RU2689710C2 - Suspending and clustering human pluripotent stem cells for their differentiation into pancreatic endocrine cells - Google Patents

Suspending and clustering human pluripotent stem cells for their differentiation into pancreatic endocrine cells Download PDF

Info

Publication number
RU2689710C2
RU2689710C2 RU2016121409A RU2016121409A RU2689710C2 RU 2689710 C2 RU2689710 C2 RU 2689710C2 RU 2016121409 A RU2016121409 A RU 2016121409A RU 2016121409 A RU2016121409 A RU 2016121409A RU 2689710 C2 RU2689710 C2 RU 2689710C2
Authority
RU
Russia
Prior art keywords
cells
cell
differentiation
stem cells
culture
Prior art date
Application number
RU2016121409A
Other languages
Russian (ru)
Other versions
RU2016121409A3 (en
RU2016121409A (en
Inventor
Бенджамин ФРАЙЕР
Даина ЛАНИАУСКАС
Марсия БЛЭКМУР
Хайюнь ВАН
Костадинка ЛИЛОВА
Шелли НЕЛЬСОН
Элизабет РОСОЧА
Original Assignee
Янссен Байотек, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/998,974 external-priority patent/US10377989B2/en
Application filed by Янссен Байотек, Инк. filed Critical Янссен Байотек, Инк.
Publication of RU2016121409A publication Critical patent/RU2016121409A/en
Publication of RU2016121409A3 publication Critical patent/RU2016121409A3/ru
Application granted granted Critical
Publication of RU2689710C2 publication Critical patent/RU2689710C2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0676Pancreatic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • C12N5/0075General culture methods using substrates using microcarriers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0618Cells of the nervous system
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/02Atmosphere, e.g. low oxygen conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/117Keratinocyte growth factors (KGF-1, i.e. FGF-7; KGF-2, i.e. FGF-12)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/155Bone morphogenic proteins [BMP]; Osteogenins; Osteogenic factor; Bone inducing factor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/16Activin; Inhibin; Mullerian inhibiting substance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/19Growth and differentiation factors [GDF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/30Hormones
    • C12N2501/38Hormones with nuclear receptors
    • C12N2501/385Hormones with nuclear receptors of the family of the retinoic acid recptor, e.g. RAR, RXR; Peroxisome proliferator-activated receptor [PPAR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/41Hedgehog proteins; Cyclopamine (inhibitor)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/415Wnt; Frizzeled
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/40Regulators of development
    • C12N2501/42Notch; Delta; Jagged; Serrate
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/70Enzymes
    • C12N2501/72Transferases (EC 2.)
    • C12N2501/727Kinases (EC 2.7.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/45Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from artificially induced pluripotent stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2509/00Methods for the dissociation of cells, e.g. specific use of enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2531/00Microcarriers

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • Rheumatology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Abstract

FIELD: biotechnology.SUBSTANCE: invention refers to biotechnology, namely to production of three-dimensional cell clusters and their differentiation. Method involves treatment of pluripotent stem cells, which are induced pluripotent stem cells, cells obtained from human umbilical cord tissue, parthenotes, cells obtained from amniotic fluid, or human embryonic stem cells of line H1, H7, H9, SA002 or BG01v, cultured in a flat adhesive culture together with a chelating agent or enzyme, with release of cell aggregates from a flat adhesive culture. That is followed by suspending cell aggregates from a flat adhesive culture into a culture medium in the presence of a Rho-kinase inhibitor without dissociating cell aggregates to single cells. Then, suspension of cell aggregates is transferred into dynamic suspension culture and increased volume of suspension of cell aggregates in dynamic suspension culture to obtain three-dimensional cell clusters, wherein three-dimensional cell clusters preserve pluripotency. Further, it is possible to differentiate pluripotent cell clusters in a dynamic suspension culture system to obtain a population of precursor cells of pancreatic cells, a population of neuronal progenitor cells or a population of cardiomyocyte precursor cells.EFFECT: invention widens the range of agents.34 cl, 20 tbl, 95 dwg, 16 ex

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА СМЕЖНЫЕ ЗАЯВКИCROSS REFERENCE TO RELATED APPLICATIONS

Настоящая заявка является частичным продолжением заявки на патент США № 13/998,974 (поданной 30 декабря 2013 года), которая истребует приоритет, заявленный в предварительной заявке на патент США № 61/747,799 (поданной 31 декабря 2012 года) и в предварительной заявке на патент США № 61/962,158 (поданной 1 ноября 2013 года), которые полностью включены в настоящий документ путем ссылки.This application is a partial continuation of application for US patent No. 13 / 998,974 (filed December 30, 2013), which claims the priority stated in provisional application for US patent No. 61 / 747,799 (filed December 31, 2012) and in the provisional application for US patent No. 61 / 962,158 (filed November 1, 2013), which are fully incorporated herein by reference.

ОБЛАСТЬ ПРИМЕНЕНИЯ ИЗОБРЕТЕНИЯSCOPE OF THE INVENTION

Настоящее изобретение относится к области клеточной дифференцировки, включая подготовку эмбриональных стволовых клеток и других плюрипотентных клеток, которые поддерживают плюрипотентность в агрегированном клеточном кластере, с целью их дифференцировки в клетки-предшественники энтодермы, панкреатические эндокринные клетки, клетки мезодермы или клетки эктодермы. В одном аспекте данного изобретения раскрывается способ генерации кластеров плюрипотентных стволовых клеток и поддержания их в суспензионной культуре для дифференциации энтодертмы поджелудочной, панкреатических эндокринных клеток-предшественников и одногормонных панкреатических эндокринных клеток.The present invention relates to the field of cell differentiation, including the preparation of embryonic stem cells and other pluripotent cells that support pluripotency in an aggregated cell cluster, in order to differentiate them into endoderm progenitor cells, pancreatic endocrine cells, mesoderm cells or ectoderm cells. In one aspect of the present invention, a method is disclosed for generating pluripotent stem cell clusters and maintaining them in suspension culture to differentiate pancreatic endoterm, pancreatic endocrine progenitor cells and single hormone pancreatic endocrine cells.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯBACKGROUND OF THE INVENTION

Последние достижения в области заместительной клеточной терапии для лечения сахарного диабета 1 типа и нехватка островков Лангерганса с возможностью трансплантации заставили обратить внимание на разработку источников инсулин-продуцирующих клеток, или β-клеток, подходящих для приживления трансплантата. Один подход представляет собой получение функциональных бета-клеток из плюрипотентных стволовых клеток, таких как, например, эмбриональные стволовые клетки.Recent advances in cell replacement therapy for the treatment of type 1 diabetes and the lack of islets of Langerhans with the possibility of transplantation have led to the development of sources of insulin-producing cells, or β-cells, suitable for transplant engraftment. One approach is to obtain functional beta cells from pluripotent stem cells, such as, for example, embryonic stem cells.

При эмбриональном развитии позвоночных плюрипотентные клетки дают начало группе клеток, содержащих три зародышевых листка (эктодерму, мезодерму и энтодерму), в ходе процесса, известного как гаструляция. Ткани, такие как ткань щитовидной железы, вилочковой железы, поджелудочной железы, кишечника и печени, будут развиваться из энтодермы через промежуточную стадию. Промежуточная стадия данного процесса представляет собой образование дефинитивной энтодермы.In vertebrate embryonic development, pluripotent cells give rise to a group of cells containing three germ layers (ectoderm, mesoderm, and endoderm) during a process known as gastrulation. Tissues such as thyroid, thymus, pancreas, intestines and liver tissue will develop from the endoderm through an intermediate stage. The intermediate stage of this process is the formation of definitive endoderm.

К концу гаструляции энтодерма разделяется на передний и задний отделы, которые могут быть распознаны по экспрессии ряда факторов, однозначно выделяющих переднюю, среднюю и заднюю области энтодермы. Например, HHEX и SOX2 идентифицируют переднюю область, в то время как CDX1, 2 и 4 идентифицируют заднюю половину энтодермы.By the end of gastrulation, the endoderm is divided into anterior and posterior sections, which can be recognized by the expression of a number of factors that uniquely distinguish the anterior, middle, and posterior regions of the endoderm. For example, HHEX and SOX2 identify the anterior region, while CDX1, 2 and 4 identify the posterior half of the endoderm.

Миграция ткани энтодермы приближает энтодерму к различным мезодермальным тканям, которые способствуют регионализации кишечной пробирки. Это достигается за счет целого ряда секретируемых факторов, таких как FGFs, Wnts, TGF-Bs, ретиноевая кислота (RA), лиганды BMP и их антагонисты. Например, FGF4 и BMP способствуют экспрессии Cdx2 в предполагаемой энтодерме задней кишки и подавляют экспрессию передних генов Hhex и SOX2 (Development 2000 г., 127:1563-1567). Было продемонстрировано, что сигнализация WNT также действует параллельно с сигнализацией FGF, способствуя развитию задней кишки и препятствуя зачаткам передней кишки (Development 2007 г., 134:2207-2217). Наконец, ретиноевая кислота, секретируемая мезенхимой, регулирует границу между передней и задней кишкой (Curr Biol 2002 г., 12:1215-1220).Migration of the endoderm tissue brings the endoderm closer to various mesodermal tissues that contribute to the regionalization of the intestinal tube. This is achieved by a variety of secreted factors, such as FGFs, Wnts, TGF-Bs, retinoic acid (RA), BMP ligands and their antagonists. For example, FGF4 and BMP promote the expression of Cdx2 in the putative endoderm of the hindgut and inhibit the expression of the anterior genes Hhex and SOX2 (Development 2000, 127: 1563-1567). It has been demonstrated that WNT signaling also acts in parallel with FGF signaling, contributing to the development of the posterior intestine and inhibiting the buds of the foregut ( Development 2007, 134: 2207-2217). Finally, retinoic acid secreted by the mesenchyme regulates the border between the anterior and posterior intestine ( Curr Biol 2002, 12: 1215-1220).

Уровень экспрессии специфических факторов транскрипции может использоваться для определения типа ткани. Во время преобразования дефинитивной энтодермы в примитивную кишечную пробирку кишечная пробирка становится разделенной на широкие домены, которые можно наблюдать на молекулярном уровне с помощью ограниченных паттернов экспрессии генов. Например, регионализованный домен поджелудочной железы в кишечной пробирке демонстрирует очень высокую экспрессию PDX1 и очень низкую экспрессию CDX2 и SOX2. уровень экспрессии PDX1, NKX6.1, PTF1A и NKX2.2 высок в ткани поджелудочной железы; а уровень экспрессии CDX2 высок в ткани кишечника.The expression level of specific transcription factors can be used to determine the type of tissue. During the conversion of the definitive endoderm into a primitive intestinal tube, the intestinal tube becomes divided into broad domains that can be observed at the molecular level using limited gene expression patterns. For example, a regionalized pancreatic domain in the intestinal tube demonstrates very high PDX1 expression and very low CDX2 and SOX2 expression. The expression level of PDX1, NKX6.1, PTF1A and NKX2.2 is high in pancreatic tissue; and the expression level of CDX2 is high in intestinal tissue.

Образование поджелудочной железы происходит при дифференцировке дефинитивной энтодермы в панкреатическую энтодерму. Дорсальный и вентральный домены поджелудочной железы формируются из эпителия передней кишки. Передняя кишка также дает начало формированию пищевода, трахеи, легких, щитовидной железы, желудка, печени, поджелудочной железы и системы желчных протоков.The formation of the pancreas occurs when the differentiation of the definitive endoderm into the pancreatic endoderm. The dorsal and ventral domains of the pancreas are formed from the epithelium of the anterior intestine. The anterior gut also gives rise to the formation of the esophagus, trachea, lungs, thyroid, stomach, liver, pancreas, and bile duct system.

Клетки панкреатической энтодермы экспрессируют панкрео-дуоденальный, содержащий гомеобокс ген PDX1. В отсутствие PDX1 поджелудочная железа не развивается дальше образования вентрального и дорсального зачатков. Следовательно, экспрессия PDX1 является важной стадией органогенеза поджелудочной железы. Зрелая поджелудочная железа содержит как экзокринную так и эндокринную ткани, которые образуются при дифференцировке панкреатической энтодермы.Pancreatic endoderm cells express pancreato-duodenal, containing the homeobox gene PDX1. In the absence of PDX1, the pancreas does not develop further than the formation of ventral and dorsal buds. Therefore, the expression of PDX1 is an important stage of pancreatic organogenesis. The mature pancreas contains both exocrine and endocrine tissues, which are formed during the differentiation of pancreatic endoderm.

D’Amour et al. описывают получение обогащенных культур дефинитивной энтодермы, полученной из эмбриональных стволовых клеток человека в присутствии высокой концентрации активина и низкой концентрации сыворотки (Nature Biotechnol 2005, 23:1534-1541; патент США № 7,704,738). Трансплантация этих клеток под капсулу почки у мышей приводила к дифференцировке в более зрелые клетки с характеристиками ткани энтодермы (патент США № 7,704,738). Клетки дефинитивной энтодермы, полученные из эмбриональных стволовых клеток человека, могут быть далее дифференцированы в PDX1-положительные клетки после добавления FGF10 и ретиноевой кислоты (публикация заявки на патент США № 2005/0266554A1). Последующая трансплантация таких клеток-предшественников панкреатических клеток в жировое тело иммунодефицитных мышей привела к образованию функциональных панкреатических эндокринных клеток с последующей 3-4-месячной стадией созревания (патент США № 7,993,920 и патент США № 7,534,608).D'Amour et al. describe obtaining enriched cultures of definitive endoderm derived from human embryonic stem cells in the presence of a high concentration of activin and a low serum concentration ( Nature Biotechnol 2005, 23: 1534-1541; US Patent No. 7,704,738). Transplantation of these cells under the kidney capsule in mice resulted in differentiation into more mature cells with endoderm tissue characteristics (US Patent No. 7,704,738). Definitive endoderm cells derived from human embryonic stem cells can be further differentiated into PDX1-positive cells after the addition of FGF10 and retinoic acid (US Patent Application Publication No. 2005 / 0266554A1). The subsequent transplantation of such progenitor cells of pancreatic cells into the fatty body of immunodeficient mice led to the formation of functional pancreatic endocrine cells, followed by a 3-4 month maturation stage (US Patent No. 7,993,920 and US Patent No. 7,534,608).

Fisk с соавторами сообщают о системе получения клеток панкреатических островков из эмбриональных стволовых клеток человека (патент США № 7,033,831). Низкомолекулярные ингибиторы также применяли для индуцирования клеток-предшественников панкреатических эндокринных клеток. Например, низкомолекулярные ингибиторы рецептора TGF-ß и рецепторов BMP (Development 2011, 138:861-871; Diabetes 2011, 60:239-247) использовали для значительного увеличения количества панкреатических эндокринных клеток. Кроме того, для генерирования клеток дефинитивной энтодермы или клеток-предшественников панкреатических клеток также применяли низкомолекулярные активаторы (Curr Opin Cell Biol 2009, 21:727-732; Nature Chem Biol 2009, 5:258-265).Fisk et al. Report a system for obtaining pancreatic islet cells from human embryonic stem cells (US Patent No. 7,033,831). Low molecular weight inhibitors have also been used to induce progenitor cells of pancreatic endocrine cells. For example, low molecular weight inhibitors of the TGF-ß receptor and BMP receptors ( Development 2011, 138: 861-871; Diabetes 2011, 60: 239-247) have been used to significantly increase the number of pancreatic endocrine cells. In addition, low molecular weight activators were also used to generate definitive endoderm cells or pancreatic progenitor cell precursors ( Curr Opin Cell Biol 2009, 21: 727-732; Nature Chem Biol 2009, 5: 258-265).

