RU2693380C1 - Способ очистки дизельного топлива от соединений кремния - Google Patents

Способ очистки дизельного топлива от соединений кремния Download PDF

Info

Publication number
RU2693380C1
RU2693380C1 RU2018145241A RU2018145241A RU2693380C1 RU 2693380 C1 RU2693380 C1 RU 2693380C1 RU 2018145241 A RU2018145241 A RU 2018145241A RU 2018145241 A RU2018145241 A RU 2018145241A RU 2693380 C1 RU2693380 C1 RU 2693380C1
Authority
RU
Russia
Prior art keywords
catalyst
silicon
carrier
nickel
protective layer
Prior art date
Application number
RU2018145241A
Other languages
English (en)
Inventor
Олег Владимирович Климов
Анастасия Андреевна Ковальская
Максим Олегович Казаков
Ксения Александровна Надеина
Елена Александровна Столярова
Даниил Андреевич Назимов
Василий Юрьевич Перейма
Александр Степанович Носков
Original Assignee
Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки "Федеральный исследовательский центр "Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук" (ИК СО РАН)
Priority to RU2018145241A priority Critical patent/RU2693380C1/ru
Application granted granted Critical
Publication of RU2693380C1 publication Critical patent/RU2693380C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к способам очистки дизельного топлива от соединений кремния. Описан способ, заключающийся в превращении дизельных фракций, выкипающих до 360°С, содержащих до 200 ppm кремния, до 1,0% серы, до 200 ppm азота, имеющих плотность до 0,87 г/см3 при объемной скорости подачи сырья через катализатор защитного слоя - 5-20 ч-1, соотношении Н2/сырье = 250-650 нм3 Н23 сырья, давлении 3-8 МПа, температуре 340-380°С в присутствии катализатора, содержащего молибден и никель в форме алюмогетерополимолибдата никеля со структурой Андерсена NiH[Al(OH)6Mo6O18] - 5,5-7,7 мас.% и в форме молибдата никеля NiMoO4 - 4,6-6,4 мас.%; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; γ-Al2O3 - остальное. Используемый в процессе катализатор имеет удельную поверхность 245-275 м2/г, объем пор 0,50-0,55 см3/г, средний диаметр пор 80-85
Figure 00000011
, представляет гранулы в поперечном сечении в виде трилистника с размером от вершины до середины основания 2,5±0,2 мм и длиной до 10 мм. Также описан способ очистки дизельного топлива от соединений кремния в присутствии сульфидированного катализатора, содержащего, мас.%: Мо - 5,0-7,0; Ni - 1,7-2,3; S - 3,4-4,7; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; γ-Al2O3 - остальное. Технический результат - повышенная скорость извлечения кремния из сырья, повышенная емкость катализатора по диоксиду кремния и повышенная стойкость катализатора к дезактивации в условиях гидроочистки углеводородного сырья. 2 н. и 8 з.п. ф-лы, 1 табл., 4 пр.

