RU2691777C1 - Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки - Google Patents

Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки Download PDF

Info

Publication number
RU2691777C1
RU2691777C1 RU2018123930A RU2018123930A RU2691777C1 RU 2691777 C1 RU2691777 C1 RU 2691777C1 RU 2018123930 A RU2018123930 A RU 2018123930A RU 2018123930 A RU2018123930 A RU 2018123930A RU 2691777 C1 RU2691777 C1 RU 2691777C1
Authority
RU
Russia
Prior art keywords
evaporator
temperature
coolant
nominal
values
Prior art date
Application number
RU2018123930A
Other languages
English (en)
Inventor
Андрей Александрович Басов
Виктор Иванович Велюханов
Константин Анатольевич Коптелов
Original Assignee
Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Общество с ограниченной ответственностью "Фриготрейд"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева", Общество с ограниченной ответственностью "Фриготрейд" filed Critical Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королева"
Priority to RU2018123930A priority Critical patent/RU2691777C1/ru
Application granted granted Critical
Publication of RU2691777C1 publication Critical patent/RU2691777C1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/10Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature between an inlet and an outlet point, combined with measurement of rate of flow of the medium if such, by integration during a certain time-interval
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/01Control of temperature without auxiliary power
    • G05D23/02Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature
    • G05D23/021Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste
    • G05D23/023Control of temperature without auxiliary power with sensing element expanding and contracting in response to changes of temperature the sensing element being a non-metallic solid, e.g. elastomer, paste the sensing element being placed outside a regulating fluid flow
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1919Control of temperature characterised by the use of electric means characterised by the type of controller
    • G05D23/1923Control of temperature characterised by the use of electric means characterised by the type of controller using thermal energy, the cost of which varies in function of time
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Изобретение относится к парокомпрессионным холодильным установкам и может быть использовано для регулирования температуры жидкого хладоносителя в различных технологических процессах. Заявлен способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки, который включает измерение температуры хладоносителя на выходе из испарителя и регулирование объемной производительности, при этом фиксируют номинальное значение температуры хладоносителя на выходе из испарителя и диапазон ее регулирования. Для фиксированного значения номинальной температуры и диапазона ее регулирования расчетным путем определяют и фиксируют номинальное значение давления кипения хладагента в испарителе и диапазон его регулирования. Контролируют текущие значения температуры хладоносителя на выходе из испарителя, давления кипения хладагента и объемной производительности компрессора. Сравнивают полученные значения упомянутых температуры хладоносителя и давления кипения хладагента с их фиксированными соответствующими номинальными значениями, при этом номинальное значение температуры хладоносителя на выходе из испарителя поддерживают изменением объемной производительности компрессора в диапазоне номинальных значений давлений хладагента в испарителе, соответствующих номинальному диапазону регулирования температуры хладоносителя на выходе из испарителя с учетом расчетной зависимости Р=ƒ(t), где t- номинальные значения температуры хладоносителя на выходе из испарителя; Р- номинальные значения давления кипения хладагента в испарителе; ƒ - функция, зависящая от типа хладагента, хладоносителя и конструкции испарителя, получаемая в результате расчетов испарителя при различных величинах тепловой нагрузки на него. Технический результат - повышение точности регулирования температуры хладоносителя на выходе из испарителя свыше ±0,5°С. 2 ил.