В последнее время были намного улучшены протоколы культивирования клеток-предшественников, таких как плюрипотентные стволовые клетки. Публикация РСТ No. WO2007/026353 (Amit с соавторами) раскрывает технологии поддержания человеческих эмбриональных стволовых клеток в недифференцированном состоянии в двухмерной культуре. Ludwig с соавторами, 2006 (Nature Biotechnology, 24: 185-7) раскрывает среду на основе TeSR1 для культивирования человеческих эмбриональных стволовых клеток на матрице. заявкой на патент США на патент США № No. 2007/0155013 (Akaike с соавторами) Описывает способ выращивания плюрипотентных стволовых клеток в суспензии с использованием носителя, который прикрепляется к плюрипотентным стволовым клеткам, и в заявке на патент США на патент США № No. 2009/0029462 (Beardsley с соавторами) раскрывает способы роста плюрипотентных стволовых клеток в суспензии с использованием микроносителей или клеточной инкапсуляции. В публикации РСТ No. WO 2008/015682 (Amit с соавторами) описан способ роста и поддержания человеческих эмбриональных стволовых клеток в суспензионной культуре в особых условиях культивирования при отсутствии субстратной подложки.Recently, protocols for the cultivation of progenitor cells, such as pluripotent stem cells, have been greatly improved. PCT Publication No. WO2007 / 026353 (Amit et al.) Discloses techniques for maintaining human embryonic stem cells in an undifferentiated state in a two-dimensional culture. Ludwig et al. , 2006 ( Nature Biotechnology , 24: 185-7) discloses a TeSR1-based medium for cultivating human embryonic stem cells on a matrix. US patent application No. US No. No. 2007/0155013 (Akaike et al.) Describes a method for growing pluripotent stem cells in suspension using a carrier that attaches to pluripotent stem cells, and in US patent application No. US. 2009/0029462 (Beardsley et al) discloses methods for growing pluripotent stem cells in suspension using microcarriers or cell encapsulation. PCT Publication No. WO 2008/015682 (Amit et al.) Describes a method for growing and maintaining human embryonic stem cells in a suspension culture under specific culture conditions in the absence of a substrate substrate.

заявкой на патент США на патент США № No. 2008/0159994 (Mantalaris др.) описан способ культивирования инкапсулированных в частицы альгината человеческих эмбриональных стволовых клеток в трехмерной культуральной системе.US patent application No. US No. No. 2008/0159994 (Mantalaris et al. ) Describes a method for cultivating human embryonic stem cells encapsulated in alginate particles in a three-dimensional culture system.

Несмотря на эти достижения, все еще необходим способ успешного культивирования в трехмерной культуральной системе плюрипотентных стволовых клеток, которые могут дифференцироваться в функциональные эндокринные клеткиDespite these achievements, a method for successfully cultivating pluripotent stem cells in a three-dimensional culture system, which can differentiate into functional endocrine cells, is still needed.

КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВBRIEF DESCRIPTION OF GRAPHIC MATERIALS

Предшествующее краткое изложение сущности изобретения, а также последующее подробное описание изобретения, будут более понятными при рассмотрении вместе с прилагаемыми фигурами. В целях иллюстрирования изобретения, на фигурах показаны варианты осуществления настоящего изобретения. Необходимо понимать, однако, что изобретение не ограничивается показанными точными конструкциями, примерами и инструментарием.The foregoing summary of the invention, as well as the subsequent detailed description of the invention, will be better understood when considered together with the attached figures. In order to illustrate the invention, the figures show embodiments of the present invention. It should be understood, however, that the invention is not limited to the exact designs, examples and tools shown.

На Фиг. 1a представлены микрофотографии обработанных Dispase® эмбриональных стволовых клеток человека (hES) клеточной линии H1 сразу после отделения (левая панель) и спустя 24 часа в не допускающей прикрепления статической культуре (правая панель) в соответствии с примером 1. Клетки после отделения (левая панель) напоминали фрагменты монослоя со средним диаметром фрагмента приблизительно 20-30 мкм, каждый фрагмент состоял из скопления клеток. Спустя 24 часа в не допускающей прикрепления статической культуре клетки сформировали кластерные конфигурации.FIG. 1a shows photomicrographs Dispase ® treated human embryonic stem cells (hES) cell line H1 immediately after the separation (left panel) and after 24 hours in a non-static attachment culture (right panel) in accordance with Example 1. The cells after separation (left panel) resembled monolayer fragments with an average fragment diameter of approximately 20–30 μm, each fragment consisting of a cluster of cells. After 24 hours, the cells in the non-adherent static culture formed cluster configurations.

На Фиг. 1b представлены результаты проточной цитометрии для CD9, SSEA4, CXCR4, TRA-1-60 и TRA-1-81 для обработанных Dispase® эмбриональных стволовых клеток человека из линии стволовых клеток H1 после культивирования в течение 4 дней в центрифужной пробирке на 125 мл, содержащей 25 мл носителя mTeSR®1 в соответствии с примером 1. Клетки показали высокую экспрессию маркеров плюрипотентности (CD9, SSEA4, TRA-1-60 и TRA-1-81) почти без выражения CXCR4, маркера дифференцировки.FIG. 1b shows the results of flow cytometry for CD9, SSEA4, CXCR4, TRA- 1-60 and TRA-1-81 to Dispase ® treated human embryonic stem cells from stem line H1 cells after culturing for 4 days in a centrifuge tube at 125 ml, containing 25 ml of mTeSR ® 1 carrier in accordance with Example 1. The cells showed high expression of pluripotency markers (CD9, SSEA4, TRA-1-60 and TRA-1-81) with almost no CXCR4 expression, a differentiation marker.

На Фиг. 1c представлены микрофотографии обработанных Dispase® эмбриональных стволовых клеток человека из линии стволовых клеток H1 после 72 и 96 часов дифференцировки в конце стадии 1. На Фиг. 1с заметны неприкрепленные агрегаты клеток после 72 часа при 4-кратном увеличении (левая панель), 96 часов при 4-кратном увеличении (центральная панель) и 96 часов при 10-кратном увеличением (правая панель).FIG. 1c are photomicrographs Dispase ® treated human embryonic stem cells from stem line H1 cells after 72 and 96 hours at the end of the differentiation stage 1. FIG. 1c, unattached cell aggregates are noticeable after 72 hours at 4x magnification (left panel), 96 hours at 4x magnification (central panel), and 96 hours at 10x magnification (right panel).

На Фиг. 1d показаны результаты проточной цитометрии обработанных Dispase® эмбриональных стволовых клеток человека из линии стволовых клеток H1 в конце 1 стадии дифференциации для маркеров CD9, CD184 (CXCR4) и CD99 (см. пример 1). Как показано на Фиг. 1d, экспрессия CD9, маркера плюрипотентности, практически исчезла, в то время как экспрессия маркеров окончательной дифференцировки энтодермы CXCR4 (CD184) и CD99 была достаточно высокой.FIG. 1d shows the results of flow cytometry Dispase ® treated human embryonic stem cell lines of stem cells H1 at the end of step 1 differentiation markers CD9, CD184 (CXCR4) and CD99 (see. Example 1). As shown in FIG. 1d, expression of CD9, a marker of pluripotency, almost disappeared, while expression of markers of the final differentiation of the endoderm of CXCR4 (CD184) and CD99 was quite high.

На Фиг. 1e показаны результаты количественной полимеразной цепной реакции с обратной транскрипцией (qRT-PCR) для экспрессии выбранных генов, ассоциированных с плюрипотентностью и генов, ассоциированных с окончательной дифференцировкой энтодермы обработанных Dispase® эмбриональных стволовых клеток человека из линии стволовых клеток H1 в конце 1 стадии по сравнению с недифференцироваными клетками H1 (WA01) hES (см. пример 1). Клетки в конце стадии 1 показали резкое снижение экспрессии генов плюрипотентности (CD9, NANOG и POU5F1/OCT4) и повышение экспрессии генов, связанных с окончательной дифференцировкой энтодермы (CXCR4, Cerberus (CER1), GSC, Foxa2, GATA4, GATA6, MNX1 и SOX17), по сравнению с недифференцированными клетками линии hES WA01.FIG. 1e shows the results of quantitative polymerase chain reaction reverse transcription (qRT-PCR) for expression of selected genes associated with pluripotency and the genes associated with terminal differentiation endoderm treated with Dispase ® human embryonic stem cells from a line of stem H1 cells at the end of stage 1 in comparison with undifferentiated H1 (WA01) hES cells (see example 1). Cells at the end of stage 1 showed a sharp decrease in gene expression of pluripotency (CD9, NANOG and POU5F1 / OCT4) and increased expression of genes associated with the final differentiation of endoderm (CXCR4, Cerberus (CER1), GSC, Foxa2, GATA4, GATA6, MNX1 and SOX17) , compared to undifferentiated cells of the hES WA01 line.

На Фиг. 1f показаны микрофотографии обработанных Dispase® эмбриональных стволовых клеток человека из линии стволовых клеток H1, показывающие дальнейшую дифференцировку от окончательно дифференцированной энтодермы в панкреатическую энтодерму (см. Пример 1). По мере прогрессирования дифференцировки явно заметны морфологические изменения в клетках и клеточных кластерах от стадии 2, сутки 1 (верхняя левая панель) до стадии 2, сутки 3 (верхняя правая панель), далее до стадии 3, сутки 4 (нижняя левая панель) и стадии 4, сутки 1 (нижняя правая панель).FIG. 1f shows micrographs Dispase ® treated human embryonic stem cell lines of stem cells H1, showing further differentiation of the finally differentiated into endoderm, pancreatic endoderm (see. Example 1). As differentiation progresses, morphological changes in cells and cell clusters from stage 2, day 1 (upper left panel) to stage 2, day 3 (upper right panel), then to stage 3, day 4 (lower left panel), and stage 4, day 1 (lower right panel).

На Фиг. 2а изображены данные, полученные в результате проточной цитометрии обработанных EDTA клеток эмбриона человека из линии стволовых клеток H1 после 2 дней культивирования в перемешиваемой культурной суспензии, обработанной EDTA, и перед переходом к дифференцировке культуры, для маркеров, связанных с плюрипотентностью и дифференцировкой, согласно примеру 2. Данные показывают высокую экспрессию маркеров плюрипотентности (CD9, SSEA4, TRA-1-60 и TRA-1-81) почти без выражения маркера дифференцировки (CXCR4).FIG. 2a depicts the flow cytometry data of EDTA-treated human embryo cells from the H1 stem cell line after 2 days of culture in a mixed culture suspension treated with EDTA and before proceeding to culture differentiation, for markers associated with pluripotency and differentiation, according to Example 2 The data show high expression of pluripotency markers (CD9, SSEA4, TRA-1-60 and TRA-1-81) with almost no expression of the differentiation marker (CXCR4).

На Фиг. 2b показаны микрофотографии обработанных EDTA клеток эмбриона человека из линии стволовых клеток H1, дифференцированных на стадии 1, сутки 3 для клеток, выращенных в центрифужной пробирке и стадии 2, сутки 2, стадии 4 сутки 1 и стадии 4 сутки 3 для клеток, выращенных в центрифужной пробирке или колбе Эрленмейера согласно примеру 2. В суспензии дифференцированых культур формируются по существу равномерные и однородные популяции клеток в сферических агрегатах.FIG. 2b shows micrographs of EDTA-treated human embryo cells from the H1 stem cell line differentiated at stage 1, day 3 for cells grown in a centrifuge tube and stage 2, day 2, stage 4, day 1 and stage 4, day 3 for cells grown in a centrifuge test tube or Erlenmeyer flask according to example 2. In the suspension of differentiated cultures, essentially uniform and homogeneous populations of cells are formed in spherical aggregates.

На Фиг. 2c показаны данные, полученные в результате проточной цитометрии обработанных EDTA эмбриональных стволовых клеток человека из линии стволовых клеток H1 в конце 1 стадии на маркеры клеточной поверхности, показывающие плюрипотентность и дифференцировку энтодермы. Как показано на Фиг. 2c экспрессия CD9, маркера плюрипотентности, практически исчезла, в то время как экспрессия маркера окончательной дифференцировки энтодермы CXCR4 (CD184) была достаточно высокой.FIG. Figure 2c shows the flow cytometry data of EDTA-treated human embryonic stem cells from the H1 stem cell line at the end of stage 1 to cell surface markers showing pluripotency and differentiation of endoderm. As shown in FIG. 2c, expression of CD9, a marker of pluripotency, has almost disappeared, while expression of the marker for the final differentiation of the endoderm of CXCR4 (CD184) was rather high.

На Фиг. 2d показаны результаты qRT-PCR для экспрессии выбранных генов, ассоциированных с плюрипотентностью и генов, ассоциированных с окончательной дифференцировкой энтодермы обработанных EDTA эмбриональных стволовых клеток человека из линии стволовых клеток H1 в конце 1 стадии по сравнению с недифференцироваными клетками H1 (WA01) hES (см. пример 2). На Фиг. 2d показано резкое снижение экспрессии генов плюрипотентности (CD9, NANOG и POU5F1/OCT4) и повышение экспрессии генов, связанных с окончательной дифференцировкой энтодермы (CXCR4, Cerberus (CER1), Foxa2, GATA4, GATA6, MNX1 и SOX17).FIG. 2d shows the results of qRT-PCR for the expression of selected genes associated with pluripotency and genes associated with the final differentiation of the endoderm of human embryonic stem cells treated with EDTA from the H1 stem cell line at the end of stage 1 compared to undifferentiated H1 (WA01) hES cells (see example 2). FIG. 2d shows a dramatic decrease in the expression of pluripotency genes (CD9, NANOG and POU5F1 / OCT4) and an increase in the expression of genes associated with the final differentiation of endoderm (CXCR4, Cerberus (CER1), Foxa2, GATA4, GATA6, MNX1 and SOX17).