Description

Изобретение относится к способам очистки дизельных фракций от соединений кремния на катализаторах защитного слоя, расположенных впереди катализаторов основного слоя в процессе гидроочистки углеводородного сырья с повышенным содержанием кремния.
В настоящее время в качестве исходного сырья для получения товарного дизельного топлива используется смесь прямогонных дизельных фракций с легкими газойлями вторичных процессов - каталитического крекинга и коксования, которые содержат растворенные кремнийорганические соединения. Эти соединения при гидроочистке разлагаются с образованием диоксида кремния, который отлагается на поверхности катализаторов и приводит к их ускоренной дезактивации. Для предотвращения дезактивации основных катализаторов гидроочистки, дизельные фракции предварительно очищают от соединений кремния на катализаторах защитного слоя, расположенного перед основным катализатором.
Поскольку катализатор защитного слоя не обладает высокой активностью в целевых реакциях гидроочистки, то его количество в промышленном реакторе должно быть минимальным. Обычно, количество катализатора защитного слоя, загружаемого в реактор гидроочистки, подбирается таким образом, чтобы его емкости по диоксиду кремния было достаточно для обеспечения запланированного срока работы основного катализатора. Соответственно, емкость по кремнию является наиболее важной характеристикой катализатора защитного слоя.
В последние годы в сырье для получения дизельных топлив монотонно возрастает доля вторичных дистиллятов, содержащих соединения кремния. В связи с этим возникает необходимость разработки новых, более эффективных способов извлечения кремния из дизельных фракций, преимущественно за счет повышения емкости по диоксиду кремния используемых катализаторов защитного слоя.
Известно множество вариантов очистки дизельных фракций от соединений кремния до процесса гидроочистки, включающих предварительное использование различных катализаторов защитного слоя, при этом процесс очистки от кремния проводят при условиях, типичных для гидроочистки нефтяных дистиллятов при различных соотношениях между катализаторами защитного и основного слоя. Так, известен способ гидроочистки нефтяных фракций [Пат. РФ №2353644], согласно которому гидроочистку проводят при повышенных температуре и давлении и циркуляции водородсодержащего газа в две стадии в присутствии пакета алюмооксидных катализаторов при температуре 330-390°С, давлении 40-50 ати, циркуляции водородсодержащего газа 250-400 нм3/м3 сырья, объемной скорости подачи сырья 0,8-1,3 ч-1 в присутствии пакета катализаторов, который включает на первой стадии катализатор защитного слоя в качестве верхнего удерживающего слоя и АНМ в качестве нижнего слоя, при следующем соотношении компонентов, мас. %: катализатор защитного слоя 3,0-10,0; алюмоникельмолибденовый катализатор - остальное. На второй стадии каталитический пакет включает АКМ либо АНМ в качестве верхнего слоя и АКМ в качестве нижнего слоя, при следующем соотношении компонентов, мас. %: алюмокобальтмолибденовый катализатор 20,0-30,0; алюмоникельмолибденовый катализатор - остальное.
Известен также способ получения малосернистых нефтяных фракций [Пат. РФ №2140964], согласно которому высокосернистые среднедистиллятные фракции подвергают гидроочистке в присутствии пакета алюмооксидных катализаторов, включая защитный слой предварительно активированных серосодержащим агентом при условии, что в состав каталитического пакета входит 2-10 мас. % катализатора защитного слоя, полученного путем пропитки носителя - оксида алюминия, прокаленного при температуре не ниже 800°С и имеющего в своем составе 2-5 мас. % α-оксида алюминия, 73-85 мас. % δ-оксида алюминия и 25-10 мас. % γ-оксида алюминия, сформированного в виде геометрических тел, имеющих размер 8-20 мм и отношение объема к площади поверхности 1,0-2,5 мм3/мм2, водными растворами солей активных компонентов с последующей сушкой и прокалкой.
Известен процесс каталитической гидрообработки кремнийсодержащей нафты [Пат. США №6576121, C10G 45/04], согласно которому кремнийсодержащее сырье, к которому добавлено от 0,01 до 10 об. % воды контактируют при температуре 350 или 400°С, давлении 20-50 бар в присутствии водорода с коммерческим катализатором гидроочистки ТК-439, имеющим удельную поверхность 380 м2/г и объем пор 0,6 см3/г.
Известен процесс удаления кремния из углеводородного сырья в присутствии катализатора-адсорбента, описанного в [Пат. США №81062503, С07С 7/12, 28.07.2009]. Катализатор-адсорбент содержит 5% MoO3 и 1% NiO, нанесенные на гидротальцит общей формулы [Mg0,75Al0,25(ОН)2] 0,125 СО3 0,5 Н2О, где мольное отношение Mg/Al=3. Процесс удаления кремния из углеводородного сырья проводят в присутствии катализатора-адсорбента при температуре в интервале 80-360°С, давлении в интервале 0,5-5,0 МПа, отношении водород/сырье 10-1000 нм3 Н23 сырья, объемном расходе сырья 1-20 ч-1. Перед использованием в процессе удаления кремния из углеводородного сырья катализатор-адсорбент сульфидируют раствором диметилдисульфида в бензине, имеющем концентрацию по сере 10000 ppm при 2,0 МПа, расходе сульфидирующей смеси 3 ч-1, отношении водород/сульфидирующая смесь 200 нм33 2 ч при 230°С и 2 ч при 320°С. Данный катализатор-адсорбент имеет емкость по кремнию 10,68% (22,85% по SiO2) и полностью дезактивируется за 95,75 ч при конвертировании сырья, содержащего 1200 ppm кремния.
