RU2692122C1 - Твердотельный датчик линейных ускорений - Google Patents

Твердотельный датчик линейных ускорений Download PDF

Info

Publication number
RU2692122C1
RU2692122C1 RU2018141319A RU2018141319A RU2692122C1 RU 2692122 C1 RU2692122 C1 RU 2692122C1 RU 2018141319 A RU2018141319 A RU 2018141319A RU 2018141319 A RU2018141319 A RU 2018141319A RU 2692122 C1 RU2692122 C1 RU 2692122C1
Authority
RU
Russia
Prior art keywords
inertial mass
base
capacitive comb
comb
movable
Prior art date
Application number
RU2018141319A
Other languages
English (en)
Inventor
Сергей Петрович Тимошенков
Виктор Владимирович Калугин
Степан Александрович Анчутин
Андрей Сергеевич Тимошенков
Иван Сергеевич Дернов
Николай Михайлович Зарянкин
Анатолий Иванович Виноградов
Алексей Сергеевич Тимошенков
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники"
Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники", Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники"
Priority to RU2018141319A priority Critical patent/RU2692122C1/ru
Application granted granted Critical
Publication of RU2692122C1 publication Critical patent/RU2692122C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

Изобретение относится к измерительной технике и может применяться в микромеханических датчиках линейных ускорений. Устройство содержит основание, инерционную массу, упругие элементы. Сформированы две группы раздельных электрически неподвижных емкостных гребенчатых преобразователей. Гребенки подвижных емкостных гребенчатых преобразователей и неподвижных емкостных гребенчатых преобразователей сформированы со смещением относительно друг друга. Упругие элементы соединены одной стороной с инерционной массой, другой стороной соединены с площадками крепления к основанию. Площадки крепления к основанию расположены симметрично в центре симметрии инерционной массы вдоль продольной ее оси и симметрично относительно поперечной ее оси. Технический результат заключается в увеличении точности измерения линейных ускорений. 2 ил.