На Фиг. 2e показаны данные экспрессии маркеров дифференцирования (Nkx6.1, CDX2, Sox2 и Chromagranin), полученные в результате проточной цитометрии обработанных EDTA эмбриональных стволовых клеток человека из линии стволовых клеток H1, которые были дифференцированы с начала стадии 1 в клетки панкреатической энтодермы с помощью суспендирования в центрифужных пробирках или колбах Эрленмейера согласно примеру 2. Данные проточной цитометрии показывают в обоих форматах суспензии высокий уровень Nkx6.1, транскрипционного фактора, необходимого для функциональных β-клеток, и высокие уровни маркеров эндокринной поджелудочной железы, таких как синаптофизин (данные не показаны) и хромогранин.FIG. 2e shows the expression of differentiation markers (Nkx6.1, CDX2, Sox2, and Chromagranin) obtained by flow cytometry of human embryonic stem cells treated with EDTA from the H1 stem cell line, which were differentiated from the beginning of stage 1 into pancreatic endoderm cells by suspending centrifuge tubes or Erlenmeyer flasks according to example 2. Flow cytometry data in both suspension formats show a high level of Nkx6.1, a transcription factor required for functional β-cells ok, and high levels of endocrine pancreas markers, such as synaptophysin (data not shown) and chromogranin.

На Фиг. 2f показаны результаты qRT-PCR экспрессии отдельных генов, ассоциирующихся с дифференцировкой обработанных EDTA эмбриональных стволовых клеток человека из линии стволовых клеток H1, которые были дифференцированы с начала стадии 1 в клетки панкреатической энтодермы с помощью суспендирования в центрифужных пробирках или колбах Эрленмейера согласно Примеру 2. Эти данные сравнивали с данным экспрессии в клеточной линии WA01 hES. Результаты RT-PCR показывают высокие уровни нескольких панкреатических генов-предшественников.FIG. 2f shows the results of qRT-PCR expression of individual genes associated with the differentiation of EDTA-treated human embryonic stem cells from the H1 stem cell line, which were differentiated from the beginning of stage 1 into pancreatic endoderm cells by suspending in centrifuge tubes or Erlenmeyer flasks according to Example 2. These data were compared with expression data in the WA01 hES cell line. RT-PCR results show high levels of several pancreatic progenitor genes.

На Фиг. 3a показаны микрофотографии стволовых клеток эмбриона человека линии H1, отделившиеся от статической культуры после обработки Accutase®. Как показано на Фиг. 3, клетки были удалены с поверхности в виде мелких агрегатов.FIG. 3a shows micrographs of human embryonic stem cell line H1, separated by static culture after Accutase ® processing. As shown in FIG. 3, cells were removed from the surface in the form of small aggregates.

На Фиг. 3b показаны фазоконтрастные микрофотографии стволовых клеток эмбриона человека линии H1, отделившиеся от статической культуры после обработки Accutase® и после выращенные в суспензионной культуре в течение трех суток. На Фиг. 3b видно формирование по существу равномерных сферических популяций кластеров клетокFIG. 3b shows Phase contrast photomicrographs of human embryonic stem cell line H1, separated by static culture after Accutase ® and after processing grown in suspension culture for three days. FIG. 3b shows the formation of essentially uniform spherical populations of cell clusters.

На Фиг. 3c показана микрофотография стволовых клеток эмбриона человека линии H1, отделившиеся от статической культуры после обработки Accutase®, выращенные в суспензионной культуре в течение трех суток и подвергнувшиеся серийной пассировке с использованием диссоциации Accutase®.FIG. 3c is a photomicrograph of human embryonic stem cell line H1, separated by static culture after Accutase ® treatment, grown in suspension culture for three days and have been subjected to serial passirovke using Accutase ® dissociation.

На Фиг. 4a показаны микрофотографии стволовых клеток эмбриона человека линии H1, приведенных в состояние суспензионной культуры с использованием различных протоколов направленной дифференцировки на различных стадиях дифференцировки. На Фиг. 4 показаны микрофотографии клеток на каждой стадии дифференцировкиFIG. Figure 4a shows micrographs of human embryonic stem cells of the H1 line, brought to a suspension culture state using various protocols of directional differentiation at various stages of differentiation. FIG. 4 shows micrographs of cells at each stage of differentiation.

На Фиг. 4б приведены результаты проточной цитометрии для маркеров дифференцировки (CXCR4, CD56 и Pdx1) стволовых клеток эмбриона человека линии H1, приведенных в состояние суспензионной культуры с использованием различных протоколов направленной дифференцировки на различных стадиях дифференцировки (часы после начала дифференцировки). В конце процесса дифференцировки на 4-е сутки 4-й стадии высокий процент клеток показал положительную экспрессию Pdx1.FIG. 4b shows flow cytometry results for differentiation markers (CXCR4, CD56 and Pdx1) of human embryo stem cells of the H1 line brought into suspension culture using different protocols of differentiation at different stages of differentiation (hours after differentiation began). At the end of the process of differentiation on the 4th day of the 4th stage, a high percentage of cells showed positive expression of Pdx1.

На Фиг. 4c показаны уровни глюкозы у сытых мышей линии SCID-Bg, которым с помощью прибора TheraCyte™ были имплантированы инкапсулированные дифференцированные клетки.FIG. 4c shows glucose levels in fed SCID-Bg mice, which were encapsulated differentiated cells implanted with TheraCyte ™.

На Фиг. 5a показаны результаты, полученные в результате проточной цитометрии обработанных EDTA эмбриональных стволовых клеток человека из линии стволовых клеток H1 до начала процесса дифференцировки на маркеры клеточной поверхности, показывающие плюрипотентность и дифференцировку энтодермы. Как показано На Фиг. 5a, наблюдалась высокая экспрессия маркеров плюрипотентности CD9, SSEA4, TRA-1-60 и TRA-1-80.FIG. 5a shows the results obtained by flow cytometry of EDTA-treated human embryonic stem cells from the H1 stem cell line prior to the start of the differentiation process into cell surface markers, showing pluripotency and differentiation of endoderm. As shown in FIG. 5a, high expression of CD9, SSEA4, TRA-1-60 and TRA-1-80 pluripotency markers was observed.

На Фиг. 5b показано фазоконтрастное изображение клеток и результаты проточной цитометрии маркеров дифференцировки CXCR4/CD184 и CD99, а также маркера плюрипотентности CD9 при трех различных настройках подачи во время стадии 1. Тестирование проводили при следующих условиях: (A) замена среды через 24 часа после начала дифференцировки, без замены среды через 48 часов; (B) замена среды через 24 часа после начала дифференцировки и добавление болюса глюкозы через 48 часов; и (C) без замены среды в течение стадии 1 с добавлением болюсов глюкозы и GDF8 через 24 ч после начала дифференцировки и последующего добавления болюса глюкозы через 48 часов после начала.FIG. 5b shows a phase contrast image of the cells and flow cytometry results of the CXCR4 / CD184 and CD99 differentiation markers, as well as the CD9 pluripotency marker with three different feed settings during stage 1. Testing was performed under the following conditions: without changing the medium after 48 hours; (B) replace the medium 24 hours after the start of differentiation and add a bolus of glucose after 48 hours; and (C) without changing the medium during stage 1 with the addition of glucose bolus and GDF8 24 hours after the start of differentiation and the subsequent addition of glucose bolus 48 hours after the start.

На Фиг. 5с показаны фазоконтрастные изображения дифференцированных клеток, проявляющих морфологию поджелудочной энтодермы, которые были дифференцированы с использованием следующих настроек подачи во время формирования дефинитивной энтодермы: (A) замена среды через 24 часа после начала дифференцировки, без замены среды через 48 часов; (B) замена среды через 24 часа после начала дифференцировки и добавление болюса глюкозы через 48 часов; и (C) без замены среды в течение стадии 1 с добавлением болюсов глюкозы и GDF8 через 24 ч после начала дифференцировки и последующего добавления болюса глюкозы через 48 часов после начала.FIG. 5c shows phase-contrast images of differentiated cells exhibiting pancreatic endoderm morphology, which were differentiated using the following feed settings during definitive endoderm formation: (A) medium change 24 hours after differentiation began, 48 hours after medium change (B) replace the medium 24 hours after the start of differentiation and add a bolus of glucose after 48 hours; and (C) without changing the medium during stage 1 with the addition of glucose bolus and GDF8 24 hours after the start of differentiation and the subsequent addition of glucose bolus 48 hours after the start.

На Фиг. 5d показаны результаты проточной цитометрии для отдельных маркеров экспрессии генов поджелудочной (Nkx6.1 и хромагранин) и выбранных непанкреатических генов (CDX2 и Sox2) дифференцированной клетки в конце стадии 4, которые были дифференцированы с помощью следующих настроек подачи при формировании дефинитивной энтодермы: (A) замена среды через 24 часа после начала дифференцировки, без замены среды через 48 часов; (B) замена среды через 24 часа после начала дифференцировки и добавление болюса глюкозы через 48 часов; и (C) без замены среды в течение стадии 1 с добавлением болюсов глюкозы и GDF8 через 24 ч после начала дифференцировки и последующего добавления болюса глюкозы через 48 часов после начала.FIG. 5d shows flow cytometry results for individual pancreatic (Nkx6.1 and chromagranin) gene expression markers and selected non-pancreatic genes (CDX2 and Sox2) of the differentiated cell at the end of stage 4, which were differentiated using the following feed settings for generating definitive endoderm: (A) replacement of the medium 24 hours after the start of differentiation, without changing the medium after 48 hours; (B) replace the medium 24 hours after the start of differentiation and add a bolus of glucose after 48 hours; and (C) without changing the medium during stage 1 with the addition of glucose bolus and GDF8 24 hours after the start of differentiation and the subsequent addition of glucose bolus 48 hours after the start.

На Фиг. 5e показаны результаты qRT-PCR выбранной экспрессии генов поджелудочной железы и непанкреатических генов для дифференцированных клеток, в конце 4-й стадии, которые были дифференцированы с использованием следующих настроек подачи во время формирования дефинитивной энтодермы: (A) замена среды через 24 часа после начала дифференцировки, без замены среды через 48 часов; (B) замена среды через 24 часа после начала дифференцировки и добавление болюса глюкозы через 48 часов; и (C) без замены среды в течение стадии 1 с добавлением болюсов глюкозы и GDF8 через 24 ч после начала дифференцировки и последующего добавления болюса глюкозы через 48 часов после начала. Данные показаны в виде кратной разницы в экспрессии относительно недифференцированных клеток линии H1 (WA01) (исходная экспрессия 1).FIG. 5e shows the results of qRT-PCR of the selected expression of pancreatic genes and non-pancreatic genes for differentiated cells at the end of the 4th stage, which were differentiated using the following feed settings during the formation of definitive endoderm: (A) medium change 24 hours after differentiation began without changing the medium after 48 hours; (B) replace the medium 24 hours after the start of differentiation and add a bolus of glucose after 48 hours; and (C) without changing the medium during stage 1 with the addition of glucose bolus and GDF8 24 hours after the start of differentiation and the subsequent addition of glucose bolus 48 hours after the start. Data is shown as a multiple of the difference in expression relative to undifferentiated H1 cell line (WA01) (initial expression 1).

Фиг. 5f показывает экспрессию C-пептида у мышей линии SCID-Bg с имплантированными клетками, дифференцированными в соответствии с условием А (замена среды через 24 часа после начала дифференцировки, без замены среды через 48 часов). Каждой мыши линии SCID-Bg имплантировали 5 млн клеток под почечную капсулу. Как показано на Фиг. 5f, от 12 недель после имплантации человеческий С-пептид был обнаружен на уровнях выше 1 нг/мл, а через 16 недель уровни С-пептида в среднем составляли 2,5 нг/мл.FIG. 5f shows the expression of C-peptide in SCID-Bg mice with implanted cells differentiated according to condition A (change of medium 24 hours after the start of differentiation, without change of medium after 48 hours). Each SCID-Bg mouse implanted 5 million cells under the renal capsule. As shown in FIG. 5f, from 12 weeks after implantation, human C-peptide was detected at levels above 1 ng / ml, and after 16 weeks the levels of C-peptide averaged 2.5 ng / ml.

Фиг. 5g показывает эффект обработки глюкозой выбранных мышей линии SCID-BG до и после введения (например, имплантации) клеток, дифференцированных по условию А (замена среды через 24 часа после начала дифференцировки без замены среды через 48 часов). Как показано на Фиг. 5g, обработка глюкозой вызвала значительное увеличение циркулирующего С-пептида человека в среднем от 0,93 нг/мл в голодном состоянии до 2,39 нг/мл в сытом состоянии.FIG. 5g shows the effect of glucose treatment on selected SCID-BG mice before and after the introduction (for example, implantation) of cells differentiated according to condition A (change of medium 24 hours after the start of differentiation without changing the medium after 48 hours). As shown in FIG. 5g, glucose treatment caused a significant increase in the circulating human C-peptide on average from 0.93 ng / ml in the hungry state to 2.39 ng / ml in the saturated state.

Фиг. 5h показывает эффект введения стрептозотоцина (STZ) (т.е. STZ-индуцированного диабета) мышам линии SCID-BG, которым вводили клетки, дифференцированные по условию А (замена среды через 24 ч после начала дифференцировки, без замены среды через 48 часов). Как показано на Фиг. 5h, у животных с трансплантатом функциональной GSIS-компетентной ткани (т. е. такой, в которую были введены клетки) поддерживается нормальный уровень глюкозы в крови в отличие от необработанной контрольной группы, у которой развился откровенный диабет.FIG. 5h shows the effect of administration of streptozotocin (STZ) (i.e. STZ-induced diabetes) to SCID-BG mice that were injected with cells differentiated according to condition A (change of medium 24 hours after the start of differentiation, without changing the medium after 48 hours). As shown in FIG. 5h, animals with a graft of functional GSIS-competent tissue (i.e., one into which cells were introduced) maintain a normal level of blood glucose, unlike the untreated control group, which developed frank diabetes.

На Фиг. 6а показаны микрофотографии стволовых клеток эмбриона человека линии H1, выращенных на трех сферах микроносителя Cytodex® до дифференцировки.FIG. 6a shows micrographs of human embryonic stem cells of the H1 line grown on three spheres of Cytodex ® microcarrier prior to differentiation.

На Фиг. 6b показаны микрофотографии стволовых клеток эмбриона человека линии H1, выращенных на трех сферах микроносителя Cytodex® на различных стадиях дифференцировки.FIG. 6b shows micrographs of human H1 embryo stem cells grown on three spheres of Cytodex ® microcarrier at various stages of differentiation.

На Фиг. 6с показано количество клеток (клетки/см2) в зависимости от суток дифференцировки для стволовых клеток эмбриона человека линии H1, выращенных и дифференцированных на носителях в среде, содержащей активин A (AA) и WNT3A (носители WTN3A/АА), микроносителях в среде, содержащей активин A и WNT3a (микроносители WTN3A/AA), носителях в среде, содержащей MCX и GDF8 (MCX/GDF8 носители) и микроносителях в среде, содержащей MCX и GDF8 (MCX/GDF8 микроносители).FIG. 6c shows the number of cells (cells / cm 2 ) depending on the day of differentiation for human embryo stem cells of the H1 line grown and differentiated on media in media containing activin A (AA) and WNT3A (media WTN3A / AA), microcarriers in medium, containing activin A and WNT3a (microcarriers WTN3A / AA), media in a medium containing MCX and GDF8 (MCX / GDF8 carriers) and microcarriers in a medium containing MCX and GDF8 (MCX / GDF8 microcarriers).