Общим недостатком для вышеперечисленных вариантов очистки дизельных фракций от соединений кремния является то, что с их использованием не удается достичь высокого извлечения кремния из сырья в связи с низкой емкостью используемых катализаторов по диоксиду кремния.
Наиболее близким к предлагаемому техническому решению по достигаемому результату является описанный в [Патент РФ №2653494, B01J 21/04, 22.12.2017] способ очистки дизельного топлива от соединений кремния при объемной скорости подачи сырья - 4 ч-1, соотношении Н2/сырье=550 нм3 Н23 сырья, давлении 3,8 МПа, температуре 360°С в присутствии катализатора защитного слоя, который содержит никель и молибден в форме биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] с концентрацией 5,3-7,9 мас. %; носитель γ-Al2O3 - остальное. Катализатор имеет удельную поверхность 265-285 м2/г, объем пор 0,70-0,72 см3/г, средний диаметр пор 100-105
Figure 00000001
, представляет гранулы с сечением в виде круга диаметром 3±0,1 мм и длиной до 20 мм. После сульфидирования по известным методикам он содержит, мас. %: Мо - 1,99-2,98; Ni - 0,61-0,91; S - 1,66-2,48; носитель - остальное.
Основным недостатком известного способа является то, что используемый катализатор имеет неоптимальный химический состав, что обуславливает его низкую активность в превращении соединений кремния и низкую емкость по диоксиду кремния.
Изобретение решает задачу создания улучшенного способа очистки дизельного топлива от соединений кремния в присутствии катализатора защитного слоя, расположенного впереди катализаторов основного слоя в процессе гидроочистки.
Технический результат - использование катализатора защитного слоя, имеющего оптимальный химический состав, который обеспечивает повышенную активность катализатора в реакциях превращения кремнийсодержащих соединений и стабильность в условиях гидроочистки по сравнению с прототипом.
Задача решается проведением процесса очистки от соединений кремния дизельных фракций, выкипающих до 360°С, содержащих до 200 ppm кремния, до 1,0% серы, до 200 ppm азота, имеющих плотность до 0,87 г/см3 при объемной скорости подачи сырья через катализатор защитного слоя - 5-20 ч-1, соотношении Н2/сырье=250-650 нм3 Н23 сырья, давлении 3-8 МПа, температуре 340-380°С в присутствии катализатора, содержащего молибден и никель в форме алюмогетерополимолибдата никеля со структурой Андерсена NiH[Al(OH)6Mo6O18] - 5,5-7,7 мас. % и в форме молибдата никеля NiMoO4 - 4,6-6,4 мас. %; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; γ-Al2O3 - остальное. Используемый в процессе катализатор имеет удельную поверхность 245-275 м2/г, объем пор 0,50-0,55 см3/г, средний диаметр пор 80-85
Figure 00000002
, представляет гранулы в поперечном сечении в виде трилистника с размером от вершины до середины основания 2,5±0,2 мм и длиной до 10 мм. После сульфидирования катализатор содержит, мас. %: Мо - 5,0-7,0; Ni - 1,7-2,3; S - 3,4-4,7; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; γ-Al2O3 - остальное.
Основным отличительным признаком предлагаемого способа очистки дизельного топлива от соединений кремния по сравнению с прототипом является то, что процесс проводят при объемной скорости подачи сырья через катализатор защитного слоя - 5-20 ч-1, соотношении Н2/сырье=250-650 нм3 Н23 сырья, давлении 3-8 МПа, температуре 340-380°С в присутствии катализатора, содержащего молибден и никель в форме алюмогетерополимолибдата никеля со структурой Андерсена NiH[Al(OH)6Mo6O18] - 5,5-7,7 мас. % и в форме молибдата никеля NiMoO4 - 4,6-6,4 мас. %; носитель - остальное. Такой химический состав катализатора обеспечивает его максимальную активность в реакциях превращения кремнийсодержащих соединений.
Вторым отличительным признаком предлагаемого способа очистки дизельного топлива от соединений кремния по сравнению с прототипом является то, используемый носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; γ-Al2O3 - остальное. Такой состав носителя обеспечивает максимальную емкость катализатора по кремнию и стабильность катализатора.
Технический эффект предлагаемого способа очистки дизельного топлива от соединений кремния складывается из следующих составляющих:
1. Проведение процесса в присутствии катализатора, в составе которого одновременно содержатся никель и молибден в форме двух биметаллических соединений - алюмогетерополимолибдата никеля со структурой Андерсена NiH[Al(ОН)6Mo6O18] и молибдата никеля NiMoO4, которые в условиях гидроочистки либо при сульфидировании селективно превращаются в NiMoS фазу. Присутствие в катализаторе никеля и молибдена в форме двух различных биметаллических соединений препятствует образованию крупных кристаллов и обеспечивает хорошее диспергирование активных металлов по поверхности носителя.
2. Оптимальной концентрацией соединений никеля и молибдена в катализаторе - NiH[Al(OH)6Mo6O18] - 5,5-7,7 мас. % и молибдата никеля NiMoO4 - 4,6-6,4 мас. %, которая далее обеспечивает получение сульфидированного катализатора содержащего, мас. %: Мо - 5,0-7,0; Ni - 1,7-2,3; S - 3,4-4,7; алюмооксидный носитель - остальное. Такое содержание активных компонентов, с одной стороны, гораздо выше, чем в катализаторе по способу-прототипу, что обуславливает более высокую активность предлагаемого катализатора в целевых реакциях гидроочистки и превращения соединений кремния, а, с другой стороны, значительно ниже, чем в типичных катализаторах гидроочистки основных слоев, что позволяет предлагаемому катализатору иметь повышенную емкость по отлагающемуся диоксиду кремния и повышенную стойкость к отравлению соединениями кремния.