Description

Изобретение относится к парокомпрессионным холодильным установкам и может быть использовано для регулирования температуры жидкого хладоносителя в различных технологических процессах, например, в системах жидкостного термостатирования космических аппаратов при наземных испытаниях, а также в других областях промышленности (фармацевтической, химической), а также при термостатировании различного электронного и оптического оборудования при их эксплуатации, а также для систем прецизионного кондиционирования серверных залов и ЦОД (центров обработки данных) для телекоммуникационных компаний.
Широко известные способы автоматического регулирования какой-либо величины (расхода, давления и т.п.) в установке заключаются в измерении текущего значения управляемой величины, сравнению ее с заданной, выработки по предварительно установленной зависимости управляющего воздействия на исполнительный блок на регулируемый процесс или объект управления. Эти общие принципы приведены в книге автора Воронова А.А. «Основы теории автоматического управления. Автоматическое регулирование непрерывных линейных систем», М., изд. Энергия, 1980 г., 312 с.
Обычно способы регулирования температуры осуществляются с помощью измерения температуры в определенных точках системы чувствительными элементами, вырабатывающими управляющие сигналы для исполнительных органов, непосредственно воздействующих на тепловые процессы.
Современные системы тепло- и холодоснабжения для поддержания заданной температурой теплоносителя являются, как минимум, двухконтурными, с основным контуром тепло- или холодоснабжения и контуром с потребителем тепла или холода. Поэтому управлять такими системами можно путем одновременного взаимосвязанного воздействия на регулирование температуры теплоносителя в контуре потребителя и регулированием расхода в основном контуре.
Известен способ регулирования температуры теплоносителя в системе терморегулирования космического аппарата (КА) с излучательным радиатором (патент RU 2187083, опубл. 10.08.2002, бюл. №22, МПК: G01K 17/10 (2000.01)), в котором с целью повышения точности регулирования температуры теплоносителя в системе, в начальный период эксплуатации КА при режимах функционирования КА с фиксированной внутренней и внешней тепловой нагрузкой на КА измеряют установившиеся температуры на входе и выходе излучательного радиатора (выполняющего роль холодильной машины), и для каждого значения этой нагрузки задают расход в контуре излучательного радиатора, определенный по предварительно рассчитанной формуле, связывающей характеристики радиатора, диапазон регулирования температуры и тепловую нагрузку на систему и обеспечивающий необходимую температуру хладоносителя в контуре потребителя (контур охлаждения жилых и приборных отсеков КА). Фактически, таким образом, проводят тарировку положения исполнительного механизма регулятора температуры в контуре излучательного радиатора в зависимости от тепловой нагрузки на систему. После чего в дальнейшем полете для каждого значения тепловой нагрузки задают и выдерживают соответствующее значение расхода в контуре излучательного радиатора (аналог холодильной машины) путем установки экипажем или по командной радиолинии из центра управления полетом исполнительного механизма регулятора расхода в соответствующее положение. Это обеспечивает достаточную для КА точность регулирования температуры в жилых (±3)°С и приборных (±5)°С отсеках. При этом экономится ресурс работы регулятора расхода, поскольку он значительное время полета находится в фиксированных положениях, при этом ресурс его исполнительного механизма не вырабатывается.
Данный способ регулирования был использован в системе терморегулирования долговременной орбитальной станции «Мир», которая поддерживала температуру в жилых отсеках в диапазоне (+18÷+25)°С. Именно такой широкий диапазон регулирования является недостатком данного способа, при этом способ является дискретным, т.е. для каждого значения тепловой нагрузки задается свое соотношение расходов.
Известен способ автоматического регулирования температуры в аппарате с обогревающей рубашкой по патенту RU 2167449, опубл. 20.05.2001, бюл. №14, МПК: G05D 23/19 (2000.01). Способ заключается в том, что по количеству потребляемой электроэнергии вычисляют эквивалентную мощность источника тепла, принимая ее в качестве заданной величины, измеряют температуры массы вещества внутри аппарата и жидкого теплоносителя в обогреваемой рубашке, внутренних и наружных поверхностей всех стенок аппарата, температуру воздуха вокруг аппарата, определяют коэффициенты теплоотдачи поверхностей стенок аппарата, вычисляют тепловые потоки и фактические значения тепловой мощности, сопоставляют с заданной величиной мощности, сопоставляют значение текущей температуры с заданной величиной температуры, а сигналы, пропорциональные разностям фактических величин эквивалентной мощности и температуры вещества и их заданных значений, подают на регуляторы мощности и температуры, вырабатывающие сигналы, воздействующие на источник тепла по заданным законам. Недостатками данного способа являются трудность его практической реализации вследствие сложных математических вычислений, при этом принимаются определенные расчетные допущения, снижающие достоверность полученных расчетным путем данных, которые, в свою очередь, снижают точность регулирования температуры. Поэтому этот способ регулирования можно использовать только в высокотемпературных процессах, где даже точность ±10°С является хорошим результатом.
