RU2691649C1 - Способ получения алкиллития - Google Patents

Способ получения алкиллития Download PDF

Info

Publication number
RU2691649C1
RU2691649C1 RU2019102838A RU2019102838A RU2691649C1 RU 2691649 C1 RU2691649 C1 RU 2691649C1 RU 2019102838 A RU2019102838 A RU 2019102838A RU 2019102838 A RU2019102838 A RU 2019102838A RU 2691649 C1 RU2691649 C1 RU 2691649C1
Authority
RU
Russia
Prior art keywords
lithium
alcoholate
sodium
alkyl
reaction
Prior art date
Application number
RU2019102838A
Other languages
English (en)
Inventor
Владимир Стефанович Глуховской
Евгений Васильевич Блинов
Валерий Николаевич Папков
Дмитрий Николаевич Земский
Игорь Михайлович Степанов
Original Assignee
Владимир Стефанович Глуховской
Евгений Васильевич Блинов
Валерий Николаевич Папков
Дмитрий Николаевич Земский
Игорь Михайлович Степанов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Стефанович Глуховской, Евгений Васильевич Блинов, Валерий Николаевич Папков, Дмитрий Николаевич Земский, Игорь Михайлович Степанов filed Critical Владимир Стефанович Глуховской
Priority to RU2019102838A priority Critical patent/RU2691649C1/ru
Application granted granted Critical
Publication of RU2691649C1 publication Critical patent/RU2691649C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/02Lithium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к способу получения алкиллития в углеводородном растворителе. Способ включает взаимодействие металлического лития с галоидным алкилом с последующим отделением образующегося шлама хлорида лития от раствора алкиллития фильтрованием или отстаиванием. После завершения реакции галоидного алкила с металлическим литием к реакционной массе добавляют алкоголят щелочного или смешанный алкоголят щелочного и щелочноземельного металлов в молярном соотношении алкиллитий : алкоголят, равном 1,0:(0,025-0,009). В качестве алкоголята берут N,N,N',N'-тетра(натрийоксипропилат)этилендиамина или смешанный натрий-кальциевый алкоголят, где спиртовой составляющей является N,N,N',N'-тетра(оксипропилат)этилендиамина и тетрагидрофурфуриловый спирт или смешанный натрий-кальциевый алкоголят, где спиртовой составляющей является оксипропилированный анилин или оксипропилированный толуидин. Предложенный способ позволяет получить целевой продукт, не содержащий гетерогенной фазы. 6 пр.