3. Наличием в составе алюмооксидного носителя бората алюминия Al3BO6 со структурой норбергита с концентрацией 5,0-25,0 мас. %, который обеспечивает уровень кислотности поверхности, с одной стороны, способствующий минимизации нежелательного химического взаимодействия между активными металлами (Ni и Мо) и носителем, и селективному получению наиболее активного в гидроочистке сульфидного компонента - NiMoS фазы типа II, а, с другой стороны, обуславливающий наличие кислотных центров, на которых адсорбируются соединения кремния и формируются частицы диоксида кремния.
4. Оптимальными текстурными характеристиками катализатора являются удельная поверхность 245-275 м2/г, объем пор 0,50-0,55 см3/г, средний диаметр пор 80-85
Figure 00000003
. Данные значения объема и диаметра пор, с одной стороны, достаточны для обеспечения доступа всех подлежащих превращению кремнийсодержащих и серосодержащих молекул сырья к активному компоненту и накоплению диоксида кремния в катализаторе, а, с другой стороны, характерны для катализатора, не имеющего излишнего свободного объема пор, наличие которого приводит к снижению объемной концентрации активных металлов, и, в конечном счете, к неоправданному увеличению объемной загрузки катализатора защитного слоя в реактор гидроочистки, при снижении загрузки катализатора основного слоя. Достижение этих текстурных характеристик обеспечивается присутствием в катализаторе частиц бората алюминия Al3BO6 со структурой норбергита.
Описание предлагаемого технического решения.
Проводят очистку дизельных фракций от соединений кремния, для чего дизельные фракции, выкипающие до 360°С, содержащие до 200 ppm кремния, до 1,0% серы, до 200 ppm азота, имеющие плотность до 0,87 г/см3 при объемной скорости подачи сырья - 5-20 ч-1, соотношении Н2/сырье=250-650 нм3 Н23 сырья, давлении 3-8 МПа, температуре 340-380°С контактируют с катализатором защитного слоя, содержащим молибден и никель в форме алюмогетерополимолибдата никеля со структурой Андерсена NiH[Al(OH)6Mo6O18] - 5,5-7,7 мас. % и в форме молибдата никеля NiMoO4 - 4,6-6,4 мас. %; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; γ-Al2O3 - остальное. Используемый в процессе катализатор имеет удельную поверхность 245-275 м2/г, объем пор 0,50-0,55 см3/г, средний диаметр пор 80-85
Figure 00000004
, представляет гранулы в поперечном сечении в виде трилистника с размером от вершины до середины основания 2,5±0,2 мм и длиной до 10 мм.
После сульфидирования катализатор содержит, мас. %: Мо - 5,0-7,0; Ni - 1,7-2,3; S - 3,4-4,7; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; γ-Al2O3 - остальное.
Сущность изобретения иллюстрируется следующими примерами:
Пример 1 (согласно известному решению [Патент РФ №2653494]).
Сначала готовят носитель. Смешение проводят в лабораторном смесителе с Z-образными лопастями. Отмеренные 137 г алюминия гидроксида AlOOH со структурой псевдобемита, имеющего потери при прокаливании при 550°С 27%, загружают в емкость смесителя. Отмеренные 155 мл воды дистиллированной, 6,04 мл 25%-раствора водного аммиака переливают в химически стойкий стеклянный стакан, затем перемешивают стеклянной палочкой. Приготовленный раствор приливают к алюминию гидроксиду и перемешивают до получения пластичной формовочной массы. Время перемешивания в среднем составляет 30 мин.
Готовую массу перегружают из смесителя в формовочный цилиндр лабораторного экструдера и продавливают через отверстие фильеры, обеспечивающее получение цилиндрических гранулы с сечением в виде круга диаметром 3±0,1 мм.
Затем проводят термообработку, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре 110°С в течение 2 ч. По окончании сушки экструдаты ломают с получением частиц длиной до 20 мм. Высушенные гранулы нагревают на воздухе до 550°С со скоростью нагрева 275°С/час, затем прокаливают при температуре 550°С 4 ч. В результате получают γ-Al2O3 в форме цилиндрических гранул с диаметром поперечного сечения 3±0.1 мм длиной до 20 мм. Выход носителя составляет 100 г. Влагоемкость 0,85-0,89.
Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 100 мл дистиллированной воды при перемешивании последовательно растворяют 4,7 г лимонной кислоты C6H8O7; 8,6 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 1,5 г никеля (II) углекислого основного водного NiCO3⋅mNi(OH)2⋅nH2O. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 200 мл.
100 г полученного носителя пропитывают по влагоемкости 89 мл раствора, содержащего 5,6 г биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] при 20°С в течение 60 мин. Затем катализатор сушат на воздухе при 110°С.
Катализатор содержит, мас. %: [Ni(H2O)2]2[Mo4O11(C6H5O7)2] - 5,3; носитель γ-Al2O3 - остальное.
Катализатор имеет удельную поверхность 285 м2/г, объем пор 0,72 см3/г, средний диаметр пор 100
Figure 00000005
, и представляет собой цилиндрические частицы с диаметром сечения 3±0.1 мм длиной до 20 мм.
Далее катализатор сульфидируют прямогонной дизельной фракцией, содержащей дополнительно 1,5 мас. % сульфидирующего агента - диметилдисульфида (ДМДС), при объемной скорости подачи сульфидирующей смеси 2 ч-1 и соотношении водород/сырье=300 по следующей программе:
- сушка катализатора в реакторе гидроочистки в токе водорода при 140°С в течение 2 ч;
- смачивание катализатора прямогонной дизельной фракцией в течение 2 ч;
- подача сульфидирующей смеси и увеличение температуры до 240°С со скоростью подъема температуры 25°С/ч;
- сульфидирование при температуре 240°С в течение 8 ч (низкотемпературная стадия);
- увеличение температуры реактора до 340 С со скоростью подъема температуры 25°С/ч;