Известен также патент RU №2325591, опубл. 27.05.2008, бюл. №15, МПК: F24D 19/10 (2006.01) под названием «Способ автоматического регулирования расхода тепла в тепловой сети при двухконтурной системе отопления», в котором, требуемая температура в тепловой сети при двухконтурной системе отопления обеспечивается путем поддержания заданных соотношений между давлениями и температурами в прямом и обратном трубопроводах сети. При этом сигналы с датчиков давления и температур подаются в микропроцессорные контроллеры, а изменение расхода теплоносителя и его регулирование осуществляется побудителями расхода с частотными преобразователями.
Недостаток способа - невысокая точность поддержания температуры (±3÷4)°С, приемлемая для систем тепло-водоснабжения с положительными температурами теплоносителей в гидравлических контурах, но недостаточная технологических процессов, требующих более высокой точности поддержания температуры на входе в охлаждаемое оборудование.
Наиболее близким к предлагаемому техническому решению является способ регулирования температуры хладоносителя в холодильной установке по а.с. СССР №397721, опубл. 17.09.1973, бюл. №37, МПК: F25B 49/00, выбранный за прототип.
Способ заключается в том, что в холодильной установке с испарителем и потребителем, поддерживают температуру хладоносителя на выходе из испарителя изменением расхода хладоносителя, циркулирующего через испаритель.
Недостатком данного способа является низкая энергоэффективность и его недостаточная точность поддержания температуры в охлаждаемом объекте, поскольку производительность холодильного компрессора регулируется только путем его пуска и остановки по сигналу двухпозиционного реле температуры, установленного на выходе хладоносителя из испарителя. А частые включения холодильного компрессора вследствие высоких значений пускового тока, в 1,5-2 раза превышающего рабочий ток компрессора, ведет к повышенному энергопотреблению при использовании этого способа регулирования. Что касается точности регулирования температуры хладоносителя, то способ-прототип отличается достаточной инерционностью и поэтому может применяться, когда требуется поддерживать температуру охлаждаемого объекта в достаточно широком диапазоне регулирования температуры, например, +5±2°С. Включение происходит, когда температура охлаждаемого объекта достигает верхнего предела срабатывания, выключение, соответственно, когда эта температура достигает нижнего предела, что не позволяет получать точность регулирования температуры хладоносителя на выходе из испарителя с точностью до ±0,5°С, которая нужна для термостатирования оптических и электронных устройств в различных условиях, а также нужна при термостатировании приборного оборудования летательных аппаратов и для прецизионного кондиционирования центров обработки данных (ЦОД) телекоммуникационных компаний.
Использование предлагаемого способа регулирования температуры жидкого хладоносителя позволяет получить точность регулирования температуры хладоносителя на выходе из испарителя с точностью 0,5°С и выше.
В настоящее время возрастают требования к современным системам термостатирования оборудования для космических аппаратов, оптикоэлектронных устройств, системам прецизионного кондиционирования серверных залов и ЦОД телекоммуникационных компаний в части точности поддержания температуры жидких хладоносителей, при этом в качестве хладоносителей для таких систем рекомендуется использовать воду и нетоксичные водные растворы. Работа систем термостатирования с использованием таких хладоносителей всегда связаны с опасностью их замерзания внутри испарителя при работе вблизи температуры их замерзания с последующим разрушением теплообменной поверхности испарителя, поскольку при снижении температуры кипения хладагента в испарителе на 3÷5°С ниже температуры его замерзания, хладоноситель начинает примерзать к стенкам труб и если этот процесс оперативно не остановить, теплообменная батарея замерзнет и потеряет герметичность, поскольку превращаясь в лед вода и водные растворы увеличиваются в объеме.
Поэтому при работе с системами прецизионного термостатирования задача повышения точности поддержания температуры хладоносителя в очень узком температурном диапазоне имеет два аспекта, во-первых обеспечить требования разработчиков к точности поддержания температуры, а во-вторых, при работе с хладоносителями на основе воды и водных растворов обеспечивая до ±0,5°С, можно надежно контролировать охлаждение хладоносителя вблизи его температуры замерзания и гарантированно не допускать намерзания льда внутри испарителя холодильной установки.
Задачей изобретения является повышение точности регулирования температуры хладоносителя на выходе из испарителя путем измерения давления кипения хладагента и поддержание его в заданном расчетом диапазоне, соответствующем требуемому диапазону поддержания температуры путем соответствующего изменения объемной производительности компрессора холодильной установки.
Техническим результатом изобретения является повышение точности регулирования температуры хладоносителя на выходе из испарителя свыше ±0,5°С, что позволяет получать непосредственно в испарителях парокомпрессионных холодильных установок хладоноситель с заданной стабильной температурой для систем жидкостного термостатирования космических аппаратов при наземных испытаниях, а также поддержание заданного температурного режима различного электронного и оптического оборудования при их эксплуатации или наземной отработке.
