременного электролитического декарбоксилирования и восстановления сахаров | |
JP2009526131A5 (ru) | ||
US6375824B1 (en) | Process for producing potassium hydroxide and potassium sulfate from sodium sulfate | |
RU2686850C2 (ru) | Способы электролитического декарбоксилирования сахаров | |
CA2902997A1 (en) | Device and method of obtaining diols and other chemicals using decarboxylation | |
US9169571B2 (en) | Methods for the electrolytic production of xylo-pent-1,5-diose | |
CN118814196A (zh) | 一种Cu-Mn双金属催化剂及其制备方法和应用 | |
Frontana-Uribe | Electroreductive Deoxygenation of Aliphatic Organic Compounds |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
HZ9A | Changing address for correspondence with an applicant |