сульфидирование при температуре 340°С в течение 8 ч.
В результате получают катализатор, который содержит, мас. %: Мо - 1,99; Ni - 0,61; S - 1,66; носитель γ-Al2O3 - остальное.
Далее проводят очистку дизельного топлива от соединений кремния. В качестве сырья используют прямогонную летнюю дизельную фракцию, содержащую 0,32% серы, 100 ppm азота, имеющую плотность 0,86 г/см3, интервал кипения 200-360°С, Т95 - 356°С, к которой добавлено количество декаметилциклопенталоксана, соответствующее концентрации кремния в сырье 170 ppm.
Процесс проводят при условиях, типичных для работы катализаторов защитного слоя на российских промышленных установках гидроочистки: объемная скорость подачи сырья через катализатор защитного слоя - 10 ч-1, соотношении Н2/сырье=550 нм3 Н23 сырья, давление 3,8 МПа, температура 360°С. Время непрерывного теста составляет 360 ч.
Результаты каталитических экспериментов приведены в табл. 1.
Примеры 2-4 иллюстрируют предлагаемое техническое решение.
Пример 2.
Сначала готовят борсодержащий порошок гидроксида алюминия, для чего 150 г продукта термической активации гидраргиллита измельчают на планетарной мельнице до частиц размером в пределах 20-50 мкм. Далее порошок гидратируют при перемешивании и нагревании в растворе азотной кислоты с концентрацией 0,5%. Затем суспензию на воронке с бумажным фильтром промывают дистиллированной водой до остаточного содержания натрия в порошке не более 0,03%. Отмытую и отжатую лепешку переносят в автоклав, в который добавляют раствор 14,63 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты, имеющий рН 1,4. Автоклав нагревают до 150°С и выдерживают 12 ч. Далее автоклав охлаждают до комнатной температуры и проводят сушку полученной суспензии на распылительной сушилке при температуре воздуха на входе в сушилку 155°С и непрерывном перемешивании суспензии, высушенный порошок собирают в приемной емкости сушилки.
Затем готовят носитель. Смешение проводят в лабораторном смесителе с Z-образными лопастями. Отмеренные 133 г порошка борсодержащего гидроксида алюминия гидроксида, имеющего потери при прокаливании при 550°С 25%, загружают в емкость смесителя. Отмеренные 120 мл воды дистиллированной, 6,64 мл 25%-раствора водного аммиака переливают в химически стойкий стеклянный стакан, затем перемешивают стеклянной палочкой. Приготовленный раствор приливают к алюминию гидроксиду и перемешивают до получения пластичной формовочной массы. Время перемешивания в среднем составляет 1 ч.
Готовую массу перегружают из смесителя в формовочный цилиндр лабораторного экструдера и продавливают через отверстие фильеры, обеспечивающее получение гранул с сечением в виде трилистника диаметром 2,5±0,2 мм.
Затем проводят термообработку, включающую в себя сушку и прокалку. Сушку экструдатов проводят в сушильном шкафу при температуре 110°С в течение 4 ч. По окончании сушки экструдаты ломают с получением частиц длиной до 10 мм. Высушенные гранулы нагревают на воздухе до 550°С со скоростью нагрева 275°С/час, затем прокаливают при температуре 550°С 4 ч.
В результате получают носитель, содержащий мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; натрий - 0,03; γ-Al2O3 - остальное в форме гранул трилистника с диаметром поперечного сечения 2,5±0,2 мм, длиной до 10 мм. Выход носителя составляет 100 г. Влагоемкость 0,65-0,69.
Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 30 мл дистиллированной воды при перемешивании последовательно растворяют 8,29 г лимонной кислоты C6H8O7, 9,58 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 3,31 г никеля (II) углекислого основного водного NiCO3⋅mNi(OH)2⋅nH2O. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 68 мл.
100 г полученного носителя пропитывают по влагоемкости 68 мл полученного раствора, содержащего 15,32 г биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] при 50°С в течение 30 мин. Затем катализатор сушат на воздухе при 130°С 2 ч. Высушенные гранулы катализатора нагревают на воздухе до 550°С со скоростью нагрева 275°С/час, затем прокаливают при температуре 550°С 4 ч. Далее катализатор охлаждают на воздухе до комнатной температуры.
Охлажденный катализатор пропитывают по влагоемкости 55 мл воды и выдерживают в течение 1 ч при комнатной температуре. При этом происходит взаимодействие поверхностных соединений никеля, молибдена и алюминия в порах, заполненных водой с образованием алюмогетерополимолибдата никеля со структурой Андерсена NiH[Al(ОН)6Мо6О18] и молибдата никеля NiMoO4. Далее катализатор сушат на воздухе при 120°С 2 ч.
Далее проводят изучение катализатора методами массового элементного анализа Ni, Мо, Al, В; Рамановской-; ИК- и EXAFS-спектроскопии, просвечивающей электронной микроскопии высокого разрешения, а также измеряют текстурные характеристики методом низкотемпературной адсорбции азота.
В соответствии с полученными результатами, катализатор содержит, молибден и никель в форме алюмогетерополимолибдата никеля со структурой Андерсена NiH[Al(ОН)6Мо6О18] - 5,5 мас. % и в форме молибдата никеля NiMoO4 - 4,6 мас. %; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; γ-Al2O3 - остальное.
Катализатор имеет удельную поверхность 275 м2/г, объем пор 0,5 см3/г, средний диаметр пор 80
Figure 00000006
, и представляет собой гранулы в поперечном сечении в виде трилистника с диаметром 2,5±0,2 мм и длиной до 10 мм.
Далее катализатор сульфидируют и проводят очистку кремнийсодержащего сырья аналогично примеру 1. Сульфидированный катализатор, содержит, мас. %: Мо - 5,0; Ni - 1,7; S - 3,4; носитель содержит мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; γ-Al2O3 - остальное.