На Фиг. 6d показано количество клеток (клетки/мл) в зависимости от суток дифференцировки для стволовых клеток эмбриона человека линии H1, выращенных и дифференцированных на носителях в среде, содержащей активин A и WNT3A (носители WTN3A/АА), микроносителях в среде, содержащей активин A и WNT3a (микроносители WTN3A/AA), носителях в среде, содержащей MCX и GDF8 (MCX/GDF8 носители) и микроносителях в среде, содержащей MCX и GDF8 (MCX/GDF8 микроносители).FIG. 6d shows the number of cells (cells / ml) depending on the day of differentiation for human embryo stem cells of the H1 line grown and differentiated on carriers in media containing activin A and WNT3A (media WTN3A / AA), microcarriers in media containing activin A and WNT3a (microcarriers WTN3A / AA), media in a medium containing MCX and GDF8 (MCX / GDF8 media) and microcarriers in a medium containing MCX and GDF8 (MCX / GDF8 microcarriers).

На Фиг. 6е показаны результаты проточной цитометрии для первой стадии дифференцировки клеток, выращенных на культуре микроносителя или плоской культуре в присутствии: (a) WNT3A и AA; или (2) MCX и GDF8 в виде точечной диаграммы клеточной экспрессии CXCR4/CD184 (по оси Y) и CD9 (по оси Х).FIG. 6e shows the results of flow cytometry for the first stage of differentiation of cells grown on a microcarrier culture or a flat culture in the presence of: (a) WNT3A and AA; or (2) MCX and GDF8 as a scatter plot of cell expression of CXCR4 / CD184 (Y axis) and CD9 (X axis).

На Фиг. 6f показаны результаты проточной цитометрии для первой стадии дифференцировки клеток, выращенных на культуре микроносителя или плоской культуры в присутствии: (a) WNT3A и AA; или (2) MCX и GDF8 в общей экспрессии каждого из маркеров (CXCR4 и CD9).FIG. 6f shows flow cytometry results for the first stage of differentiation of cells grown on a microcarrier culture or a flat culture in the presence of: (a) WNT3A and AA; or (2) MCX and GDF8 in the total expression of each of the markers (CXCR4 and CD9).

На Фиг. 6g показаны результаты количественной PCR экспрессии выбранных генов, ассоциированных с дифференцировкой стволовых клеток эмбриона человека линии H1, которые были дифференцированы выращиванием на плоской культуре или сферах микроносителя в суспензионной культуре в присутствии: (a) WNT3A и AA; или (2) MCX и GDF8.FIG. 6g shows the results of quantitative PCR expression of selected genes associated with the differentiation of human embryonic stem cells of the H1 line, which were differentiated by growing on a flat culture or microcarrier spheres in suspension culture in the presence of: (a) WNT3A and AA; or (2) MCX and GDF8.

На Фиг. 7 показано количество клеток на различных стадиях дифференцировки в биореакторе со стадии 1, 1 сутки до 4-й стадии, 3 суток для клеток, дифференцированных в соответствии с протоколом примера 7. Количество клеток показано в млн клеток/мл, что определено посредством цитометра на основе изображений (NucleoCounter®).FIG. 7 shows the number of cells at different stages of differentiation in the bioreactor from stage 1, day 1 to stage 4, 3 days for cells differentiated according to the protocol of example 7. The number of cells is shown in million cells / ml, as determined by means of a cytometer images (NucleoCounter ® ).

На Фиг. 8 показаны среднесуточные уровни рН среды в биореакторе как функцию по времени (сутки дифференцировки) согласно протоколу дифференцировки примера 7. Уровни рН определяли с помощью NOVA BioProfile® FLEX (Nova Biomedical Corporation, г. Уолтем, штат Массачусетс, США).FIG. 8 shows the average daily pH levels of the bioreactor as a function of time (differentiation day) according to the differentiation protocol of Example 7. The pH levels were determined using NOVA BioProfile ® FLEX (Nova Biomedical Corporation, Waltham, Mass. USA).

Фиг. 9 показывает среднесуточный уровень лактата среды в биореакторе как функцию по времени (сутки дифференцировки), согласно протоколу дифференцировки примера 7. Уровни лактата определяли с помощью NOVA BioProfile® FLEX (Nova Biomedical Corporation, г. Уолтем, штат Массачусетс, США).FIG. 9 shows average levels of lactate medium in the bioreactor as a function of time (days of differentiation), according to the protocol of Example 7. differentiation lactate levels were determined by NOVA BioProfile ® FLEX (Nova Biomedical Corporation , Waltham, Massachusetts, USA).

На Фиг. 10 показана среднесуточный уровень глюкозы в среде в биореакторе как функцию по времени (сутки дифференцировки) согласно протоколу дифференцировки примера 7. Уровни глюкозы определяли с помощью NOVA BioProfile® FLEX (Nova Biomedical Corporation, г. Уолтем, штат Массачусетс, США).FIG. 10 shows the average level of glucose in the medium in the bioreactor as a function of time (days of differentiation) according to the protocol of Example 7. differentiation glucose levels were determined by NOVA BioProfile ® FLEX (Nova Biomedical Corporation , Waltham, Massachusetts, USA).

Фиг.11 показана недифференцированная экспрессия гена, определенная способом QRT-PCR, для стадии 0, 1 сутки (т.е. через двадцать четыре часа после посева), клетки дифференцированы в соответствии с протоколом примера 7 для массива плюрипотентности, который содержит выбранные гены, связанные с плюрипотентностью.11 shows undifferentiated gene expression, determined by the QRT-PCR method, for stage 0, 1 day (i.e. twenty four hours after seeding), the cells are differentiated according to the protocol of example 7 for the array of pluripotency that contains the selected genes, associated with pluripotency.

На Фиг. 12 показана недифференцированная экспрессия гена, определенная способом QRT-PCR, для стадии 0, 1 сутки (то есть двадцать четыре часа после посева) клеток для дефинитивной энтодермы («DE») массива, который содержит выбранные гены, связанные с дефинитивной энтодермой (пример 7).FIG. 12 shows undifferentiated gene expression, as determined by the QRT-PCR method, for stage 0, 1 day (ie, twenty-four hours after seeding) cells for the definitive endoderm (“DE”) of the array, which contains the selected genes associated with the definitive endoderm (Example 7 ).

Фиг.13 показывает недифференцированную экспрессию гена, определенную способом QRT-PCR, для стадии 0, 3 суток (т.е. семьдесят два часа после посева клеток) для массива плюрипотентности, который содержит выбранные гены, связанные с плюрипотентностью (смотри пример 7).Fig. 13 shows undifferentiated gene expression, determined by the QRT-PCR method, for a stage of 0, 3 days (i.e. seventy-two hours after seeding cells) for an array of pluripotency that contains selected genes associated with pluripotency (see Example 7).

Фиг. 14 показывает недифференцированную экспрессию гена, определенную способом QRT-PCR, для стадии 0, 3 суток (т.е. семьдесят два часа после посева) клетки для массива DE, который содержит выбранные гены, связанные с DE (смотри пример 7).FIG. 14 shows undifferentiated gene expression, as determined by the QRT-PCR method, for a stage of 0, 3 days (i.e. seventy-two hours after seeding) cells for a DE array that contains selected genes associated with DE (see Example 7).

На Фиг. 15 показаны результаты флуоресцентной активированный сортировки клеток (FACS) для CD9, CD184/CXCR4, SSEA4, TRA-1-60 и TRA-1-81 для недифференцированной стадии 0, сутки 3 (т.е. семьдесят два часа после посева) клеток (смотри пример 7). Результаты также приведены в Таблице 8.FIG. 15 shows the results of fluorescent activated cell sorting (FACS) for CD9, CD184 / CXCR4, SSEA4, TRA-1-60 and TRA-1-81 for undifferentiated stage 0, day 3 (ie, seventy-two hours after seeding) of cells ( see example 7). The results are also shown in Table 8.

На Фиг. 16 показана недифференцированная экспрессия гена, определенная способом QRT-PCR, для некоторых генов стадии 0, 1 сутки (то есть двадцать четыре часа после посева) и стадии 0, сутки 3 (т.е. семьдесят два часа после посева), клетки дифференцированы в соответствии с протоколом примера 7. В частности, на фиг. 16 показано небольшое увеличение экспрессии генов для GATA4, РКГ, MIXL1 и Т и увеличение ≥100x экспрессии GATA2 в процессе стадии 0 до направленной дифференцировки.FIG. 16 shows undifferentiated gene expression, as determined by the QRT-PCR method, for some genes of stage 0, 1 day (that is, twenty-four hours after seeding) and stage 0, day 3 (ie, seventy-two hours after seeding), the cells are differentiated into according to the protocol of Example 7. In particular, in FIG. 16 shows a slight increase in gene expression for GATA4, RCG, MIXL1 and T and an increase in ≥100x of GATA2 expression during stage 0 prior to directed differentiation.

На Фиг. 17 показана недифференцированная экспрессия гена, определенная способом QRT-PCR, для массива DE, который содержит выбранные гены, связанных с DE, для стадии 0, 1 сутки (то есть двадцать четыре часа после посева) и стадии 0, сутки 3 ( т.е. семьдесят два часа после посева дифференцированных клеток) в соответствии с протоколом примера 7. В частности, Фиг.17 показывает увеличение в ≥100x CER1, FGF17 и экспрессии FGF4 в процессе стадии 0 до направленной дифференцировки.FIG. 17 shows the undifferentiated expression of the gene, as determined by the QRT-PCR method, for the DE array, which contains the selected genes associated with the DE, for stage 0, 1 day (that is, twenty four hours after seeding) and stage 0, day 3 (ie seventy-two hours after seeding differentiated cells) in accordance with the protocol of Example 7. In particular, FIG. 17 shows an increase of ≥100x CER1, FGF17 and the expression of FGF4 during stage 0 before directional differentiation.

Фиг. 18 и 19 показывают экспрессию генов для стадии 1, сутки 1 клеток, дифференцированных в соответствии с протоколом примера 7. Фиг. 18 показывает экспрессию генов, определенную способом QRT-PCR, для массива плюрипотентности, который содержит выбранные гены, связанные с плюрипотентностью, для стадии 1, сутки 1 клетки. Фиг. 19 показывает экспрессию генов, определенную способом QRT-PCR, для массива DE, который содержит выбранные гены, связанные с DE, для стадии 1, сутки 1 клетки. Фиг. 18 и 19 иллюстрируют существенные изменения в структуре экспрессии генов, такие как ~700x увеличение экспрессии Foxa2 и 1000x увеличение экспрессии CER1, EOMES, FGF17, FGF4, GATA4, GATA6, РКГ, MIXL1 и T.FIG. 18 and 19 show the expression of genes for stage 1, day 1 of cells differentiated according to the protocol of example 7. FIG. 18 shows the gene expression determined by the qRT-PCR method for an array of pluripotency that contains selected genes associated with pluripotency for stage 1, day 1 of the cell. FIG. 19 shows the gene expression determined by the qRT-PCR method for the DE array, which contains the selected DE genes, for stage 1, day 1 of the cell. FIG. 18 and 19 illustrate significant changes in the expression structure of genes, such as a ~ 700x increase in Foxa2 expression and a 1000x increase in expression of CER1, EOMES, FGF17, FGF4, GATA4, GATA6, GSC, MIXL1 and T.

Фиг. 20 и 21 показывают экспрессию генов для стадии 1, сутки 3 клеток, дифференцированных в соответствии с протоколом примера 7. Фиг. 20 показывает экспрессию генов, определенную способом QRT-PCR, для массива плюрипотентности, который содержит выбранные гены, связанные с плюрипотентностью, для стадии 1, сутки 3 клетки. Фиг. 21 показывает экспрессию генов, определенную способом QRT-PCR, для массива DE, который содержит выбранные гены, связанные с DE, для стадии 1, сутки 3 клетки.FIG. 20 and 21 show gene expression for stage 1, day 3 of cells differentiated according to the protocol of example 7. FIG. 20 shows the gene expression determined by the qRT-PCR method for an array of pluripotency that contains selected genes associated with pluripotency, for stage 1, day 3 cells. FIG. 21 shows the gene expression determined by the QRT-PCR method for the DE array, which contains the selected DE genes, for stage 1, day 3 cells.

Фиг. 22 показывает результаты FACS для CD9, CD184 (также известный как CXCR4) и CD99 на стадии 1, сутки 3 клеток, дифференцированных в соответствии с протоколом примера 7. Наблюдался почти полный переход от CD9-экспрессирующей/CXCR4-отрицательной популяции плюрипотентных клеток при инициировании дифференцировки (Фиг. 15) к гомогенной популяции клеток, экспрессирующих CXCR4 (98,3% клеток CXCR4-положительны, ± 1,9SD) в конце стадии 1(Фиг. 22).FIG. Figure 22 shows the FACS results for CD9, CD184 (also known as CXCR4) and CD99 in stage 1, day 3 cells differentiated according to the protocol of Example 7. There was an almost complete transition from the CD9-expressing / CXCR4-negative population of iPS cells when initiating differentiation (Fig. 15) to a homogeneous population of cells expressing CXCR4 (98.3% of CXCR4-positive cells, ± 1.9 SD) at the end of stage 1 (Fig. 22).

На Фиг. 23 показана экспрессия генов, определенная способом qRT-PCR, для массива DE, который содержит выбранные гены, связанные с DE, для стадии 1, сутки 3; стадии 2, сутки 1; и стадии 2, сутки 3 для клеток, дифференцированных в соответствии с протоколом примера 7. Фиг. 23 показывает, что уровни экспрессии HNF4α и GATA6 на стадии 2 сутки 1 и 3, увеличиваются, в то время как гены с высоким уровнем экспрессии на 3 сутки стадии 1 (CXCR4, EOMES, FGF17, FGF4, MNX1, PRDM1, SOX17 и ФВ) показали снижение экспрессии в конце стадии 2.FIG. 23 shows the expression of genes determined by the qRT-PCR method for the DE array, which contains the selected genes associated with the DE for stage 1, day 3; stage 2, day 1; and stage 2, day 3 for cells differentiated according to the protocol of example 7. FIG. 23 shows that the levels of expression of HNF4α and GATA6 at stage 2, days 1 and 3, increase, while genes with a high level of expression at day 3 of stage 1 (CXCR4, EOMES, FGF17, FGF4, MNX1, PRDM1, SOX17 and FV) showed a decrease in expression at the end of stage 2.

Фиг. 24 показывает экспрессию генов передней кишки AFP, Pdx1 и Prox1, определенную способом QRT-PCR, для стадии 2, сутки 1 клеток и стадии 2, сутки 3 клеток, дифференцированных в соответствии с протоколом примера 7. Как показано На Фиг. 24, экспрессия этих генов увеличилась.FIG. 24 shows the expression of the AFP, Pdx1 and Prox1 genes of the anterior intestine, as determined by the QRT-PCR method, for stage 2, day 1 of cells and stage 2, day 3 of cells differentiated according to the protocol of example 7. As shown in FIG. 24, the expression of these genes increased.