Технический результат достигается тем, что в способе регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки, включающим измерение температуры хладоносителя на выходе из испарителя и регулирование объемной производительности, при этом фиксируют номинальное значение температуры хладоносителя на выходе из испарителя и диапазон ее регулирования, для фиксированного значения номинальной температуры и диапазона ее регулирования расчетным путем определяют и фиксируют номинальное значение давления кипения хладагента в испарителе и диапазон его регулирования, контролируют текущие значения температуры хладоносителя на выходе из испарителя, давления кипения хладагента и объемной производительности компрессора, сравнивают полученные значения упомянутых температуры хладоносителя и давления кипения хладагента с их фиксированными соответствующими номинальными значениями, при этом номинальное значение температуры хладоносителя на выходе из испарителя поддерживают изменением объемной производительности компрессора в диапазоне номинальных значений давлений хладагента в испарителе, соответствующих фиксированному номинальному диапазону регулирования температуры хладоносителя на выходе из испарителя с учетом расчетной зависимости:
Figure 00000001
где:
tвых.ном. - номинальные температуры хладоносителя на выходе из испарителя;
Ркип.ном. - номинальные значения давления кипения хладагента в испарителе;
ƒ - функция, зависящая от типа хладагента, хладоносителя и конструкции испарителя, получаемая в результате расчетов испарителя при различных величинах тепловой нагрузки на него.
Сущность изобретения заключается в следующем.
Способ позволяет регулировать процесс теплообмена внутри испарительного теплообменника парокомпрессионной холодильной установки, предназначенного для получения в испарителе хладоносителя заданной температуры с точностью выше 0,5°С для термостатирования оборудования. Для этого используют расчетную зависимость (1) теплообмена в испарителе, связывающую температуру хладоносителя на выходе из испарителя с давлением кипения хладагента в испарителе, контролируя эти параметры при работе холодильной установки. Таким образом, температуру кипения хладагента в испарителе, обеспечивающую требуемую точность поддержания температуры хладоносителя на выходе из испарителя, регулируют с помощью электронного контроллера, управляя объемной производительностью компрессора в соответствии с расчетной зависимостью (1) и измеренными значением температуры хладоносителя на выходе из испарителя и давлением кипения хладагента в испарителе. При отклонении температуры хладоносителя на выходе из испарителя от номинальной, изменяя объемную производительность компрессора предложенный способ регулирования позволяет изменить температуру кипения хладагента в испарителе - вернуть температуру хладагента на выходе из испарителя к своему номинальному значению. Реализация предложенного способа на изготовленной установке наземного термостатирования доказала возможность получения хладоносителя с заданной температурой и точностью поддержания не менее ±0,5°С, что гарантированно исключит замерзание хладоносителей на основе воды и водных растворов внутри испарителя при работе с температурами вблизи точки их замерзания.
Реализацию предложенного способа регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки рассмотрим на примере установки, схема которой показана на фиг. 1, где обозначено:
1 - контур хладагента;
2 - компрессор;
3 - регулятор объемной производительности компрессора (частотный привод);
4 - конденсатор воздушного охлаждения;
5 - расширительное устройство;
6 - испаритель;
7 - полость хладагента;
8 - полость хладоносителя;
9 - датчик давления хладагента в испарителе;
10 - электронный контроллер;
11 - контур хладоносителя;
12 - насос;
13 - охлаждаемый объект;
14 - датчик температуры.
На фиг. 2 представлен график расчетной зависимости, введенный в электронный контроллер, связывающий давление кипения хладагента в испарителе с температурой хладоносителя на выходе из испарителя.
Парокомпрессорная холодильная установка содержит контур хладагента 1 и контур хладоносителя 11, связанные в тепловом отношении испарителем 6. В контуре хладагента 1 установлен датчик давления 9, в контуре хладоносителя датчик температуры 14 соответственно, электрически связанные с электронным контроллером 10. Контур хладагента 1 состоит из последовательно соединенных компрессора 2 с регулятором объемной производительности 3, выполненным, например, в виде частотного привода, который электрически связан с электронным контроллером 10, конденсатора воздушного охлаждения 4, расширительного устройства 5, полости хладагента 7 испарителя 6. Контур хладоносителя 11 включает в себя последовательно соединенные полость хладоносителя 8 испарителя 6, насос 12, охлаждаемый объект 13.
Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки осуществляется следующим образом. Предположим, что холодильная установка работает в стационарном режиме, при котором температура хладоносителя на выходе из испарителя 6 составляет +1,5°С. Номинальный диапазон значений температур хладоносителя на выходе из полости хладоносителя 8 испарителя 6, введенный в электронный контроллер 10, соответствует номинальной температуре хладоносителя +1,5°С±0,5°С на выходе из испарителя. Номинальной температуре хладоносителя +1,5°С на выходе из испарителя 6 соответствует температура кипения хладагента в испарителе минус 2°С и давление кипения хладагента 4,8 бар в полости хладагента 7 испарителя 6. Номинальный диапазон температуры хладоносителя Δtвых.ном., с которой он должна поступать к потребителю 13 составляет +1,5±0,5°С, т.е. +1÷+2°С. Тепловой расчет конкретного испарителя 6 при различных величинах тепловой нагрузки на хладагенте R507A (ГОСТ Р ИСО 17584-2015) по программе производителя испарителя, показывает, что температуры кипения хладагента для заданного температурного диапазона хладоносителя составляет -1÷-3°С. По термодинамическим таблицам хладагентов определяют давление кипения хладагента R507A (ГОСТ Р ИСО 17584-2015) в испарителе 6: при температуре кипения хладагента минус 1°С давление кипения составляет 5,0 бар, а при температуре кипения минус 3°С давление кипения должно быть 4,6 бар, т.е. поддерживая изменением объемной производительности компрессора 2 в полости 7 испарителя 6 давление хладагента в диапазоне от 5,0 бар до 4,6 бар холодильная установка будет гарантированно поддерживать температуру хладоносителя на выходе из полости хладоносителя 8 испарителя 6 в заданном номинальном диапазоне +1÷+2°С. На фиг. 2 представлена расчетная зависимость полученная для конкретного испарителя 6, связывающая необходимый номинальный диапазон температур хладоносителя на выходе из полости 8 испарителя Δtвых.ном. с номинальным давлением кипения Ркип.ном. хладагента в полости 7 испарителя 6 и соответствующими этому диапазону температурами кипения хладагента tкип.. Изменение объемной производительности компрессора 2 с регулятором производительности 3 в виде частотного привода осуществляется следующим образом.
При работе холодильной установки фиксируют номинальную температуру хладоносителя на выходе из испарителя 6 Δtвых.ном=1,5°С и диапазон ее регулирования ±0,5°С. Для указанной выше номинальной температуры и диапазона ее регулирования расчетным путем определяют и фиксируют номинальное давление кипения хладагента в испарителе и диапазон его регулирования 4,8±0,2 бар. Таким образом, получают расчетное соотношение между значениями температурой хладоносителя tвых.ном на выходе из испарителя 6 и значениями давления кипения Ркип.ном. хладагента в полости 7 испарителя 6. Это соотношение вводят в электронный контроллер 10, с помощью которого осуществляют регулирование температуры жидкого хладоносителя на выходе из испарителя. В процессе работы холодильной установки контролируют текущие значения температур хладоносителя tвых.ном. на выходе из полости 8 испарителя 6 с помощью датчика температуры 14 и давления кипения хладагента Ркип.ном. в полости 7 испарителя 6 с помощью датчика давления 9. Полученные текущие значения указанных выше параметров сравнивают с фиксированными значением номинальной температуры хладоносителя +1,5°С на выходе из полости 8 испарителя 6 и давления кипения 4,8 бар хладагента в полости 7 испарителя 6, заложенными в память электронного контроллера 10.
При повышении температуры температуры хладоносителя tвых.ном. на выходе из полости 8 испарителя 6, фиксируемого датчиком температуры 14 например, на 0,5°С относительно номинальной температуры в контроллере +1,5°С, давление кипения хладагента в полости 7 испарителя 6 будет уменьшаться относительно номинального давления кипения 4,8 бар и достигнет значения 4,6 бар. С помощью электронного контроллера 10 формируют управляющий сигнал на регулятор объемной производительности 3 (частотный привод) компрессора 2, который увеличивает объемную производительность компрессора за счет увеличения частоты вращения его коленчатого вала. Тем самым, в полость 7 испарителя 6 поступает большее количество хладагента, что ведет к росту его давления кипения Ркип.ном., измеряемого датчиком давления 9, и, соответственно, к возврату температуры кипения к значению tкип.=-2°С, соответствующей номинальной температуре температуры хладоносителя на выходе из испарителя +1,5°С.
Если с помощью датчика температуры 14 фиксируют понижение температуры хладоносителя tвых.ном. на выходе из полости 8 испарителя 6, например, на 0,5°С относительно номинальной температуры +1,5°С и опуститься до +1°С (при этом давление кипения хладагента в полости 7 испарителя 6 будет увеличиваться относительно номинального значения 4,8 бар и достигнет значения 5,0 бар), то с помощью электронного контроллера 10 формируют управляющий сигнал на регулятор объемной производительности 3 (частотный привод) компрессора 2, который уменьшает объемную производительность компрессора за счет уменьшения частоты вращения его коленчатого вала. Тем самым, в полость 7 испарителя 6 поступает меньшее количество хладагента, что ведет к понижению его давления кипения Ркип.ном., измеряемого датчиком давления 9 до значения 4,8 бар, и, соответственно, к возврату температуры кипения к значению tкип.=-2°С, соответствующей номинальной температуре хладоносителя на выходе из испарителя +1,5°С.
Таким образом, осуществляется регулирование температуры жидкого хладоносителя в испарителе парокомпрессионной холодильной машины, что позволяет повысить точность термостатирования различных объектов как при наземной отработке, так и при натурных испытаниях.