Результаты каталитических экспериментов приведены в табл. 1.
Пример 3.
Порошок борсодержащего гидроксида алюминия и носитель готовят аналогично примеру 2, с той разницей, что в автоклав к отмытой и отжатой лепешке гидроксида алюминия добавляют раствор 5,98 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты, имеющий рН 1,4. Все остальные операции по приготовлению носителя идентичны примеру 2.
Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 30 мл дистиллированной воды при перемешивании последовательно растворяют 9,95 г лимонной кислоты C6H8O7; 11,50 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 4,0 г никеля (II) углекислого основного водного NiCO3⋅mNi(OH)2⋅nH2O. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 68 мл.
100 г полученного носителя пропитывают по влагоемкости 68 мл раствора, содержащего 18,38 г биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] при 60°С в течение 60 мин. Затем катализатор сушат на воздухе при 120°С. Высушенные гранулы катализатора нагревают на воздухе до 550°С со скоростью нагрева 275°С/час, затем прокаливают при температуре 550°С 4 ч. Далее катализатор охлаждают на воздухе до комнатной температуры, пропитывают по влагоемкости 55 мл воды и выдерживают в течение 1 ч при комнатной температуре. Далее катализатор сушат на воздухе при 120°С 2 ч.
Далее проводят изучение катализатора методами массового элементного анализа Ni, Мо, Al, В; Рамановской-; ИК- и EXAFS-спектроскопии, просвечивающей электронной микроскопии высокого разрешения, а также измеряют текстурные характеристики методом низкотемпературной адсорбции азота.
Полученный катализатор содержит, молибден и никель в форме алюмогетерополимолибдата никеля со структурой Андерсена NiH[Al(ОН)6Mo6O18] - 6,6 мас. % и в форме молибдата никеля NiMoO4 - 5,5 мас. %; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; γ-Al2O3 - остальное.
Катализатор имеет удельную поверхность 256 м2/г, объем пор 0,53 см3/г, средний диаметр пор 82
Figure 00000007
, и представляет собой гранулы в поперечном сечении в виде трилистника с диаметром 2,5±0,2 мм и длиной до 10 мм.
Далее катализатор сульфидируют и проводят очистку кремнийсодержащего сырья аналогично примеру 1. Сульфидированный катализатор, содержит, мас. %: Мо - 6,0; Ni - 2,0; S - 4,1; носитель содержит мас. %: борат алюминия Al3BO6 со структурой норбергита - 12,0; γ-Al2O3 - остальное. Мо - 5,0; Ni - 1,7; S - 3,4; носитель содержит мас. %: борат алюминия Al3BO6 со структурой норбергита - 25,0; γ-Al2O3 - остальное. Результаты каталитических экспериментов приведены в табл. 1.
Пример 4.
Порошок борсодержащего гидроксида алюминия и носитель готовят аналогично примеру 2, с той разницей, что в автоклав к отмытой и отжатой лепешке гидроксида алюминия добавляют раствор 2,3 г борной кислоты в 1 литре 1,5%-ного раствора азотной кислоты, имеющий рН 1,4. Все остальные операции по приготовлению носителя идентичны примеру 2.
Далее готовят раствор биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2], для чего в 30 мл дистиллированной воды при перемешивании последовательно растворяют 11,61 г лимонной кислоты C6H8O7; 13,42 г парамолибдата аммония (NH4)6Mo7O24×4H2O и 4,67 г никеля (II) углекислого основного водного NiCO3⋅mNi(OH)2⋅nH2O. После полного растворения всех компонентов, добавлением дистиллированной воды объем раствора доводят до 68 мл.
100 г полученного носителя пропитывают по влагоемкости 68 мл раствора, содержащего 21,45 г биметаллического комплексного соединения [Ni(H2O)2]2[Mo4O11(C6H5O7)2] при 60°С в течение 60 мин. Затем катализатор сушат на воздухе при 120°С. Высушенные гранулы катализатора нагревают на воздухе до 550°С со скоростью нагрева 275°С/час, затем прокаливают при температуре 550°С 4 ч. Далее катализатор охлаждают на воздухе до комнатной температуры, пропитывают по влагоемкости 55 мл воды и выдерживают в течение 1 часа при комнатной температуре. Далее катализатор сушат на воздухе при 120°С 2 ч.
Далее проводят изучение катализатора методами массового элементного анализа Ni, Мо, Al, В; Рамановской-; ИК- и EXAFS-спектроскопии, просвечивающей электронной микроскопии высокого разрешения, а также измеряют текстурные характеристики методом низкотемпературной адсорбции азота.
Полученный катализатор содержит, молибден и никель в форме алюмогетерополимолибдата никеля со структурой Андерсена NiH[Al(ОН)6Mo6O18] - 7,7 мас. % и в форме молибдата никеля NiMoO4 - 6,4 мас. %; носитель - остальное; при этом носитель содержит, мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; γ-Al2O3 - остальное.
Катализатор имеет удельную поверхность 245 м2/г, объем пор 0,55 см3/г, средний диаметр пор 85
Figure 00000008
, и представляет собой гранулы в поперечном сечении в виде трилистника с диаметром 2,5±0,2 мм и длиной до 10 мм.
Далее катализатор сульфидируют и проводят очистку кремнийсодержащего сырья аналогично примеру 1. Сульфидированный катализатор, содержит, мас. %: Мо - 7,0; Ni - 2,3; S - 4,7; носитель содержит мас. %: борат алюминия Al3BO6 со структурой норбергита - 5,0; γ-Al2O3 - остальное. Результаты каталитических экспериментов приведены в табл. 1.
Figure 00000009
Таким образом, как видно из приведенных примеров, предлагаемый способ за счет использования катализатора, имеющего оптимальный химический состав и текстуру, значительно превосходит по эффективности в превращении кремнийсодержащих соединений в условиях гидроочистки способ-прототип.