Фиг. 25 показывает результаты FACS для Pdx1, Foxa2, хромогранина, Nkx2.2 и SOX2 для стадии 3, сутки 3 клеток, выращенных в среде стадии 3 (таблица 7) и дифференцированых в соответствии с протоколом примера 7. Как показано На Фиг. 25, маркеры экспрессии клеток соответствуют энтодерме поджелудочной линии, как определено по экспрессии PDX1 и FOXA2 (90,9% ± 11,9 СО PDX1-положительной и 99,2% ± 0,6 СО FOXA2-положительной).FIG. 25 shows the FACS results for Pdx1, Foxa2, chromogranin, Nkx2.2 and SOX2 for stage 3, day 3 cells grown in stage 3 medium (Table 7) and differentiated according to the protocol of Example 7. As shown in FIG. 25, cell expression markers correspond to the endoderm of the pancreatic line, as determined by the expression of PDX1 and FOXA2 (90.9% ± 11.9 CO of PDX1 positive and 99.2% ± 0.6 CO of FOXA2 positive).

Фиг. 26 показывает экспрессию генов, определенную способом QRT-PCR, для стадии 4 массива, который содержит выбранные гены, связанные с 4-й стадией, на стадии 3, 1 сутки и 3 стадиисутки 3 клеток, дифференцированных в соответствии с протоколом примера 7, Фиг. 26 показывает, что эти клетки обладают повышенным уровнем генов, обычно экспрессирующих в поджелудочной железе (ARX, GAST, GCG, INS, Isl1, NEUROD1, Ngn3, Nkx2.2, Nkx6.1, Pax4, PAX6, Ptf1a и SST ).FIG. 26 shows the gene expression determined by the QRT-PCR method, for stage 4 of the array, which contains the selected genes associated with the 4th stage, at stage 3, 1 day and 3 stages, 3 cells per day, differentiated according to the protocol of example 7, FIG. 26 shows that these cells have an increased level of genes usually expressing in the pancreas (ARX, GAST, GCG, INS, Isl1, NEUROD1, Ngn3, Nkx2.2, Nkx6.1, Pax4, PAX6, Ptf1a and SST).

Фиг. 27 показывает результаты FACS для Nkx6.1, хромагранина (CHGA), CDX2, Sox2, Nkx2.2, Pdx1, Foxa2 и NeuroD для стадии 4, сутки 3 клеток, дифференцированных в соответствии с протоколом примера 7. Как показано На Фиг. 27, на стадии 4 сутки 3 у клеток сохраняются высокие уровни экспрессии PDX1 и FOXA2 и далее проявляется паттерн экспрессии, соответствующий сочетанию панкреатических эндокринных клеток (28,1% ± 12,5 СО хромогранин-положительных) и панкреатических клеток-предшественников (58,3% ± 9,7 СО NKX6.1-положительных).FIG. 27 shows the FACS results for Nkx6.1, Chromagranin (CHGA), CDX2, Sox2, Nkx2.2, Pdx1, Foxa2 and NeuroD for stage 4, day 3 cells differentiated according to the protocol of Example 7. As shown in FIG. 27, at stage 4, day 3, cells maintain high levels of expression of PDX1 and FOXA2, and further, an expression pattern appears corresponding to a combination of pancreatic endocrine cells (28.1% ± 12.5 WITH chromogranin-positive) and pancreatic progenitor cells (58.3 % ± 9.7 WITH NKX6.1-positive.

На Фиг. 28 показана экспрессия генов, определенную способом qRT-PCR, для стадии 4 массива, который содержит выбранные гены, связанные с 4-й стадией, на стадии 3, сутки 3; стадии 4 сутки 1 и стадии 4, сутки 3 для клеток, дифференцированных в соответствии с протоколом примера 7. Фиг. 28 показывает повышенный уровень экспрессии генов, обычно выраженных в поджелудочной железе (ARX, GAST, GCG, IAPP, INS, ISL1, MAFB, NEUROD1, NGN3, NKX2.2, NKX6.1, PAX4, PAX6, PTF1A и SST).FIG. 28 shows the expression of genes determined by the qRT-PCR method, for stage 4 of the array, which contains the selected genes associated with the 4th stage, at stage 3, day 3; stage 4, day 1 and stage 4, day 3 for cells differentiated according to the protocol of example 7. FIG. 28 shows an increased level of expression of genes commonly expressed in the pancreas (ARX, GAST, GCG, IAPP, INS, ISL1, MAFB, NEUROD1, NGN3, NKX2.2, NKX6.1, PAX4, PAX6, PTF1A and SST).

Фиг. 29 показывает средние результаты FACS для Nkx6.1, хромагранина (CHGA), CDX2, Sox2, Nkx2.2, Pdx1, Foxa2 и NeuroD для стадии 4, сутки 3 клеток, дифференцированных в соответствии с протоколом примера 7. В частности, Фиг. 29 показывает средний паттерн экспрессии FACS клеток-предшественников панкреатических клеток, генерируемых в 3L шкале из другой партии посевного материала.FIG. 29 shows average FACS results for Nkx6.1, chromagranin (CHGA), CDX2, Sox2, Nkx2.2, Pdx1, Foxa2 and NeuroD for stage 4, day 3 cells differentiated according to the protocol of example 7. In particular, FIG. 29 shows the average FACS expression pattern of the progenitor cells of pancreatic cells generated in a 3L scale from a different seed lot.

Фиг. 30 показывает средние результаты FACS для Nkx6.1, хромагранина (CHGA), CDX2, Sox2, Nkx2.2, Pdx1, Foxa2 и NeuroD для стадии 4, сутки 3 клеток, дифференцированных в соответствии с протоколом примера 7. До дифференцировки в стадии 4, 3 суток клетки, клетки размножили для формирования ISM, а затем вырастили на стадии 0 либо в разработанной в лаборатории среде «IH3», либо в среде Essential8™, в каждую из которых добавили 0,5% BSA. Клетки, выращенные в среде IH3 названы «IH3-P-выращенные клетки», а клетки, выращенные в Essential8™, названы «EZ8-выращенные клетки». Существенной разницы в характере экспрессии у клеток, выращенных в различных среде, не наблюдалось.FIG. 30 shows the average FACS results for Nkx6.1, chromagranin (CHGA), CDX2, Sox2, Nkx2.2, Pdx1, Foxa2 and NeuroD for stage 4, day 3 cells differentiated according to the protocol of example 7. Before differentiation in stage 4, For 3 days, the cells multiplied to form an ISM, and then grown in stage 0, either in the laboratory-developed “IH3” medium or in the Essential8 ™ medium, to each of which 0.5% BSA was added. Cells grown in medium IH3 are called “IH3-P-grown cells”, and cells grown in Essential8 ™ are called “EZ8-grown cells”. There was no significant difference in the expression pattern in cells grown in different media.

Фиг. 31 показывает средние результаты FACS для Nkx6.1, хромагранина (CHGA), CDX2, SOX2, Nkx2.2, Pdx1, Foxa2 и NeuroD для стадии 4, сутки 3 клеток, которые ранее были выращены при разных уровнях рН в стадии 0 (пример 7). Не наблюдалось существенных изменений в профиле клеток стадии 4, сутки 3.FIG. 31 shows the average FACS results for Nkx6.1, Chromagranin (CHGA), CDX2, SOX2, Nkx2.2, Pdx1, Foxa2 and NeuroD for stage 4, day 3 cells that were previously grown at different pH levels in stage 0 (Example 7 ). No significant changes were observed in the cell profile of stage 4, day 3.

Фиг. 32 сравнивает результаты FACS для Nkx6.1, хромогранина (CHGA), CDX2, SOX2, Nkx2.2, Pdx1, Foxa2 и NeuroD для стадии 4, сутки 3 клеток, которые не были обработаны с пеногасителем-С, и стадии 4, сутки 3 клеток, которые были обработаны эмульсией пеногасителя-С (94 части на миллион) (смотри пример 7). Эмульсия пеногасителя-С(Sigma № по каталогу A8011) не показала эффекта на профиль стадии 4 суток 3 клеток.FIG. 32 compares FACS results for Nkx6.1, Chromogranin (CHGA), CDX2, SOX2, Nkx2.2, Pdx1, Foxa2 and NeuroD for stage 4, day 3 cells that were not treated with antifoam-C, and stage 4, day 3 cells that have been treated with an antifoam-C emulsion (94 ppm) (see example 7). The emulsion defoamer-C (Sigma catalog number A8011) showed no effect on the profile of the stage 4 days 3 cells.

Фигуры от 33 до 35 показывают экспрессию гена, определенную способом QRT-PCR, для отдельных генов клеток, дифференцированных в соответствии с протоколом примера 8. Фиг. 33 показывает экспрессию генов, определенную способом QRT-PCR, для некоторых генов в клетках за двадцать четыре часа до начала дифференцировки (смотри пример 8). Как показано На Фиг. 33, клетки из биореактора сохраняют экспрессию генов, характерную для плюрипотентности (POU5F1, NANOG, Sox2 и ZFP42) и показывают минимальное или отсутствующее индуцирование генов, характерных для дифференцировки (AFP и Foxa2: < 50-кратное увеличение; FOXD3, GATA2, GATA4, GSC, HAND2, MIXL1 и T: <10-кратное увеличение экспрессии). Фиг. 34 показывает экспрессию генов, определенную способом QRT-PCR, для отдельных генов клеток через двадцать четыре часа после начала дифференцировки. Фиг. 35 показывает экспрессию генов, определенную способом QRT-PCR, для отдельных генов клеток через семьдесят два часа после начала дифференцировки.Figures 33 to 35 show gene expression as determined by the QRT-PCR method for individual cell genes differentiated according to the protocol of Example 8. FIG. 33 shows gene expression as determined by the qRT-PCR method for some genes in cells twenty-four hours before differentiation begins (see example 8). As shown in FIG. 33, cells from the bioreactor retain gene expression characteristic of pluripotency (POU5F1, NANOG, Sox2 and ZFP42) and show minimal or absent induction of differentiation-specific genes (AFP and Foxa2: <50-fold increase; FOXD3, GATA2, GATA4, GSC , HAND2, MIXL1 and T: <10-fold increase in expression). FIG. 34 shows the gene expression determined by the qRT-PCR method for individual cell genes twenty-four hours after the start of differentiation. FIG. 35 shows gene expression as determined by the qRT-PCR method for individual cell genes seventy-two hours after the start of differentiation.

Фигуры 36(а)-36(е) показывают экспрессию гена, определенную способом QRT-PCR, для отдельных генов клеток, дифференцированных на стадиях 2-3 и 4 в соответствии с протоколом примера 8. В частности, эти фигуры показывают экспрессию генов в клетках на стадии 2, сутки 1; стадии 2, сутки 2; стадии 2, сутки 3; стадии 3, сутки 3; и, в зависимости от гена, стадии 4, сутки 1. Фиг. 36(а) показывает экспрессию гена альфа-фетопротеина, Atoh1 и CDX2. Фиг. 36(b) показывает экспрессию генов GAST Hand1, HHEX и HNF4a. Фиг. 36(c) показывает экспрессию гена Nkx2.2, Nkx6.1, OSR1 и Pdx1. Фиг. 36(d) показывает экспрессию генов Prox1, PFT1a, SOX17 и SOX2. Фиг. 36(е) показывает экспрессию гена SOX9. Данные показаны в виде разницы экспрессии относительно недифференцированных клеток линии H1 (WA01) HES (исходная экспрессия 1).Figures 36 (a) -36 (e) show the expression of a gene as determined by the qRT-PCR method for individual cell genes differentiated in steps 2-3 and 4 according to the protocol of example 8. In particular, these figures show the expression of genes in cells at stage 2, day 1; stage 2, day 2; stage 2, day 3; stage 3, day 3; and, depending on the gene, stage 4, day 1. FIG. 36 (a) shows the expression of the alpha-fetoprotein gene, Atoh1 and CDX2. FIG. 36 (b) shows the expression of the GAST Hand1, HHEX and HNF4a genes. FIG. 36 (c) shows the expression of the Nkx2.2, Nkx6.1 gene, OSR1 and Pdx1. FIG. 36 (d) shows the expression of Prox1, PFT1a, SOX17 and SOX2 genes. FIG. 36 (e) shows the expression of the SOX9 gene. The data are shown as the difference in expression relative to undifferentiated H1 (WA01) HES cell line (initial expression 1).

Фиг. 37 показывает экспрессию генов, определенную способом QRT-PCR, для отдельных генов клеток на стадии 4, сутки 3 дифференцировки в соответствии с протоколом в примере 8. Как показано На Фиг. 37, в конце дифференцировки на стадии 3, сутки 3 клеток, дифференцированных в панкреатические клетки-предшественники, характеризующихся высоким уровнем экспрессии Pdx1 (> 1×106кратное индуцирование) и других панкреатических генов (> 1000кратное индуцирование ARX, GCG, GAST, INS, ISL, NEUROD1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Ptf1a и SST) и почти полную потерю экспрессии OCT4/POU5F1 по сравнению с недифференцированными стволовыми клетками эмбриона человека линии H1.FIG. 37 shows gene expression as determined by the QRT-PCR method for individual cell genes in step 4, day 3 of differentiation according to the protocol in Example 8. As shown in FIG. 37, at the end of differentiation in stage 3, day 3 cells differentiated into pancreatic progenitor cells characterized by a high expression level of Pdx1 (> 1 × 10 6 times induction) and other pancreatic genes (> 1000 times induction of ARX, GCG, GAST, INS, ISL, NEUROD1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Ptf1a, and SST) and an almost complete loss of OCT4 / POU5F1 expression compared to the undifferentiated stem cells of the H1 human embryo.

Фиг. 38 показывает подсчет клеток ежедневно в течение протокола дифференцировки по примеру 8. В частности, Фиг.38 показывает плотность клеток в зависимости от суток процесса. Фиг. 38 показывает количество клеток для дифференцировки протоколов в двух пробегах реакторов (PRD1205 и PRD1207), проведенных при рН 6,8 и 7,2. Для сравнения также показано количество клеток клеточного дрейфа.FIG. 38 shows the counting of cells daily during the differentiation protocol of Example 8. In particular, Fig. 38 shows the density of cells depending on the day of the process. FIG. 38 shows the number of cells for differentiation of the protocols in the two runs of the reactors (PRD1205 and PRD1207) conducted at pH 6.8 and 7.2. For comparison, cell drift cell counts are also shown.