Description

Изобретение относится к способу получения алкиллитиевых соединений, используемых в качестве инициаторов полимеризации диенов и винилароматических соединений.
Известны способы получения литийалкилов (Т.В. Талалаева, К.А. Кочешков). Методы элементоорганической химии. Литий, натрий, калий, рубидий, цезий. Кн. 1. Изд. «Наука». М., с. 85-110. 1971).
Литийорганические соединения получают путем взаимодействия галоидных алкилов и металлического лития в мольном соотношении (2,1÷2,5):1,0 при перемешивании в углеводородном растворителе или эфире в интервале температур от минус 50°С до 70°С.
Реакция между галоидным алкилом и литием протекает по схеме:
2Li+RX→RLi+LiX (основная реакция)
RLi+RX→R-R+LiX (побочная реакция)
В качестве галоидных алкилов используют бромиды и хлориды алкилов.
Реакция экзотермична и при повышенной температуре сопровождается термическим разложением литийалкилов на гидрид лития и соответствующий олефин по схеме:
RLi→LiH+R-Н
Образующийся при реакции хлорид лития вместе с остатками непрореагировавшего лития отделяют от раствора литийалкила фильтрованием или отстаиванием. Недостатком описанных способов получения литийалкилов, свободных от продуктов реакции (хлорид лития) и непрореагировавшего лития, является невозможность использовать повторно фильтрующий элемент. В случае использования метода отстоя для отделения от раствора литийалкилов хлорида лития, который выпадает в осадок, и непрореагировавшей дисперсии лития, которая находится в верхнем слое (плотность лития 0,53 г/см3, а раствора алкиллития в нефрасе 0,74 г/см3) невозможно отобрать средний прозрачный слой раствора алкиллития.
Известен способ получения алкиллитиевых соединений взаимодействием металлического лития с галоидным алкилом в среде углеводородного растворителя в инертной атмосфере при температуре (0÷60)°С, при котором галоидный алкил добавляют к металлическому литию со скоростью меньшей скорости реакции образования алкиллития с последующим нагреванием реакционной смеси до температуры (Авт. свид. СССР №370087, 1974, МКИ СО 7F 1/02).
В известном способе реакционную смесь выдерживают при нагревании в течение (1÷9) часов при температуре (60÷100)°С. Раствор литийалкила декантируют или отфильтровывают.
Недостатки способа связаны с необходимостью проведения дополнительной операции прогрева реакционной смеси после завершения синтеза и недостаточное полное оседание шлама, что приводит к быстрой забивке фильтра.
Известен способ получения нормального бутиллития в среде углеводородного растворителя в атмосфере инертного газа взаимодействием нормального бутилхлорида с дисперсией металлического лития с размером частиц 5÷300 микрон в реакторе с частотой вращения мешалки (5÷250) мин.-1 при температуре (0÷60)°С в первой стадии с последующей выдержкой реакционной массы при температуре (65÷90)°С во второй стадии при мольном соотношении н-бутилхлорид: литий 1,0:(0,65÷0,85) с отделением раствора образовавшегося бутиллития от шлама и подачей непрореагировавшего лития на повторную операцию синтеза с получением раствора бутиллития при том же мольном соотношении, при этом синтез н-бутиллития в первой стадии осуществляют при непрерывной циркуляции реакционной массы через холодильник, при этом бутилхлорид дозируют с массовой скоростью 0,25÷2,5 час-1, по отношению к литию (пат. РФ №2095362, С 1, МПК СО 7F 1/02).
Недостатками способа являются сложность его практической реализации и то, что в описанных условиях длительного интенсивного механического воздействия образовавшийся хлорид лития измельчается до частиц, имеющих размер во много раз меньше, чем у исходной дисперсии лития. Величина частиц некоторых фракций менее 0,01 микрон. Такой хлорид лития образует стойкие суспензии, легко проходящие через фильтр и не поддающиеся разделению даже при центрифугировании (частота вращения ротора 3,5 тыс.об/мин.). Содержание твердой фазы в таких прошедших через фильтр суспензиях достигает 10% масс, от общего количества образовавшегося хлорида.
Известен способ получения алкиллития в жидком углеводородном растворителе в атмосфере инертного газа при температуре (0÷60)°С взаимодействием диспергированного лития с алкилгалогенидом, содержащим 3÷8 атомов углерода при мольном соотношении лития к алкилгалогениду, равном 2:1, причем используют литий в виде сплава с натрием или калием в количестве (0,3÷1,0) % вес. и диспергированием сплава в жидком парафине с последующим добавлением дисперсии к алифатическому углеводороду с 4÷14 атомами углерода (пат. США №3122592, 1964).