Description

Изобретение относится к измерительной технике и может применяться в микромеханических датчиках линейных ускорений. Известен чувствительный элемент микромеханического акселерометра, содержащий диэлектрическую подложку и инерционную массу, расположенную с зазором относительно диэлектрической подложки, выполненную в виде пластины с гребенчатой структурой с одной стороны, из полупроводникового материала и связанную с подложкой с помощью упругих балок, выполненных из полупроводникового материала, которые одними концами жестко соединены с инерционной массой, а другими - с опорами, выполненными из полупроводникового материала, и расположенными непосредственно на диэлектрической подложке, неподвижный электрод емкостного преобразователя перемещений с гребенчатой структурой с одной стороны, выполненный из полупроводникового материала и расположенный на диэлектрической подложке с зазором относительно инерционной массы так, что образует плоский конденсатор в плоскости ее пластины через боковые зазоры и взаимопроникающие друг в друга гребенки электродов [1]. Главная функция упругих элементов - обеспечение подвеса инерционной массы, при этом параметры упругих элементов в процессе эксплуатации должны быть стабильными. Конструкция должна обеспечить уменьшение уровня погрешностей при наличии различных косых вибраций. Главным недостатком данной конструкции является высокая чувствительность к косым и круговым вибрациям, направленным не по измерительной оси, что приводит к изменению масштабных коэффициентов каналов. Высокая чувствительность конструкции чувствительного элемента продольным и поперечным вибрациям, направленным по осям X и Y и под углом к ним. Это существенным образом влияет на стабильность нулевого сигнала и точность измерения самого параметра, то есть линейного ускорения.
Выполнение упругих элементов в виде балки Г-образной формы, состоящей из двух идентичных элементов, причем симметричной, делают упругую систему датчика высокочувствительной к паразитным ускорениям и вибрациям.
Так, при воздействии вибрации по этим осям или под углом к ним, возникают объемные волновые процессы в торсионах, последние представляют собой в первом приближении стержни. Объемная волна в торсионах вызывает время-переменную деформацию в электропроводящей инерционной массе, являющуюся частью преобразователя перемещений. В результате чего на выходе датчика увеличивается смещение нуля и, как следствие, понижается точность прибора в целом.
Известен чувствительный элемент микромеханического акселерометра, содержащий основание, инерционную массу, упругие элементы, выполненные зигзагообразными или в виде меандра, емкостные гребенчатые встречно-штырьевые преобразователи [2].
Основным недостатком этого устройства является зависимость значения выходной величины от параметров источника питания датчика, усилителя и других элементов схемы, а также от внешних условий. При изменении напряжения или частоты генератора, питающего датчик, как напряжение, частота и фаза, являющиеся выходными величинами и снимаемые с сопротивления R, также изменяется.
Зависимость от внешних факторов, например от наличия в нем влаги и воздействия температур.
Чувствительный элемент микромеханического акселерометра подвержен действию пониженным и повышенным температурным воздействиям. При повышении, понижении рабочих температур, упругие элементы чувствительного элемента укорачиваются или удлиняются соответственно. Вследствие того, что упругие элементы жестко соединены с одной стороны, с инерционной массой, с другой стороны, с основанием, при этом последняя жестко соединена со стеклянными обкладками, то возникающая при этом деформация приложена к инерционной массе, которая в итоге перемещается. При этом на выходе преобразователя перемещений инерционной массы появляется сигнал при отсутствии действия линейного ускорения, то есть, появляется погрешность измерения полезного сигнала. Еще одним недостатком данного устройства является то, что после анодного соединения кремниевого чувствительного элемента микромеханического акселерометра со стеклянными обкладками, остаточное напряжение, возникающее в стыке «кремний-стекло» деформирует упругие элементы, которые перемещают инерционную массу, что увеличивает уровень нулевого сигнала. А это уменьшает точность прибора.
Задачей, на решение которой направлено изобретение, является увеличение точности измерения линейных ускорений.
Для достижения этого в твердотельном датчике линейных ускорений, содержащем основание, инерционную массу, упругие элементы, соединенные с площадками крепления к основанию, подвижные и неподвижные емкостные гребенчатые преобразователи, сформированы две группы раздельных электрически неподвижных емкостных гребенчатых преобразователей, гребенки подвижных емкостных гребенчатых преобразователей и неподвижных емкостных гребенчатых преобразователей сформированы со смещением относительно друг друга, смещение гребенок первой группы неподвижных и подвижных емкостных гребенчатых преобразователей выполнено в одну сторону, а смещение второй группы неподвижных и подвижных емкостных гребенчатых преобразователей выполнено в противоположную сторону, причем на одинаковые величины смещения, упругие элементы соединены одной стороной с площадками крепления к основанию, другой - с инерционной массой, площадки крепления расположены симметрично в центре симметрии инерционной массы.