Claims (5)

  1. Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки, включающий измерение температуры хладоносителя на выходе из испарителя и регулирование объемной производительности, отличающийся тем, что фиксируют номинальное значение температуры хладоносителя на выходе из испарителя и диапазон ее регулирования, для фиксированного значения номинальной температуры и диапазона ее регулирования расчётным путем определяют и фиксируют номинальное значение давления кипения хладагента в испарителе и диапазон его регулирования, контролируют текущие значения температуры хладоносителя на выходе из испарителя, давления кипения хладагента и объемной производительности компрессора, сравнивают полученные значения упомянутых температуры хладоносителя и давления кипения хладагента с их фиксированными соответствующими номинальными значениями, при этом номинальное значение температуры хладоносителя на выходе из испарителя поддерживают изменением объемной производительности компрессора в диапазоне номинальных значений давлений хладагента в испарителе, соответствующих номинальному диапазону регулирования температуры хладоносителя на выходе из испарителя с учётом расчётной зависимости
  2. Pкип.ном=ƒ(tвых.ном.),
  3. где tвых.ном. - номинальные значения температуры хладоносителя на выходе из испарителя;
  4. Ркип.ном. - номинальные значения давления кипения хладагента в испарителе;
  5. ƒ - функция, зависящая от типа хладагента, хладоносителя и конструкции испарителя, получаемая в результате расчётов испарителя при различных величинах тепловой нагрузки на него.
RU2018123930A 2018-06-29 2018-06-29 Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки RU2691777C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018123930A RU2691777C1 (ru) 2018-06-29 2018-06-29 Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018123930A RU2691777C1 (ru) 2018-06-29 2018-06-29 Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки

Publications (1)

Publication Number Publication Date
RU2691777C1 true RU2691777C1 (ru) 2019-06-18

Family

ID=66947390

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018123930A RU2691777C1 (ru) 2018-06-29 2018-06-29 Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки

Country Status (1)

Country Link
RU (1) RU2691777C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2725912C1 (ru) * 2019-10-03 2020-07-07 Акционерное общество "Научно-технический комплекс "Криогенная техника" Способ регулирования давления транскритического цикла холодильной установки на углекислом газе

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU397721A1 (ru) * 1971-05-25 1973-09-17 Ленинградский зональный научно исследовательский , проектный институт типового , эксг ментального проектировани жилых , общественных зданий, Ленинградский государственный проектный институт, Ленинградский проектный институт Способ регулирования температуры хладоносителя в холодильной установке
SU440004A3 (ru) * 1971-03-01 1974-08-15 Комбинат Феб Луфт-Унд Кельтетехник (Фирма) Способ стабилизации температуры хладоносителя
US5177973A (en) * 1991-03-19 1993-01-12 Ranco Incorporated Of Delaware Refrigeration system subcooling flow control valve
RU2107234C1 (ru) * 1992-03-04 1998-03-20 Экоэйр Корп. Способ и устройство для управления системой охлаждения (варианты), способ и устройство управления центробежным компрессором
RU2167449C2 (ru) * 1999-01-19 2001-05-20 Курский государственный технический университет Способ автоматического регулирования температуры в аппарате с обогревающей рубашкой
US7114343B2 (en) * 2004-08-11 2006-10-03 Lawrence Kates Method and apparatus for monitoring a condenser unit in a refrigerant-cycle system
RU2325591C1 (ru) * 2006-08-01 2008-05-27 Государственное образовательное учреждение высшего профессионального образования "Самарский государственный архитектурно-строительный университет" (СГАСУ) Способ автоматического регулирования расхода тепла в тепловой сети при двухконтурной системе отопления