Известный способ обеспечивает высокую конверсию лития в литийалкил, однако неэффективно решает проблему отделения раствора литийалкила от шлама.
Известен способ концентрирования разбавленных растворов алкиллития, выбранного из группы: пропиллитий, бутиллитий, амиллитий, гексиллитий, циклогексиллитий в легко кипящем инертном растворителе с использованием роторно-пленочного испарителя при температуре (70÷80)°С и временем пребывания пленки раствора на нагретой поверхности испарителя 5÷10 секунд при содержании алкиллития (20÷30) % вес, в растворе, при возможном также создании вакуума при концентрировании 25 дюймов ртутного столба (пат. США №3438420, 1969).
Способ позволяет получать концентрированный раствор алкиллития, однако он также не решает полного отделения раствора литиалкила от шлама.
Наиболее близким к заявленному является способ получения алкиллитиевых соединений в жидком углеводородном растворителе, выбранным из группы жидких насыщенных алифатических углеводородов с 5÷12 атомами углерода, насыщенных жидких циклоалифатических углеводородов с 6÷12 атомами углерода, или их смесей, путем взаимодействия алкилгалогенидов с 3÷16 атомами углерода с частицами металла размером менее 300 микрон, в качестве металла используют литий-натриевый сплав с содержанием натрия (15÷34) % масс (пат. США №7005083, 2006).
Данный способ позволяет получать алкиллитиевые соединения с высоким выходом (конверсия минимум 90%).
Недостатком указанного способа получения алкиллитиевых соединений является высокая пожаровзрывоопасность работы со сплавом натрия и лития, а также образование трудноразделяемой взвеси хлоридов лития и натрия от целевого продукта.
Целью заявленного изобретения является способ получения алкиллития в растворе углеводорода, не содержащего в готовом продукте гетерогенной фазы.
Поставленная цель достигается тем, что после завершения реакции галоидного алкила с литием к реакционной массе добавляют алкоголят щелочного металла или смешанный алкоголят щелочного и щелочноземельного металлов в молярном соотношении алкиллитий: алкоголят равном 1,0:(0,0025÷0,009) при этом:
- алкоголят - смешанный натрий-кальциевый алкоголят, полученный с использованием N,N,N',N'-тeтpa (оксипропил)этилендиамина и тетрагидрофурфурилового спирта;
- алкоголят - смешанный натрий-кальциевый алкоголят, полученный с использованием оксипропилированного анилина или оксипропилированного толуидина.
Сущность процесса полного отделения шлама от раствора алкиллития заключается в том, что при добавке алкоголята щелочного металла или смешанного алкоголята щелочного и щелочноземельного металлов к реакционной массе (раствор алкиллития + шлам) происходит реакция по схеме:
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
RNa и R2Са нерастворимы в растворе алкиллития и выпадают в осадок. При этом тонкая взвесь шлама, агрегируется и легко отделяется фильтрованием или отстаиванием. Достигается полное отделение гетерогенной фазы (шлама) от раствора алкиллития и получение чистого раствора алкиллития.
Решение поставленной цели иллюстрируется примерами.
Пример 1.
Сначала готовили дисперсию лития в вазелиновом масле. В 100 л аппарат-диспергатор в токе аргона загружали 20 кг вазелинового масла и 15 кг металлического лития в виде слитков. Содержимое диспергатора нагревали до температуры (195-200)°С, и включали мешалку на 7 мин. Получили дисперсию лития с размером частиц (5-250) мкм с концентрацией 30% масс. После охлаждения дисперсии лития до температуры 80°С ее переводили в токе аргона в аппарат с мешалкой и туда же подавали 200 л нефраса. Включали перемешивание в течение 30 мин. Выключали мешалку. При этом литий всплывал из-за разности удельных масс. Через 1 час из аппарата по нижнему сливу сливают раствор масла в нефрасе. Процесс слива растворителя контролировался по фонарю. Затем к дисперсии лития добавляли 250 л нефраса и включали мешалку, через 30 мин. перемешивания дисперсию лития переводили в аппарат-реактор объемом 1,0 м3, заполненный аргоном. Туда же загружали 350 л нефраса. Реактор снабжен рамной мешалкой (48 об/мин.), штуцерами для подвода аргона, загрузки нефраса и опуском для выгрузки реакционной массы. Реактор имеет рубашку для подвода и отвода тепла, а также обратный теплообменник для эффективного отвода тепла реакции.
При работающей мешалке в реактор из мерника дозировали галоидный алкил - бутил хлористый.
Первая порция галоидного алкила составляла 20% масс от всей загрузки. Затем реакционную массу нагревали до температуры 68°С и непрерывно дозировали 80 л бутила хлористого со скоростью 12 л/час. После завершения дозировки бутила хлористого содержимое реактора охлаждали до температуры 25°С и отбирали пробу на анализ.