Фиг. 39 (а) - Фиг. 39 (d) иллюстрируют биологическую активность in vivo стадии 4 сутки 3 клеток, дифференцированных в соответствии с протоколом примера 8 и имплантированных мышам линии SCID-BG. Клетки имплантировали подкожно с помощью устройства TheraCyte™ под почечную капсулу или имплантированные после инкубации на сверхмалых носителях. Мыши проверялись на уровень глюкозы и С-пептида в крови каждые четыре недели после имплантации трансплантата. На Фиг. 39 (а) показаны уровни С-пептида после имплантации 5×106 или 10×106 клеток на стадии 4 сутки 3 в устройстве TheraCyte™ в зависимости от времени. На Фиг. 39 (b) показаны уровни глюкозы у сытых животных после имплантации 5×106 или 10×106 клеток на стадии 4 сутки 3 в устройстве TheraCyte™. Мыши на фиг. 39 (b) были обработаны STZ для абляции функции β-клеток-хозяев перед имплантацией. Фиг. 39 (с) показывает уровень С-пептида, полученный после имплантации ранее криоконсервированных клеток на стадии 4 сутки 3 в устройстве TheraCyte™ в зависимости от времени (недели после имплантации). Фиг. 39 (d) сравнивает уровни C-пептида мышей, получивших почечные трансплантат не криоконсервированных/свежих клеток стадии 4, сутки 3 или криоконсервированных клеток стадии 4, сутки 3, имплантированных сразу после разморозки (D0) или 1 сутки после разморозки ( D1).FIG. 39 (a) - FIG. 39 (d) illustrate the in vivo biological activity of stage 4 day 3 cells differentiated according to the protocol of example 8 and implanted into SCID-BG mice. Cells were implanted subcutaneously using a TheraCyte ™ device under the renal capsule or implanted after incubation on ultra-small carriers. Mice were tested for glucose and C-peptide in the blood every four weeks after implantation of the graft. FIG. 39 (a) shows C-peptide levels after implantation of 5 × 106 or 10 × 106 cells at stage 4 day 3 in a TheraCyte ™ device depending on time. FIG. 39 (b) shows glucose levels in fed animals after implantation of 5 × 106 or 10 × 106 cells at stage 4 day 3 in a TheraCyte ™ device. The mice in FIG. 39 (b) were treated with STZ to ablate the function of β-host cells prior to implantation. FIG. 39 (c) shows the level of C-peptide obtained after implantation of previously cryopreserved cells at stage 4 day 3 in a TheraCyte ™ device depending on the time (week after implantation). FIG. 39 (d) compares the C-peptide levels of mice that received a renal graft of non-cryopreserved / fresh cells of stage 4, day 3 or cryopreserved cells of stage 4, day 3, implanted immediately after thawing (D0) or 1 day after thawing (D1).

Фиг. 40A-40D показывают графики экспрессии CXCR4, CD99 и CD9 клеток, дифференцированных в течение трех суток в соответствии с протоколом примера 9, которые были обработаны в стадии 1, 1 сутки следующим: MCX-соединением и GDF-8 (Фиг. 40A); только MCX (Фиг. 40В); WNT3A и активином А (Фиг. 40C); и только WNT3A (Фиг. 40D). Эти цифры показывают, что в суспензионной культуре добавление 3 мкМоль MCX в отсутствие веществ семейства TGF-β за одни сутки дифференцировки генерируется дефинитивная энтодерма на уровне, сопоставимом с полученным при обработке клеток с 3 мкМоль MCX плюс 100 нг/мл GDF-8 или 20 нг/мл WNT-3A плюс 100 нг/мл активина за одни сутки.FIG. 40A-40D show expression graphs of CXCR4, CD99 and CD9 cells differentiated for three days according to the protocol of example 9, which were processed in step 1, day 1 with the following: MCX-compound and GDF-8 (Fig. 40A); only MCX (Fig. 40B); WNT3A and activin A (Fig. 40C); and only WNT3A (Fig. 40D). These figures show that in suspension culture the addition of 3 μM MCX in the absence of substances of the TGF-β family for one day of differentiation generates a definitive endoderm at a level comparable to that obtained by treating cells with 3 μM MCX plus 100 ng / ml GDF-8 or 20 ng / ml WNT-3A plus 100 ng / ml activin in one day.

Фиг. 41А-41D показывают графики экспрессии CXCR4, CD99, CD9 и дифференцированных клеток в течение трех суток в соответствии с протоколом примера 10, обработанных различными количествами MCX на стадии 1, 1 сутки. В частности, клетки на стадии 1, сутки 1 были обработаны: 4 мкМоль MCX (Фиг. 41A); 3 мкМоль MCX (Фиг. 41B); 2 мкМоль MCX (Фиг. 41C); и 1,5 мкМоль MCX (Фиг. 41D).FIG. 41A-41D show graphs of the expression of CXCR4, CD99, CD9 and differentiated cells for three days in accordance with the protocol of Example 10, treated with different amounts of MCX in stage 1, day 1. In particular, the cells in stage 1, day 1 were treated: 4 μmol MCX (Fig. 41A); 3 μM MCX (FIG. 41B); 2 μM MCX (FIG. 41C); and 1.5 μM MCX (FIG. 41D).

На Фиг. 42A и 42B показаны графики FACS для CXCR4, CD99 и CD9 клеток, дифференцированных в течение трех суток в соответствии с протоколом примера 11. В частности, эти цифры показывают роль частоты замены среды в суспензионной культуре. Фиг. 42A графики экспрессии CXCR4, CD99, CD9 и дифференцированных клеток в течение трех суток в соответствии с протоколом примера10 с полной заменой среды на стадии 1. Фиг. 42B графики экспрессии CXCR4, CD99, CD9 и дифференцированных клеток в течение трех суток в соответствии с протоколом примера 10 без замены среды на сутки 3. Эти данные свидетельствуют, что в системе суспензионной культуры, у тех культур, которые получают замену среды на третьи сутки (фиг.42А) дифференцировки, в результате дефинитивная энтодерма проявляется так же, как у культур, которые не получают замену среды на трое суток (фиг.42B).FIG. 42A and 42B show FACS plots for CXCR4, CD99, and CD9 cells differentiated for three days in accordance with the protocol of Example 11. In particular, these figures show the role of the medium replacement rate in suspension culture. FIG. 42A graphs of the expression of CXCR4, CD99, CD9 and differentiated cells for three days in accordance with the protocol of example 10, with a complete replacement of the medium in step 1. FIG. 42B graphs of expression of CXCR4, CD99, CD9 and differentiated cells for three days in accordance with the protocol of example 10 without changing the medium on day 3. These data indicate that in the suspension culture system, in those cultures that receive a medium change for the third day ( figa) differentiation, resulting in the definitive endoderm appears the same as in cultures that do not receive a three-day medium change (fig.42b).

Фиг. 43A и 43B показывают графики экспрессии CXCR4, CD99, CD9 и дифференцированных клеток в течение трех суток в соответствии с протоколом примера 12. В частности, на этих фигурах показана роль GlutaMAX™ в суспензионной культуре. Клетки культивировали на стадии 1 в среде с добавлением 1×GlutaMAX™ (Фиг. 43A) или без GlutaMAX™ или без любого глутамина (0 Моль GlutaMAX™) (Фиг. 43B). Эти данные свидетельствуют о том, что в системе суспензионной культуры добавление GlutaMAX™ не влияет на эффективность, с которой образуется дефинитивная энтодерма.FIG. 43A and 43B show graphs of the expression of CXCR4, CD99, CD9 and differentiated cells for three days in accordance with the protocol of Example 12. In particular, these figures show the role of GlutaMAX ™ in suspension culture. Cells were cultured in stage 1 in medium supplemented with 1 × GlutaMAX ™ (Fig. 43A) with or without GlutaMAX ™ or without any glutamine (0 M GlutaMAX ™) (Fig. 43B). These data suggest that in the suspension culture system, the addition of GlutaMAX ™ does not affect the efficiency with which the definitive endoderm is formed.

Фигуры 44А до 44D показывают влияние различных количеств бикарбоната натрия на клетки, дифференцированные в соответствии с протоколом примера 13. Фиг. 44A и 44B показывают графики экспрессии CXCR4, CD99, CD9 и дифференцированных клеток в течение трех суток в соответствии с протоколом примера 13 при введении 3,64 г/л (фиг.44A) или 2,49 г/л (фиг.44B) на стадии 1. Фигурки 44С и 44D фиг.показывают фазоконтрастные микрофотографии дифференцированных клеток в течение трех суток в соответствии с протоколом примера 13 при введении 3,64 г/л (Фиг.44C) или 2,49 г/л (Фиг.44D) на стадии 1.Figures 44A to 44D show the effect of varying amounts of sodium bicarbonate on cells differentiated according to the protocol of Example 13. FIG. 44A and 44B show graphs of the expression of CXCR4, CD99, CD9 and differentiated cells for three days in accordance with the protocol of example 13 with the introduction of 3.64 g / l (FIG. 44A) or 2.49 g / l (FIG. 44B) on stages 1. Figures 44C and 44D of FIG. show phase-contrast micrographs of differentiated cells for three days in accordance with the protocol of example 13 with the introduction of 3.64 g / l (Fig. 44C) or 2.49 g / l (Fig. 44D) on stage 1.

Фиг. 45 показывает ежедневные количество клеток для клеточной плотности в зависимости от дифференцировки клеток, дифференцированных в соответствии с протоколом примера 14. Количество клетки было определено посредством цитометра на основе изображений (NucleoCounter®).FIG. 45 shows the daily number of cells for cell density, depending on cell differentiation, differentiated according to the protocol of Example 14. The number of cells was determined by cytometer based on images (NucleoCounter ®).

На Фиг. 46 показаны среднесуточные уровни рН среды в биореакторе как функцию по времени (сутки дифференцировки) согласно протоколу дифференцировки примера 14. Уровни рН определяли с помощью NOVA BioProfile® FLEX (Nova Biomedical Corporation, г. Уолтем, штат Массачусетс, США).FIG. 46 shows average daily pH levels in a bioreactor as a function of time (differentiation day) according to the differentiation protocol of Example 14. The pH levels were determined using NOVA BioProfile ® FLEX (Nova Biomedical Corporation, Waltham, Mass. USA).

На Фиг. 47 показана среднесуточный уровень глюкозы в среде в биореакторе как функцию по времени (сутки дифференцировки) согласно протоколу дифференцировки примера 14. Уровни глюкозы определяли с помощью NOVA BioProfile® FLEX (Nova Biomedical Corporation, г. Уолтем, штат Массачусетс, США).FIG. 47 shows the average level of glucose in the medium in the bioreactor as a function of time (days of differentiation) according to the protocol of Example 14. differentiation glucose levels were determined by NOVA BioProfile ® FLEX (Nova Biomedical Corporation , Waltham, Massachusetts, USA).

Фиг. 48 показывает среднесуточный уровень лактата среды в биореакторе как функцию по времени (сутки дифференцировки), согласно протоколу дифференцировки примера 14. Уровни лактата определяли с помощью NOVA BioProfile® FLEX (Nova Biomedical Corporation, г. Уолтем, штат Массачусетс, США).FIG. 48 shows the average daily lactate level of the medium in the bioreactor as a function of time (day of differentiation), according to the differentiation protocol of example 14. Lactate levels were determined using NOVA BioProfile ® FLEX (Nova Biomedical Corporation, Waltham, Mass. USA).

Фиг. 49 показывает экспрессию генов, определенную способом QRT-PCR, в кратном выражении по сравнению с недифференцированными клетками для массива плюрипотентности, который содержит выбранные гены, связанные с плюрипотентностью, для стадии 0, 1-3 суток и стадии 1, 1-3 суток клеток, дифференцированных в соответствии с протоколом примера 14. FIG. 49 shows gene expression as determined by the qRT-PCR method, in multiple terms, compared to undifferentiated cells for an array of pluripotency, which contains selected genes associated with pluripotency, for stage 0, 1-3 days and stage 1, 1-3 days of cells, differentiated according to the protocol of example 14.

Фиг. 50 показывает экспрессию генов, определенную способом QRT-PCR, в кратном выражении по сравнению с недифференцированными клетками для массива DE, который содержит выбранные гены, связанные с DE, для стадии 0, 1-3 суток, стадии 1, 1-3 суток и стадии 2, сутки 1-3 клеток, дифференцированных в соответствии с протоколом примера 14.FIG. 50 shows gene expression as determined by the qRT-PCR method, in multiple terms, compared to undifferentiated cells for a DE array that contains selected genes associated with DE for stage 0, 1-3 days, stage 1, 1-3 days and stage 2, day 1-3 cells, differentiated in accordance with the protocol of example 14.

Фиг. 51 показывает результаты FACS для маркеров, связанных с плюрипотентностью (CD184/CXCR4, SSEA4, TRA-1-60 и TRA-1-81) для стадии 0 клеток до дифференцирования в соответствии с протоколом примера 14. В частности, фиг. 51 показывает высокую экспрессию маркеров, связанных с плюрипотентностью.FIG. 51 shows the FACS results for markers associated with pluripotency (CD184 / CXCR4, SSEA4, TRA-1-60 and TRA-1-81) for stage 0 cells prior to differentiation according to the protocol of Example 14. In particular, FIG. 51 shows high expression of markers associated with pluripotency.

Фиг. 52 показывает графики экспрессии маркеров дефинитивной энтодермы CXCR4, CD99, CD9 и дифференцированных клеток в конце стадии 1 в соответствии с протоколом примера 14.FIG. 52 shows plots of expression of markers of the definitive endoderm of CXCR4, CD99, CD9 and differentiated cells at the end of stage 1 according to the protocol of Example 14.

На Фиг. 53 показана экспрессия генов, определенная способом qRT-PCR в кратном выражении по сравнению с недифференцированными клетками для GAPDH, AFP, HHEX, HNF4α, PDX1 и PROX1 для стадии 2, сутки 1; стадии 2 сутки 2 и стадии 2, сутки 3 для клеток, дифференцированных в соответствии с протоколом примера 14. Фиг. 53 показывает увеличение экспрессии генов передней кишки (AFP, HHEX, Pdx1 и Prox1).FIG. 53 shows gene expression as determined by the qRT-PCR method in multiple expression as compared to undifferentiated cells for GAPDH, AFP, HHEX, HNF4α, PDX1 and PROX1 for stage 2, day 1; stage 2 day 2 and stage 2, day 3 for cells differentiated according to the protocol of example 14. FIG. 53 shows an increase in the expression of genes in the foregut (AFP, HHEX, Pdx1 and Prox1).