Claims (10)

1. Способ очистки дизельного топлива от соединений кремния, заключающийся в превращении дизельной фракции с высоким содержанием серы и кремния в присутствии катализатора защитного слоя, отличающийся тем, что используемый катализатор защитного слоя содержит молибден и никель в форме алюмогетерополимолибдата никеля со структурой Андерсена NiH[Al(OH)6Mo6O18] - 5,5-7,7 мас.% и в форме молибдата никеля NiMoO4 - 4,6-6,4 мас.%; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; γ - Al2O3 - остальное.
2. Способ по п. 1, отличающийся тем, что входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3,2 и 2,8
Figure 00000010
, с углом между ними 53,8°.
3. Способ по п. 1, отличающийся тем, что используемый катализатор имеет удельную поверхность 245-275 м2/г, объем пор 0,50-0,55 см3/г, средний диаметр пор 80-85
Figure 00000010
, представляет гранулы в поперечном сечении в виде трилистника с размером от вершины до середины основания 2,5±0,2 мм и длиной до 10 мм.
4. Способ по п. 1, отличающийся тем, что процесс проводят при объемной скорости подачи сырья через катализатор защитного слоя - 5-20 ч-1, соотношении Н2/сырье = 250-650 нм3 Н23 сырья, давлении 3-8 МПа, температуре 340-380°С.
5. Способ по п. 1, отличающийся тем, что в качестве сырья используют дизельные фракции, выкипающие до 360°С, содержащие до 200 ppm кремния, до 1,0% серы, до 200 ppm азота, имеющие плотность до 0,87 г/см3.
6. Способ очистки дизельного топлива от соединений кремния, заключающийся в превращении дизельной фракции с высоким содержанием серы и кремния в присутствии катализатора защитного слоя, отличающийся тем, что в качестве катализатора защитного слоя применяют сульфидированный катализатор, который содержит, мас.%: Мо - 5,0-7,0; Ni - 1,7-2,3; S - 3,4-4,7; носитель - остальное; при этом носитель содержит, мас.%: борат алюминия Al3BO6 со структурой норбергита - 5,0-25,0; γ-Al2O3 - остальное.
7. Способ по п. 6, отличающийся тем, что входящий в состав катализатора борат алюминия Al3BO6 со структурой норбергита представляет собой частицы с размерами от 10 до 200 нм, характеризующиеся межплоскостными расстояниями 3,2 и 2,8
Figure 00000010
, с углом между ними 53,8°.
8. Способ по п. 6, отличающийся тем, что используемый катализатор представляет гранулы в поперечном сечении в виде трилистника с размером от вершины до середины основания 2,5±0,2 мм и длиной до 10 мм.
9. Способ по п. 6, отличающийся тем, что процесс проводят при объемной скорости подачи сырья через катализатор защитного слоя - 5-20 ч-1, соотношении Н2/сырье = 250-650 нм3 Н23 сырья, давлении 3-8 МПа, температуре 340-380°С.
10. Способ по п. 6, отличающийся тем, что в качестве сырья используют дизельные фракции, выкипающие до 360°С, содержащие до 200 ppm кремния, до 1,0% серы, до 200 ppm азота, имеющие плотность до 0,87 г/см3.
RU2018145241A 2018-12-20 2018-12-20 Способ очистки дизельного топлива от соединений кремния RU2693380C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018145241A RU2693380C1 (ru) 2018-12-20 2018-12-20 Способ очистки дизельного топлива от соединений кремния