Затем к реакционной массе при перемешивании добавляли раствор алкоголята натрия N,N,N',N'-тетра(натрийпропилат)этилендиамина общей формулы [NaOCH(CH3)CH2]2NCH2CH2N[CH2CH(CH3)ONa]2 в мольном соотношении н-бутиллитий: алкоголят натрия равном 1,0:0,0025 и через 0,5 часа содержимое реактора направляли на фильтрацию и после фильтрации отбирали пробу на анализ.
Выход н-бутиллития, считая на н-бутил хлористый, составил 94%, содержание активного лития составило 1,65 моль/л, содержание неактивного лития - 0,0004 моль/л, раствор н-бутиллития соломенного цвета без примесей гетерогенной фазы.
Пример 2. Синтез н-бутиллития проводили также как в примере 1. Отличие заключается в том, что в качестве смешанного алкоголята добавляли толуольный раствор натрий-кальциевого алкоголята высококипящих спиртов лапрамола-294 и тетрагидрофурфурилового спирта состава:
Общая щелочность, моль/л 2,5.
Содержание кальция, моль/л 0,4.
Содержание натрия, моль/л 1,4.
Молярное соотношение н-бутиллитий: алкоголят составляло 0,009.
Выход целевого продукта н-бутиллития составил 93%, считая на н-бутил хлористый. Содержание активного лития составило 1,53 моль/л, содержание неактивного лития - 0,00038 моль/л. Полученный раствор н-бутиллития бесцветный, без примесей гетерогенной фазы.
Пример 3. Синтез вторичного бутиллития проводили также как в примере 1, но отличие заключается в том, что вместо н-бутила хлористого брали втор-бутил хлористый. Температура синтеза втор-бутиллития - (40-45)°С. После завершения синтеза втор-бутиллития и охлаждения реакционной массы до температуры 25°С при перемешивании в реактор подавали раствор смешанного натрий-кальциевого алкоголята при мольном соотношении алкиллитий: алкоголят 1,0:0,009 как в примере 2, и далее реакционную массу направляли на фильтрацию. Фильтрат не содержит гетерогенной фазы, прозрачный. Содержание активного лития составило 1,23 моль/л, содержание неактивного лития - 0,0005 моль/л.
Выход втор-бутиллития, считая на поданный втор-бутил хлористый, составил 78% от теоретического.
Пример 4. Синтез н-бутиллития проводили также как в примере 1. Отличие заключалось в том, что в качестве смешанного алкоголята был выбран толуольный раствор натрий-кальциевого алкоголята оксипропилированного анилина состава:
Общая щелочность, моль/л 2,4.
Содержание кальция, моль/л 0,5.
Содержание натрия, моль/л 1,4.
Молярное соотношение н-бутиллитий: алкоголят составило 0,007.
Выход целевого продукта бутиллития составил 92%, считая на н-бутил хлористый. Содержание активного лития составило 1,61 моль/л, содержание неактивного лития - 0,00028 моль/л. Полученный раствор н-бутиллития слабо соломенного цвета без следов твердой взвеси.
Пример 5. Синтез втор-бутиллития проводили также как в примере 3, но после окончания дозирования втор-бутила хлористого в реактор при перемешивании подавали толуольный раствор натрий-кальциевого алкоголята оксипропилированного толуидина состава:
Общая щелочность, моль/л 2,45.
Содержание кальция, моль/л 0,47.
Содержание натрия, моль/л 1,53.
Молярное соотношение втор-бутиллитий: алкоголят составило 0,0025.
Выход целевого продукта втор-бутиллития составил 91%, считая на втор-бутил хлористый. Содержание активного лития составило 1,28 моль/л, содержание неактивного лития - 0,00046 моль/л.
Пример 6 (по прототипу). В реактор объемом 1,0 м3, заполненный аргоном, загружали суспензию дисперсии лития размером менее 300 микрон в нефрасе состава - 15% натрия и 85% лития в количестве 15 кг. При перемешивании содержимое реактора нагревали до температуры 48°С и дозировали 100 л н-бутил хлористый со скоростью 12 л/час. Обогрев реактора выключали, а выделяющееся тепло реакции отводили путем подачи в рубашку холодного масла (+9°С). По завершении синтеза содержимое реактора охлаждали до температуры 25°С, отбирали пробу на анализ и направляли на фильтрацию. Поле фильтрации раствор н-бутиллития содержит 2% масс тонко дисперсного хлорида лития, который при отстаивании оседает через 48 часов. Содержание активного лития составило 1,47 моль/л, содержание неактивного лития - 0,00036 моль/л.
Выход целевого продукта, считая на н-бутил хлористый, составил 93% от теоретического.
Таким образом, применение алкоголятов щелочных или смешанных натрий-кальциевых алкоголятов позволяет повысить качество алкиллития. В результате обработки раствора реакционной массы при синтезе алкиллития алкоголятом происходит быстрое осаждение взвешенных частиц хлорида лития при отстаивании, уже через 10 часов раствор алкиллития прозрачный и не содержит твердой фазы.