Фиг. 54 показывает экспрессию генов, определенную способом QRT-PCR, в кратном выражении по сравнению с недифференцированными клетками для GAPDH, AFP, CDX2, GAST, HNF4A, NKX2-2, OSR1, Pdx1 и PFT1A для стадии 2, сутки 1-3 суток и стадия 3, сутки 1-3 клеток, дифференцированых в соответствии с протоколом примера 14. Как показано На Фиг. 54, экспрессия Pdx1 увеличилась 60кратно, от 12 000x относительно контроля в конце стадии 2, 3 суток и до 739 000x относительно контроля над в конце стадии 3, 3 сутокFIG. 54 shows the gene expression determined by the qRT-PCR method in multiple terms as compared to undifferentiated cells for GAPDH, AFP, CDX2, GAST, HNF4A, NKX2-2, OSR1, Pdx1 and PFT1A for stage 2, day 1-3 days and 3, day 1-3 cells differentiated according to the protocol of Example 14. As shown in FIG. 54, Pdx1 expression increased 60-fold, from 12,000x relative to control at the end of the stage for 2, 3 days and to 739,000x relative to control at the end of the stage for 3, 3 days

Фиг. 55 показывает экспрессию генов, определенную способом QRT-PCR, в кратном выражении по сравнению с недифференцированными клетками для некоторых генов стадии 3, 1 сутки до 3 и стадии 4, сутки 1-3 клеток, дифференцированных в соответствии с протоколом примера 14. В частности, верхняя панель на Фиг. 55 показывает экспрессию генов GAPDH, AFP, ALB, ARX, CDX2, CHGA, GAST, GCG, IAAP, INS, Isl1 и MAFB. Нижняя панель Фиг. 55 показывает экспрессию генов MAFB, MUCS, NEUROD1, NEUROG3, NKX2-2, NKX6-1, Pax4, Pdx1, POUSF1, Ptf1a, SST и ZlC1.FIG. 55 shows gene expression as determined by the method of qRT-PCR, in multiple terms as compared to undifferentiated cells for some genes of stage 3, day 1 to stage 3 and stage 4, day 1-3 cells differentiated according to the protocol of example 14. the top panel in FIG. 55 shows the expression of the genes GAPDH, AFP, ALB, ARX, CDX2, CHGA, GAST, GCG, IAAP, INS, Isl1 and MAFB. Bottom panel of FIG. 55 shows gene expression of MAFB, MUCS, NEUROD1, NEUROG3, NKX2-2, NKX6-1, Pax4, Pdx1, POUSF1, Ptf1a, SST and ZlC1.

Фиг. 56 показывает микрофотографии конечной стадии клеток, дифференцированных в соответствии с протоколом примера 14. Показанные на Фиг. 56 репрезентативные микрофотографии (4x) клеточных скоплений на стадии 0 и в конце дифференцировки на стадиях с 1 по 4.FIG. 56 shows micrographs of the final stage of cells differentiated according to the protocol of Example 14. As shown in FIG. 56 representative micrographs (4x) of cell clusters at stage 0 and at the end of differentiation in stages 1 through 4.

Фиг. от 57 до 80 показывают экспрессию гена, определенную способом QRT-PCR, в кратном выражении по сравнению с недифференцированными клетками, у клеток,дифференцированных в соответствии с различными вариантами осуществления протокола из примера 15 через 0 часов, 6 часов, 24 часа, 30 часов, 48 часов и 72 часа дифференцировки для следующих генов: AFP (Фиг. 57); CD99 (Фиг. 58); CD9 (Фиг. 59); CDH1 (Фиг. 60); CDH2 (Фиг. 61); CDX2 (Фиг. 62); CER1 (Фиг. 63); CXCR4 (Фиг. 64); FGF17 (Фиг. 65); FGF4 (Фиг. 66); FOXA (Фиг. 67); GADPH (Фиг. 68); GATA4 (Фиг. 69); GATA6 (Фиг. 70); GSC (Фиг. 71); KIT (Фиг. 72); MIXL1 (Фиг. 73); MNX1 (Фиг. 74); NANOG (Фиг. 75); OTX2 (Фиг. 76); POUF5F1 (Фиг. 77); SOX17 (Фиг. 78); SOX7 (Фиг. 79) и T (Фиг. 80).FIG. from 57 to 80 show gene expression, determined by the qRT-PCR method, in multiple terms as compared to undifferentiated cells, in cells differentiated according to various embodiments of the protocol of example 15 after 0 hours, 6 hours, 24 hours, 30 hours, 48 hours and 72 hours of differentiation for the following genes: AFP (Fig. 57); CD99 (FIG. 58); CD9 (Fig. 59); CDH1 (FIG. 60); CDH2 (FIG. 61); CDX2 (Fig. 62); CER1 (Fig. 63); CXCR4 (FIG. 64); FGF17 (FIG. 65); FGF4 (FIG. 66); FOXA (Fig. 67); GADPH (Fig. 68); GATA4 (Fig. 69); GATA6 (Fig. 70); GSC (Fig. 71); KIT (Fig. 72); MIXL1 (Fig. 73); MNX1 (FIG. 74); NANOG (Fig. 75); OTX2 (Fig. 76); POUF5F1 (Fig. 77); SOX17 (FIG. 78); SOX7 (Fig. 79) and T (Fig. 80).

Фиг. 81 показывает процент клеток на стадиях клеточного цикла G0/G1 для клеток через 6 часов, 24 часа, 30 часов, 48 часов и 72 часа дифференцировки в соответствии с различными вариантами осуществления протокола примера 15. В частности, Фиг. 81 показывает результаты для кластеров, которые были обработаны в первые сутки дифференцировки с одним из шести условий: (1) чистая, (2) 3 мкМоль MCX плюс 100 нг/мл GDF-8 (№ по каталогу 120-00, Peprotech), (3) 3 мкМоль только MCX, (4) 100 нг/мл только GDF-8, (5) 20 нг/мл WNT-3A (№ по каталогу 1324-WN-002, R&D Systems, штат Миннесота, США) плюс 100 нг/мл активина А (№ по каталогу 338-AC, R&D Systems, штат Миннесота, США) или (6) 20 нг/мл только WNT-3A.FIG. 81 shows the percentage of cells in the G0 / G1 cell cycle stages for cells after 6 hours, 24 hours, 30 hours, 48 hours, and 72 hours of differentiation in accordance with various embodiments of the protocol of Example 15. In particular, FIG. 81 shows the results for the clusters that were processed on the first day of differentiation with one of six conditions: (1) pure, (2) 3 μM MCX plus 100 ng / ml GDF-8 (Catalog No. 120-00, Peprotech), ( 3) 3 μmol MCX only, (4) 100 ng / ml GDF-8 only, (5) 20 ng / ml WNT-3A (catalog number 1324-WN-002, R & D Systems, Minnesota, USA) plus 100 ng / ml activin A (catalog number 338-AC, R & D Systems, Minnesota, USA) or (6) 20 ng / ml WNT-3A only.

Фиг. 82 показывает эффекты обработки EDU клеточных скоплений, дифференцированных в соответствии с протоколом примера 15. Левая панель показывает процент клеток на стадиях клеточного цикл G2/M для клеток через 0 часов, 6 часов, 24 часа, 30 часов, 48 часов и 72 часа дифференцировки в соответствии с различными вариантами осуществления протокола примера 15. В частности, левая панель показывает результаты для кластеров, которые лечились в первые сутки дифференцировки по одному из шести условий: (1) чистая, (2) 3 мкМоль MCX плюс 100 нг/мл GDF-8 (№ по каталогу 120-00, Peprotech), (3) 3 мкМоль только MCX, (4) 100 нг/мл только GDF-8, (5) 20 нг/мл WNT-3A (№ по каталогу 1324-WN-002, R&D Systems, штат Миннесота, США) плюс 100 нг/мл активина А (№ по каталогу 338-AC, R&D Systems, штат Миннесота, США) или (6) 20 нг/мл только WNT-3A. В одном наборе данных эти кластеры также обрабатывали EDU. На правой панели Фиг. 82 приведен % EDU-положительных клеток через 0 часов, 6 часов, 24 часа, 30 часов, 48 часов и 72 часа дифференцировки в соответствии с различными вариантами осуществления протокола примера 15.FIG. 82 shows the effects of EDU treatment of cell clusters differentiated according to the protocol of Example 15. The left panel shows the percentage of cells in the G2 / M cell cycle stages for cells after 0 hours, 6 hours, 24 hours, 30 hours, 48 hours and 72 hours of differentiation in According to various embodiments of the protocol of example 15. In particular, the left panel shows the results for clusters that were treated on the first day of differentiation according to one of six conditions: (1) clean, (2) 3 μM MCX plus 100 ng / ml GDF-8 (Catalog No. 120-00, Peprotech), (3) 3 µM Mole MCX only, (4) 100 ng / ml GDF-8 only, (5) 20 ng / ml WNT-3A (catalog number 1324-WN-002, R & D Systems, Minnesota, USA) plus 100 ng / ml activin A (Catalog No. 338-AC, R & D Systems, Minnesota, USA) or (6) 20 ng / ml of WNT-3A only. In one data set, these clusters also processed EDUs. In the right pane of FIG. 82 shows the% of EDU-positive cells after 0 hours, 6 hours, 24 hours, 30 hours, 48 hours, and 72 hours of differentiation in accordance with various embodiments of the protocol of Example 15.

Фиг. 83 показывает общие эксплуатационные параметры, используемые в протоколах примере 15.FIG. 83 shows the general operational parameters used in the protocols of Example 15.

Фиг. 84 показывает количество включений EDU в клетках через 6 часов, 24 часа, 30 часов, 48 часов и 72 часа дифференцировки в соответствии с различными вариантами осуществления протокола примера 15. В частности, на фиг. 84 показаны результаты EDU-инкубированных клеточных кластеров, которые были обработаны в первые сутки дифференцировки по одному из шести условий: (1) чистая, (2) 3 мкМоль MCX плюс 100 нг/мл GDF-8 (№ по каталогу 120-00, Peprotech), (3) 3 мкМоль только MCX, (4) 100 нг/мл только GDF-8, (5) 20 нг/мл WNT-3A (№ по каталогу 1324-WN-002, R&D Systems, штат Миннесота, США) плюс 100 нг/мл активина А (№ по каталогу 338-AC, R&D Systems, штат Миннесота, США) или (6) 20 нг/мл только WNT-3A.FIG. 84 shows the number of EDU inclusions in cells after 6 hours, 24 hours, 30 hours, 48 hours, and 72 hours of differentiation in accordance with various embodiments of the protocol of Example 15. In particular, in FIG. 84 shows the results of EDU-incubated cell clusters that were processed on the first day of differentiation according to one of six conditions: (1) pure, (2) 3 μM MCX plus 100 ng / ml GDF-8 (Catalog No. 120-00, Peprotech ), (3) 3 μM only MCX, (4) 100 ng / ml GDF-8 only, (5) 20 ng / ml WNT-3A (Catalog No. 1324-WN-002, R & D Systems, Minnesota, USA) plus 100 ng / ml activin A (Catalog No. 338-AC, R & D Systems, Minnesota, USA) or (6) 20 ng / ml only WNT-3A.

Фиг. 85 показывает процент клеток на стадиях клеточного цикла G0/G1 для клеток через 6 часов, 24 часа, 30 часов, 48 часов и 72 часа дифференцировки в соответствии с различными вариантами осуществления протокола примера 15. В частности, Фиг. 85 показывает результаты для кластеров, которые были обработаны в первые сутки дифференцировки с одним из шести условий: (1) чистая, (2) 3 мкМоль MCX плюс 100 нг/мл GDF-8 (№ по каталогу 120-00, Peprotech), (3) 3 мкМоль только MCX, (4) 100 нг/мл только GDF-8, (5) 20 нг/мл WNT-3A (№ по каталогу 1324-WN-002, R&D Systems, штат Миннесота, США) плюс 100 нг/мл активина А (№ по каталогу 338-AC, R&D Systems, штат Миннесота, США) или (6) 20 нг/мл только WNT-3A.FIG. 85 shows the percentage of cells in the G0 / G1 cell cycle stages for cells after 6 hours, 24 hours, 30 hours, 48 hours, and 72 hours of differentiation in accordance with various embodiments of the protocol of Example 15. In particular, FIG. 85 shows the results for clusters that were processed on the first day of differentiation with one of six conditions: (1) pure, (2) 3 μM MCX plus 100 ng / ml GDF-8 (Catalog No. 120-00, Peprotech), ( 3) 3 μmol MCX only, (4) 100 ng / ml GDF-8 only, (5) 20 ng / ml WNT-3A (catalog number 1324-WN-002, R & D Systems, Minnesota, USA) plus 100 ng / ml activin A (catalog number 338-AC, R & D Systems, Minnesota, USA) or (6) 20 ng / ml WNT-3A only.

Фиг. 86 показывает процент клеток в S-фазе клеточного цикла для клеток через 6 часов, 24 часа, 30 часов, 48 часов и 72 часа дифференцировки в соответствии с различными вариантами осуществления протокола примера 15. В частности, Фиг. 86 показывает результаты для кластеров, которые были обработаны в первые сутки дифференцировки с одним из шести условий: (1) чистая, (2) 3 мкМоль MCX плюс 100 нг/мл GDF-8 (№ по каталогу 120-00, Peprotech), (3) 3 мкМоль только MCX, (4) 100 нг/мл только GDF-8, (5) 20 нг/мл WNT-3A (№ по каталогу 1324-WN-002, R&D Systems, штат Миннесота, США) плюс 100 нг/мл активина А (№ по каталогу 338-AC, R&D Systems, штат Миннесота, США) или (6) 20 нг/мл только WNT-3A.FIG. 86 shows the percentage of cells in the S-phase of the cell cycle for cells after 6 hours, 24 hours, 30 hours, 48 hours and 72 hours of differentiation in accordance with various embodiments of the protocol of Example 15. In particular, FIG. 86 shows the results for clusters that were processed on the first day of differentiation with one of six conditions: (1) pure, (2) 3 μM MCX plus 100 ng / ml GDF-8 (Catalog No. 120-00, Peprotech), ( 3) 3 μmol MCX only, (4) 100 ng / ml GDF-8 only, (5) 20 ng / ml WNT-3A (catalog number 1324-WN-002, R & D Systems, Minnesota, USA) plus 100 ng / ml activin A (catalog number 338-AC, R & D Systems, Minnesota, USA) or (6) 20 ng / ml WNT-3A only.

Фиг. 87 показывает процент клеток в S-фазе клеточного цикла для клеток после 0 часов, 6 часов, 24 часа, 30 часов, 48 часов и 72 часа дифференцировки в соответствии с различными вариантами осуществления протокола примера 15. В частности, Фиг. 87 показывает результаты для кластеров, которые были обработаны в первые сутки дифференцировки с одним из шести условий: (1) чистая, (2) 3 мкМоль MCX плюс 100 нг/мл GDF-8 (№ по каталогу 120-00, Peprotech), (3) 3 мкМоль только MCX, (4) 100 нг/мл только GDF-8, (5) 20 нг/мл WNT-3A (№ по каталогу 1324-WN-002, R&D Systems, штат Миннесота, США) плюс 100 нг/мл активина А (№ по каталогу 338-AC, R&D Systems, штат Миннесота, США) или (6) 20 нг/мл только WNT-3A.FIG. 87 shows the percentage of cells in the S-phase of the cell cycle for cells after 0 hours, 6 hours, 24 hours, 30 hours, 48 hours and 72 hours of differentiation in accordance with various embodiments of the protocol of Example 15. In particular, FIG. 87 shows the results for clusters that were processed on the first day of differentiation with one of six conditions: (1) pure, (2) 3 μM MCX plus 100 ng / ml GDF-8 (Catalog No. 120-00, Peprotech), ( 3) 3 μmol MCX only, (4) 100 ng / ml GDF-8 only, (5) 20 ng / ml WNT-3A (catalog number 1324-WN-002, R & D Systems, Minnesota, USA) plus 100 ng / ml activin A (catalog number 338-AC, R & D Systems, Minnesota, USA) or (6) 20 ng / ml WNT-3A only.