Именно две группы раздельных электрически неподвижных емкостных гребенчатых преобразователей, не соединенных электрически, и гребенки подвижных емкостных гребенчатых преобразователей, сформированных на инерционной массе и, соответственно, сформированные как одно целое, то есть как единый электрод, сформированных со смещением относительно друг друга, реализуют дифференциальный принцип измерения параметра движения, то есть ускорения. Дифференциальная конструкция позволяет уменьшить погрешность нелинейности и увеличить рабочий диапазон перемещений. Внешние факторы - напряжение питания, температура окружающей среды и тому подобное - влияют лишь на чувствительность системы; на точность системы они могут влиять лишь в той мере, в какой она связана с чувствительностью. Устройство с емкостным дифференциальным преобразователем значительно меньше зависит от стабильности источника питания.
Устройство с дифференциальным емкостным преобразователем с воздушным диэлектриком не зависит ни от состава газа, ни от наличия в нем влаги, так как для обеих емкостей, составляющих дифференциальный датчик, меняется одинаково.
Таким образом, реализованный дифференциальный принцип измерения в устройстве существенно повышает точность измерения линейного ускорения.
Упругие элементы соединены одной стороной с инерционной массой, другой соединены с площадками крепления к основанию, расположенными симметрично в центре симметрии инерционной массы. При воздействии отрицательных или положительных температур в центральной точке закрепления, а именно в центре симметрии инерционной массы, которая представляет собой площадку крепления к основанию, механические напряжения равны нулю. В точке крепления и вблизи нее с учетом линейного закона распределения механических напряжений и деформаций, напряженное состояние отсутствует, тем самым, обеспечивает резкое уменьшение напряженного состояния на упругий элемент, сопряженный с площадкой крепления к основанию.
Таким образом, формирование площадок крепления с таким закреплением существенно снижает уровень нулевого сигнала и его нестабильность, а так же температурную погрешность, тем самым, повышая точность измерения линейных ускорений.
Предложенный твердотельный датчик линейных ускорений иллюстрируется чертежами, представленными на фиг. 1, 2. На фиг. 1, изображен твердотельный датчик линейных ускорений.
На фиг. 2а изображена эквивалентная схема твердотельного датчика линейных ускорений, на фиг.26 представлено схематичное изображение одиночной емкости гребенки твердотельного датчика линейных ускорений, где:
1 - инерционная масса,
2 - основание,
3 - упругие элементы,
4 - площадка крепления к основанию,
5 - первая группа неподвижных емкостных гребенчатых преобразователей,
6 - вторая группа неподвижных емкостных гребенчатых преобразователей,
7 - подвижные емкостные гребенчатые преобразователи,
8 - емкость С1, образованная первой группой неподвижных емкостных гребенчатых преобразователей и подвижных емкостных гребенчатых преобразователей,
9 - емкость С2, образованная второй группой неподвижных емкостных гребенчатых преобразователей и подвижных емкостных гребенчатых преобразователей,
10 - подвижная часть гребенки,
11 - неподвижная часть гребенки.
Твердотельный датчик линейных ускорений выполнен из полупроводникового материала, содержит основание 2, инерционную массу 1. Упругие элементы 3, соединенные одной стороной с инерционной массой 1 - другой с площадкой крепления к основанию 4. На основании 2 с одной стороны закреплены первая группа неподвижных емкостных гребенчатые преобразователей 5, с другой стороны вторая группа неподвижных емкостных гребенчатых преобразователей 6. На инерционной массе 1 сформированы подвижные емкостные гребенчатые преобразователи 7. Совместно первая группа неподвижных емкостных гребенчатых преобразователей 5 и подвижных емкостных гребенчатых преобразователей 7 образуют емкость C1. Совместно вторая группа неподвижных емкостных гребенчатых преобразователей 6 и подвижных емкостных гребенчатых преобразователей 7 образуют емкость С2. Сформированные таким образом емкости С1 8 и С2 9 образуют емкостный дифференциальный преобразователь перемещений инерционной массы 1.
Твердотельный датчик линейных ускорений работает следующим образом. При воздействии линейного ускорения инерционная масса 1 отклоняется от своего нейтрального положения. Упругие элементы 3 изгибаются, и возникает дисбаланс на сформированных емкостях C1 8 и С2 9 образующих емкостный дифференциальный преобразователь перемещений инерционной массы 1.
Величина этого дисбаланса пропорциональна измеряемому ускорению. Внешние факторы - напряжение питания, температура окружающей среды и т.п. не влияют на точность измерения ускорения в отличие от прототипа. Кроме того дифференциальный принцип дает возможность контролировать не только величину перемещения, но и направление. Таким образом, реализованный дифференциальный принцип измерения существенно повышает точность измерения линейного ускорения по сравнению с прототипом.
Упругие элементы в предлагаемом изобретении соединены с площадками крепления к основанию, расположенными в центре симметрии инерционной массы. И при воздействии отрицательных или положительных температур в центральной точке закрепления, а именно в центре симметрии инерционной массы, которая представляет собой площадки крепления к основанию, механические напряжения равны нулю, в отличие от прототипа. В точке крепления и вблизи ее с учетом линейного закона распределения механических напряжений и деформаций, напряженное состояние отсутствует, в отличие от прототипа. Тем самым обеспечивает резкое уменьшение напряженного состояния на упругий элемент, сопряженный с площадками крепления к основанию - к уменьшению от воздействия внешних факторов и, соответственно, увеличивает точность датчика.
Источники информации:
1. Патент РФ №2 279 092.
2. Патент РФ №131 194 (прототип).