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU440004A3 (ru) * 1971-03-01 1974-08-15 Комбинат Феб Луфт-Унд Кельтетехник (Фирма) Способ стабилизации температуры хладоносителя
SU397721A1 (ru) * 1971-05-25 1973-09-17 Ленинградский зональный научно исследовательский , проектный институт типового , эксг ментального проектировани жилых , общественных зданий, Ленинградский государственный проектный институт, Ленинградский проектный институт Способ регулирования температуры хладоносителя в холодильной установке
US5177973A (en) * 1991-03-19 1993-01-12 Ranco Incorporated Of Delaware Refrigeration system subcooling flow control valve
RU2107234C1 (ru) * 1992-03-04 1998-03-20 Экоэйр Корп. Способ и устройство для управления системой охлаждения (варианты), способ и устройство управления центробежным компрессором
RU2167449C2 (ru) * 1999-01-19 2001-05-20 Курский государственный технический университет Способ автоматического регулирования температуры в аппарате с обогревающей рубашкой
US7114343B2 (en) * 2004-08-11 2006-10-03 Lawrence Kates Method and apparatus for monitoring a condenser unit in a refrigerant-cycle system
RU2325591C1 (ru) * 2006-08-01 2008-05-27 Государственное образовательное учреждение высшего профессионального образования "Самарский государственный архитектурно-строительный университет" (СГАСУ) Способ автоматического регулирования расхода тепла в тепловой сети при двухконтурной системе отопления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2725912C1 (ru) * 2019-10-03 2020-07-07 Акционерное общество "Научно-технический комплекс "Криогенная техника" Способ регулирования давления транскритического цикла холодильной установки на углекислом газе

Similar Documents

Publication Publication Date Title
US7415836B2 (en) Cooling apparatus and a thermostat with the apparatus installed therein
US4611470A (en) Method primarily for performance control at heat pumps or refrigerating installations and arrangement for carrying out the method
CN1190637C (zh) 基于冷却器温差和排放过热控制电子膨胀阀的方法
US6554196B2 (en) Temperature control device
EA027469B1 (ru) Способ и устройство для оптимизации холодильных систем
SG189655A1 (en) Cooling system and method for controlling cooling system
JP2016529463A (ja) プログラム可能orit弁を備える温度制御システム
JP2013170753A (ja) 冷凍機システム
CN112856845A (zh) 一种宽温域温控装置及其控制方法
RU2691777C1 (ru) Способ регулирования температуры жидкого хладоносителя на выходе из испарителя парокомпрессионной холодильной установки
JP2009276004A (ja) フリークーリングシステムのフリークーリング有効・無効判定方法
JP4711852B2 (ja) 温度調整装置および冷凍サイクル
KR890002533B1 (ko) 냉각수온도의 감시제어장치
KR101456878B1 (ko) 히트펌프 성능평가 시스템의 제어방법
RU2368850C2 (ru) Устройство управления холодильного контура с внутренним теплообменником
JP2010145036A (ja) 冷却装置
KR20100063680A (ko) 흡수 냉각기에서 온도를 제어하기 위한 방법 및 시스템
JP4986701B2 (ja) 冷媒流量の計測方法、冷凍装置の冷暖房能力を求める方法および冷媒流量計測装置
CN103294086A (zh) 一种恒温液循环装置及温控方法
JP2010145035A (ja) 冷却装置
US20210131677A1 (en) Thermal heating system and a controller for the same
JPH10300163A (ja) 空気調和装置の運転方法及び空気調和装置
Cha et al. An experimental study on semiconductor process chiller using the digital scroll compressor
CN116154585A (zh) 一种冷却系统及冷却方法
CN102261778B (zh) 吸收式冷温水机的运转台数控制方法及装置