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018145241A RU2693380C1 (ru) 2018-12-20 2018-12-20 Способ очистки дизельного топлива от соединений кремния

Publications (1)

Publication Number Publication Date
RU2693380C1 true RU2693380C1 (ru) 2019-07-02

Family

ID=67251884

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018145241A RU2693380C1 (ru) 2018-12-20 2018-12-20 Способ очистки дизельного топлива от соединений кремния

Country Status (1)

Country Link
RU (1) RU2693380C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2732912C1 (ru) * 2019-10-03 2020-09-24 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ использования катализатора - ловушки кремния в процессе гидрогенизационной переработки нефтяного сырья

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2140964C1 (ru) * 1998-11-11 1999-11-10 ООО "Компания Катахим" Способ получения малосернистых нефтяных фракций
US6576121B2 (en) * 2000-09-15 2003-06-10 Haldor Topsoe A/S Process for the catalytic hydrotreating of silicon containing naphtha
RU2353644C1 (ru) * 2007-11-14 2009-04-27 Открытое акционерное общество "Ангарская нефтехимическая компания" (ОАО АНХК) Способ гидроочистки нефтяных фракций
RU2653494C1 (ru) * 2017-12-22 2018-05-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Катализатор защитного слоя

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2140964C1 (ru) * 1998-11-11 1999-11-10 ООО "Компания Катахим" Способ получения малосернистых нефтяных фракций
US6576121B2 (en) * 2000-09-15 2003-06-10 Haldor Topsoe A/S Process for the catalytic hydrotreating of silicon containing naphtha
RU2353644C1 (ru) * 2007-11-14 2009-04-27 Открытое акционерное общество "Ангарская нефтехимическая компания" (ОАО АНХК) Способ гидроочистки нефтяных фракций
RU2653494C1 (ru) * 2017-12-22 2018-05-10 Федеральное государственное бюджетное учреждение науки Институт катализа им. Г.К. Борескова Сибирского отделения Российской академии наук (ИК СО РАН) Катализатор защитного слоя

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2732912C1 (ru) * 2019-10-03 2020-09-24 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ использования катализатора - ловушки кремния в процессе гидрогенизационной переработки нефтяного сырья

Similar Documents

Publication Publication Date Title
US10596555B2 (en) Catalyst to attain low sulfur gasoline
JP6506430B2 (ja) チタニアを含有する改良された残油水素化処理触媒
CA2560925C (en) Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil
CN101307254B (zh) 劣质汽油生产清洁汽油的方法
RU2651269C2 (ru) Способ гидроочистки вакуумного дистиллята, использующий последовательность катализаторов
RU2715713C2 (ru) Катализатор гидрокрекинга среднего дистиллята, содержащий базовый экструдат, имеющий высокий объём нанопор
RU2617987C2 (ru) Способ получения катализатора гидроконверсии, содержащего по меньшей мере один цеолит nu-86
CN106475110B (zh) 超高金属负载量加氢催化剂的制备方法
RU2629355C1 (ru) Способ получения малосернистого дизельного топлива
RU2663902C1 (ru) Способ гидроочистки углеводородного сырья
KR970008727B1 (ko) 중탄화수소유의 수소화용 촉매 조성물
RU2653494C1 (ru) Катализатор защитного слоя
RU2692082C1 (ru) Катализатор защитного слоя для процесса гидроочистки кремнийсодержащего углеводородного сырья
US3814684A (en) Residue hydrodesulfurization process with catalysts whose pores have a small orifice size
RU2693380C1 (ru) Способ очистки дизельного топлива от соединений кремния
RU2626400C1 (ru) Способ получения малосернистого сырья каталитического крекинга
EA038249B1 (ru) Катализатор гидроочистки сырья гидрокрекинга
CN102049281A (zh) 一种超深度加氢脱硫催化剂及其制备方法
RU2649384C1 (ru) Способ гидроочистки сырья гидрокрекинга
RU2693379C1 (ru) Способ приготовления катализатора защитного слоя для процесса гидроочистки кремнийсодержащего углеводородного сырья
JP2711871B2 (ja) ヒドロゲルから水素処理触媒を製造する方法
JP2023550822A (ja) メソ多孔性・マクロ多孔性担体上の捕捉塊の存在中での有機金属不純物の捕捉方法
RU2534999C1 (ru) Способ гидроочистки углеводородного сырья
JP4480120B2 (ja) 軽油の水素化処理触媒及び軽油の水素化処理方法
RU2688155C1 (ru) Способ гидроочистки бензина каталитического крекинга

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20200123