Claims (1)

  1. Твердотельный датчик линейных ускорений, содержащий основание, инерционную массу, упругие элементы, соединенные с площадками крепления к основанию, подвижные и неподвижные емкостные гребенчатые преобразователи, отличающийся тем, что сформированы две группы раздельных электрически неподвижных емкостных гребенчатых преобразователей, гребенки подвижных емкостных гребенчатых преобразователей и неподвижных емкостных гребенчатых преобразователей сформированы со смещением относительно друг друга, смещение гребенок первой группы неподвижных и подвижных емкостных гребенчатых преобразователей выполнено в одну сторону, а смещение второй группы неподвижных и подвижных емкостных гребенчатых преобразователей выполнено в противоположную сторону, причем на одинаковые величины смещения, упругие элементы соединены одной стороной с площадками крепления к основанию, другой - с инерционной массой, площадки крепления расположены симметрично в центре симметрии инерционной массы.
RU2018141319A 2018-11-23 2018-11-23 Твердотельный датчик линейных ускорений RU2692122C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018141319A RU2692122C1 (ru) 2018-11-23 2018-11-23 Твердотельный датчик линейных ускорений

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018141319A RU2692122C1 (ru) 2018-11-23 2018-11-23 Твердотельный датчик линейных ускорений

Publications (1)

Publication Number Publication Date
RU2692122C1 true RU2692122C1 (ru) 2019-06-21

Family

ID=67038059

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018141319A RU2692122C1 (ru) 2018-11-23 2018-11-23 Твердотельный датчик линейных ускорений

Country Status (1)

Country Link
RU (1) RU2692122C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746112C1 (ru) * 2020-09-15 2021-04-07 Акционерное общество "Инерциальные технологии "Технокомплекса" (АО "ИТТ") Твердотельный датчик линейных ускорений

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU131194U1 (ru) * 2013-04-17 2013-08-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" (МИЭТ) Чувствительный элемент микромеханического акселерометра
US8783107B2 (en) * 2006-03-27 2014-07-22 Commissariat A L'energie Atomique Resonant inertial microsensor with variable thickness produced by surface engineering
CN106033091A (zh) * 2015-03-11 2016-10-19 中芯国际集成电路制造(上海)有限公司 一种mems加速度传感器及其制备方法、电子装置
RU170862U1 (ru) * 2016-12-22 2017-05-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Чувствительный элемент датчика удара

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8783107B2 (en) * 2006-03-27 2014-07-22 Commissariat A L'energie Atomique Resonant inertial microsensor with variable thickness produced by surface engineering
RU131194U1 (ru) * 2013-04-17 2013-08-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский университет "МИЭТ" (МИЭТ) Чувствительный элемент микромеханического акселерометра
CN106033091A (zh) * 2015-03-11 2016-10-19 中芯国际集成电路制造(上海)有限公司 一种mems加速度传感器及其制备方法、电子装置
RU170862U1 (ru) * 2016-12-22 2017-05-11 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Чувствительный элемент датчика удара

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2746112C1 (ru) * 2020-09-15 2021-04-07 Акционерное общество "Инерциальные технологии "Технокомплекса" (АО "ИТТ") Твердотельный датчик линейных ускорений

Similar Documents

Publication Publication Date Title
CN106970244B (zh) 一种多量程的mems闭环加速度计
JPH04269659A (ja) 環状質量部材を用いた加速度計
CN102128953A (zh) 对称倾斜折叠梁结构电容式微加速度传感器
CN101216498A (zh) 一种双轴差动电容式微机械加速度计
RU2632264C1 (ru) Датчик с подвижным чувствительным элементом, работающим в смешанном вибрирующем и маятниковом режиме, и способы управления таким датчиком
US20200174035A1 (en) Mems accelerometric sensor having high accuracy and low sensitivity to temperature and aging
SU1346058A3 (ru) Трехосный электростатический акселерометр
JP6330055B2 (ja) 加速度センサ
RU2692122C1 (ru) Твердотельный датчик линейных ускорений
JP6661937B2 (ja) 加速度補正データ算出装置及び加速度センサの製造方法
US11698388B2 (en) Micromechanical device with elastic assembly having variable elastic constant
JP2015125124A (ja) 多軸センサ
CN112485470A (zh) 低噪声多轴微机电系统加速度计
RU138627U1 (ru) Чувствительный элемент микромеханического акселерометра
RU2543686C1 (ru) Микромеханический акселерометр
RU131194U1 (ru) Чувствительный элемент микромеханического акселерометра
CN114839398A (zh) 一种电容式柔性加速度传感器及其制备方法
JPH03293565A (ja) Pwm静電サーボ式加速度計
RU170862U1 (ru) Чувствительный элемент датчика удара
RU2338997C2 (ru) Способ измерения зазора между электродами и подвижной массой микромеханического устройства и устройство для его реализации
JPH11133055A (ja) 静電容量形3軸加速度センサ
RU203772U1 (ru) Чувствительный элемент микромеханического датчика
US10775247B1 (en) Capacitive shift-force sensor
RU190397U1 (ru) Микромеханический осевой акселерометр
KR100687467B1 (ko) 경사각 측정 센서 및 그 제조방법