Claims (1)

  1. Способ получения алкиллития в углеводородном растворителе взаимодействием металлического лития с галоидным алкилом с последующим отделением образующегося шлама хлорида лития от раствора алкиллития фильтрованием или отстаиванием, отличающийся тем, что после завершения реакции галоидного алкила с металлическим литием к реакционной массе добавляют алкоголят щелочного или смешанный алкоголят щелочного и щелочноземельного металлов в молярном соотношении алкиллитий : алкоголят, равном 1,0:(0,025-0,009), в качестве алкоголята берут N,N,N',N'-тетра(натрийоксипропилат)этилендиамина или смешанный натрий-кальциевый алкоголят, где спиртовой составляющей является N,N,N',N'-тетра(оксипропилат)этилендиамина и тетрагидрофурфуриловый спирт или смешанный натрий-кальциевый алкоголят, где спиртовой составляющей является оксипропилированный анилин или оксипропилированный толуидин.
RU2019102838A 2019-02-01 2019-02-01 Способ получения алкиллития RU2691649C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2019102838A RU2691649C1 (ru) 2019-02-01 2019-02-01 Способ получения алкиллития

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2019102838A RU2691649C1 (ru) 2019-02-01 2019-02-01 Способ получения алкиллития

Publications (1)

Publication Number Publication Date
RU2691649C1 true RU2691649C1 (ru) 2019-06-17

Family

ID=66947790

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2019102838A RU2691649C1 (ru) 2019-02-01 2019-02-01 Способ получения алкиллития

Country Status (1)

Country Link
RU (1) RU2691649C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438420A (en) * 1967-07-25 1969-04-15 Lithium Corp Preparation of concentrated alkyllithium solutions
SU671272A1 (ru) * 1977-08-01 1996-10-27 Ю.А. Литвин Способ получения литийалкилов
RU2095362C1 (ru) * 1994-07-04 1997-11-10 Щербань Георгий Трофимович Способ получения нормального бутиллития
CN1443767A (zh) * 2003-03-21 2003-09-24 中国石化集团巴陵石油化工有限责任公司 一种烷基锂的生产方法
US7005083B2 (en) * 2000-08-08 2006-02-28 Sqm Lithium Specialties Limited Partnership, Llp Process for the preparation of alkyllithium compounds
CN101805360B (zh) * 2010-05-06 2012-08-22 江西赣锋锂业股份有限公司 一种烷基锂的合成工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3438420A (en) * 1967-07-25 1969-04-15 Lithium Corp Preparation of concentrated alkyllithium solutions
SU671272A1 (ru) * 1977-08-01 1996-10-27 Ю.А. Литвин Способ получения литийалкилов
RU2095362C1 (ru) * 1994-07-04 1997-11-10 Щербань Георгий Трофимович Способ получения нормального бутиллития
US7005083B2 (en) * 2000-08-08 2006-02-28 Sqm Lithium Specialties Limited Partnership, Llp Process for the preparation of alkyllithium compounds
CN1443767A (zh) * 2003-03-21 2003-09-24 中国石化集团巴陵石油化工有限责任公司 一种烷基锂的生产方法
CN101805360B (zh) * 2010-05-06 2012-08-22 江西赣锋锂业股份有限公司 一种烷基锂的合成工艺

Similar Documents

Publication Publication Date Title
US2567972A (en) Method of making aluminum-containing hydrides
US3766280A (en) Diorganomagnesium reagents and methods of preparing same
RU2691649C1 (ru) Способ получения алкиллития
US3646231A (en) Diorganomagnesium reagents and methods of preparing same
US3480654A (en) Process for preparing organo-tin, -boron, -aluminum, -silicon, -phosphorous,-zinc and -mercury compounds
US8236981B2 (en) Method for manufacturing dialkylzinc and dialkylaluminum monohalide
RU2459829C2 (ru) Способ получения моногалогенида диалкилалюминия
US5211887A (en) High purity alkyllithium compounds and process of preparation
JPS5983924A (ja) クロロシランと水素化リチウムの反応により純粋なシランを製造する方法および装置
JP2863321B2 (ja) ジアルキル亜鉛の製造方法
US3007970A (en) Preparation of sodium hydrocarbon boron compounds
US3542512A (en) Preparation of lithium amide
US3154407A (en) Method for manufacturing aluminum
CN101300192B (zh) 氢化铝锂溶液
JPH05202066A (ja) 接触ハイドロカルビルリチウム法
US4605547A (en) Continuous hydrogenation of lithium into lithium hydride
US2859225A (en) Manufacture of organolead compounds
US3151930A (en) Method for preparing lithium borohydride
US3397038A (en) Manufacture of a reactive trisodium phosphide
US5035874A (en) Diallyl telluride and synthesis of diorgano tellurides
US5043476A (en) Diallyl telluride
JP3570835B2 (ja) アルキルリチウムの製造方法
US3707443A (en) Montmorillonite clays as aids in steam distillation of tetraalkyllead
US3013863A (en) Method for the preparation of diborane
JP4987212B2 (ja) アルキルリチウム化合物の製造方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210202