Фиг. 88А - 88E показывают экспрессию гена, определенную способом QRT-PCR, в кратном выражении по сравнению с недифференцированными клетками для клеток, дифференцированных в соответствии с различными вариантами осуществления протокола из примера 15 после 0 часов, 6 часов, 24 часа, 30 часов, 48 часов и 72 часа дифференцировки. Фиг. 88A показывает экспрессию генов, определенную способом QRT-PCR, в кратном выражении по сравнению с недифференцированными клетками для CD99, CD9, CDH1 и CDH2. Фиг. 88A показывает экспрессию генов, определенную способом QRT-PCR, в кратном выражении по сравнению с недифференцированными клетками для CXD2, CER1, CXCR4 и FGF17. Фиг. 88C показывает экспрессию генов, определенную способом QRT-PCR, в кратном выражении по сравнению с недифференцированными клетками для FGF4, FOXA, GATA4 и GATA6. Фиг. 88D показывает экспрессию генов, определенную способом QRT-PCR, в кратном выражении по сравнению с недифференцированными клетками для GSC, KIT, MIXL1 и MNX1. Фиг. 88E показывает экспрессию генов, определенную способом QRT-PCR, в кратном выражении по сравнению с недифференцированными клетками для NANOG, Otx2, POUF5F1 и SOX17. На Фиг. 88F показана экспрессия генов, определенная способом qRT-PCR, в кратном выражении по сравнению с недифференцированными клетками для SOX7 и Т. Основные данные для фигур 88A-88F показаны на Фиг. 58-67 и 69-80.FIG. 88A - 88E show the expression of a gene determined by the method of qRT-PCR, in multiple terms as compared to undifferentiated cells for cells differentiated according to various embodiments of the protocol of example 15 after 0 hours, 6 hours, 24 hours, 30 hours, 48 hours and 72 hours of differentiation. FIG. 88A shows gene expression as determined by the qRT-PCR method, in multiple terms, compared to undifferentiated cells for CD99, CD9, CDH1 and CDH2. FIG. 88A shows gene expression as determined by the qRT-PCR method, in multiple terms, compared to undifferentiated cells for CXD2, CER1, CXCR4 and FGF17. FIG. 88C shows gene expression as determined by the qRT-PCR method, in multiple terms, compared to undifferentiated cells for FGF4, FOXA, GATA4 and GATA6. FIG. 88D shows gene expression as determined by the qRT-PCR method, in multiple terms, compared with undifferentiated cells for GSC, KIT, MIXL1 and MNX1. FIG. 88E shows gene expression as determined by the qRT-PCR method, in multiple terms, compared to undifferentiated cells for NANOG, Otx2, POUF5F1 and SOX17. FIG. 88F shows gene expression as determined by the qRT-PCR method, in multiple terms, compared to undifferentiated cells for SOX7 and T. Basic data for figures 88A-88F are shown in FIG. 58-67 and 69-80.

Фиг. 89 показывает определенные способом QRT-PCR паттерны экспрессии генов плюрипотентных клеток, культивируемые в среде для дифференцировки эктодермы в соответствии с протоколом примера 16. Как показано на Фиг. 89, клетки дифференцируют в направлении клеток нейронных линий . В частности, левая панель Фиг. 89 показывает паттерны экспрессии генов для линии индуцированных плюрипотентных стволовых клеток, образованных из клеток тканей пуповины (UTC). На правой панели на фиг 89 показаны паттерны экспрессии генов для суб-клона WB0106 клеточной линии H1 HES.FIG. 89 shows the gene expression patterns of pluripotent cells as determined by the QRT-PCR method cultured in the medium for differentiation of the ectoderm in accordance with the protocol of Example 16. As shown in FIG. 89, cells differentiate towards neuronal cell lines. In particular, the left panel of FIG. 89 shows gene expression patterns for a line of induced pluripotent stem cells formed from umbilical cord tissue cells (UTC). The right panel of FIG. 89 shows gene expression patterns for the sub-clone WB0106 of the H1 HES cell line.

Фиг. 90 показывает определенные способом QRT-PCR паттерны экспрессии генов плюрипотентных клеток, культивируемых в среде для дифференцировки мезодермы в соответствии с протоколом примера 16. Как показано на Фиг. 90, клетки дифференцируют в направлении клеток сердечной линии. В частности, левая панель Фиг. 90 показывает паттерны экспрессии генов для линии индуцированных плюрипотентных стволовых клеток, образованных из клеток тканей пуповины (UTC). На правой панели на фиг 90 показаны паттерны экспрессии генов для суб-клона WB0106 клеточной линии H1 HES.FIG. 90 shows the expression patterns of pluripotent cell genes cultured in mesodermal differentiation media as determined by the qRT-PCR method according to the protocol of Example 16. As shown in FIG. 90, the cells differentiate towards the cells of the heart line. In particular, the left panel of FIG. 90 shows gene expression patterns for a line of induced pluripotent stem cells formed from umbilical cord tissue cells (UTC). The right panel of FIG. 90 shows gene expression patterns for the sub-clone WB0106 of the H1 HES cell line.

Фиг. 91 показывает определенные способом QRT-PCR паттерны экспрессии генов плюрипотентных клеток, культивируемые в среде для дифференцировки эктодермы в соответствии с протоколом примера 16. Как показано на Фиг. 91, клетки дифференцируются в направлении клеток нейронных линий . В частности, левая панель Фиг. 91 показывает паттерны экспрессии генов для линии индуцированных плюрипотентных стволовых клеток, образованных из клеток тканей пуповины (UTC). На правой панели на фиг 91 показаны паттерны экспрессии генов для суб-клона WB0106 клеточной линии H1 HES.FIG. 91 shows the gene expression patterns of pluripotent cells, as determined by the QRT-PCR method, cultured in ectoderm differentiation medium according to the protocol of Example 16. As shown in FIG. 91, the cells differentiate towards the neural line cells. In particular, the left panel of FIG. 91 shows gene expression patterns for a line of induced pluripotent stem cells formed from umbilical cord tissue cells (UTC). The right panel of FIG. 91 shows gene expression patterns for the sub-clone WB0106 of the H1 HES cell line.

Фиг. 92 показывает паттерны экспрессии белка для PAX6, Sox2 и POU5F1/OCT4, что определено с помощью FACS, плюрипотентных клеток, культивированных в течение трех суток в среде для дифференцировки эктодермы в соответствии с протоколом примера 16. В частности, левые панели Фиг. 92 показывают паттерны экспрессии Pax6, Sox2 и POU5F1/OCT4 для линии индуцированных плюрипотентных стволовых клеток, образованных из клеток тканей пуповины(UTC). Правая панель на Фиг. 92 показывает паттерны экспрессии белка для PAX6, Sox2 и POU5F1/OCT4 для суб-клона WB0106 клеточной линии H1 HES.FIG. 92 shows protein expression patterns for PAX6, Sox2 and POU5F1 / OCT4, as determined by FACS, pluripotent cells cultured for three days in an ectoderm differentiation medium in accordance with the protocol of Example 16. In particular, the left panels of FIG. 92 shows the expression patterns of Pax6, Sox2 and POU5F1 / OCT4 for a line of induced pluripotent stem cells formed from cells of umbilical cord tissue (UTC). The right panel in FIG. 92 shows protein expression patterns for PAX6, Sox2, and POU5F1 / OCT4 for sub-clone WB0106 of the H1 HES cell line.

Фиг. 93 показывает определенные способом QRT-PCR паттерны экспрессии генов плюрипотентных клеток, культивируемых в среде для дифференцировки мезодермы в соответствии с протоколом примера 16. Как показано на Фиг. 93, клетки дифференцируют в направлении клеток сердечной линии. В частности, левая панель Фиг. 93 показывает паттерны экспрессии генов для линии индуцированных плюрипотентных стволовых клеток, образованных из клеток тканей пуповины (UTC). На правой панели на фиг 93 показаны паттерны экспрессии генов для суб-клона WB0106 клеточной линии H1 HES.FIG. 93 shows the expression patterns of pluripotent cell genes cultured in mesodermal differentiation media as determined by the QRT-PCR method according to the protocol of Example 16. As shown in FIG. 93, the cells differentiate towards the cells of the heart line. In particular, the left panel of FIG. 93 shows gene expression patterns for a line of induced pluripotent stem cells formed from umbilical cord tissue cells (UTC). The right panel of FIG. 93 shows gene expression patterns for the sub-clone WB0106 of the H1 HES cell line.

Фиг. 94 показывает микрофотографии клеток, дифференцированных в среде для дифференцировки мезодермы в соответствии с протоколом примера 16. Как показано на Фиг. 94, клетки дифференцируют в направлении клеток сердечной линии. В частности, левые панели фигуры 94 показывают микрофотографии клеток суб-клона WB0106 клеточной линии H1 HES на 3 сутки, 5 сутки и 10 сутки дифференцировки. Правая панель Фиг. 94 показывает микрофотографию линии индуцированных плюрипотентных стволовых клеток, образованных из клеток тканей пуповины (UTC IPSCs) после 10 суток дифференцировки.FIG. 94 shows micrographs of cells differentiated in the mesoderm differentiation medium according to the protocol of Example 16. As shown in FIG. 94, the cells differentiate towards the cells of the heart line. In particular, the left panels of FIG. 94 show micrographs of cells of the sub-clone WB0106 of the H1 HES cell line for 3 days, 5 days and 10 days of differentiation. Right panel of FIG. 94 shows a photomicrograph of a line of induced pluripotent stem cells formed from umbilical cord tissue cells (UTC IPSCs) after 10 days of differentiation.

Фиг. 95 показывает микрофотографии клеток, дифференцированных в среде для дифференцировки эктодермы в соответствии с протоколом примера 16. Как показано на Фиг. 95, клетки дифференцируют в направлении клеток нейронных линий . В частности, левые панели фигуры 95 показывают микрофотографии клеток суб-клона WB0106 клеточной линии H1 HES на 3 сутки, 5 сутки и 10 сутки дифференцировки. Правая панель Фиг. 95 показывает микрофотографию линии индуцированных плюрипотентных стволовых клеток, образованных из клеток тканей пуповины (UTC iPCS) после 10 суток дифференцировки.FIG. 95 shows micrographs of cells differentiated in the ectoderm differentiation medium according to the protocol of Example 16. As shown in FIG. 95, the cells differentiate towards the neural line cells. In particular, the left panels of FIG. 95 show micrographs of cells of the sub-clone WB0106 of the H1 HES cell line for 3 days, 5 days and 10 days of differentiation. Right panel of FIG. 95 shows a photomicrograph of a line of induced pluripotent stem cells derived from umbilical cord tissue cells (UTC iPCS) after 10 days of differentiation.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯDETAILED DESCRIPTION OF THE INVENTION

Эта заявка посвящена подготовке эмбриональных стволовых клеток и других плюрипотентных клеток, которые сохраняют плюрипотентность в агрегированном кластере клеток для дифференцировки в клетки-предшественники энтодермы, эндокринные клетки поджелудочной железы, клетки мезодермы или клетки эктодермы. Для ясности описания, а не для ограничения изобретения, подробное описание настоящего изобретения разделено на следующие подразделы, описывающие или иллюстрирующие определенные особенности, варианты осуществления или области применения настоящего изобретения.This application is devoted to the preparation of embryonic stem cells and other pluripotent cells that maintain pluripotency in an aggregated cell cluster for differentiation into endoderm progenitor cells, pancreatic endocrine cells, mesoderm cells or ectoderm cells. For clarity of description, and not to limit the invention, the detailed description of the present invention is divided into the following subsections, describing or illustrating certain features, embodiments or uses of the present invention.

ОпределенияDefinitions

Стволовые клетки представляют собой недифференцированные клетки, определяемые как обладающие способностью на одноклеточном уровне к самообновлению и дифференцировки. Стволовые клетки могут производить клетки-потомки, включая самообновляющиеся прогениторные клетки, необновляющиеся прогениторные клетки и окончательно дифференцированные клетки. Стволовые клетки также характеризуются своей способностью дифференцироваться in vitro в функциональные клетки различных линий дифференцировки из множества зародышевых листков (энтодермы, мезодермы и эктодермы). Стволовые клетки также дают начало тканям множества зародышевых листков после трансплантации и вносят значительный вклад в образование большинства, если не всех тканей после инъекции в бластоцисты.Stem cells are undifferentiated cells, defined as having the ability to self-renew and differentiate at the single-cell level. Stem cells can produce progeny cells, including self-renewing progenitor cells, non-renewing progenitor cells, and finally differentiated cells. Stem cells are also characterized by their ability to differentiate in vitro into functional cells of different differentiation lines from a variety of germ layers (endoderm, mesoderm, and ectoderm). Stem cells also give rise to tissues of multiple germ layers after transplantation and make a significant contribution to the formation of most, if not all, tissues after injection into the blastocyst.

Стволовые клетки классифицируются по потенциалу развития. «Культура клеток» или «культура» по существу обозначает клетки, взятые из живого организма и выращенные в контролируемых условиях («в культуре» или «культивированные»). Первичная культура клеток обозначает культуру клеток, тканей или органов, взятых непосредственно из организма (-ов) до первого пересева. Клетки размножают в культуре, когда их помещают в ростовую среду в условиях, облегчающих одно или оба из роста и деления клеток, что приводит к большей популяции клеток. При размножении клеток в культуре скорость пролиферации клеток иногда измеряют по количеству времени, которое необходимо клеткам для удвоения численности (также называемое временем удвоения).Stem cells are classified by developmental potential. “Cell culture” or “culture” essentially refers to cells taken from a living organism and grown under controlled conditions (“in culture” or “cultured”). Primary cell culture refers to a culture of cells, tissues, or organs taken directly from the body (s) prior to the first reseeding. Cells are propagated in culture when they are placed in a growth medium under conditions that facilitate one or both of the growth and division of cells, which leads to a larger population of cells. When cells multiply in culture, the cell proliferation rate is sometimes measured by the amount of time the cells need to double their numbers (also called doubling times ).

Термин «выращивание» или «рост», используемый здесь, описывает процесс увеличения количества плюрипотентных стволовых клеток посредством культивирования по меньшей мере примерно на 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40% , 45%, 50%, 60%, 75%, 90%, 100%, 200%, 500%, 1000% или более, а также на уровни, указанные в процентах. Следует понимать, что количество плюрипотентных стволовых клеток, которые могут быть получены из одной плюрипотентной стволовой клетки, зависит от способности к пролиферации плюрипотентных стволовых клеток. Способность к пролиферации плюрипотентных стволовых клеток может быть рассчитана по времени удвоения клетки, т. е. по времени, которое необходимо клетке, чтобы пройти митотическое деление в культуре, а также времени, в течение которого плюрипотентные стволовые клетки могут поддерживаться в недифференцированном состоянии, что эквивалентно количеству пассажей, умноженному на количество суток между каждым пассажем.The term “growing” or “growth” as used herein describes the process of increasing the number of pluripotent stem cells by culturing at least about 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 60%, 75%, 90%, 100%, 200%, 500%, 1000% or more, as well as the levels indicated in percentages. It should be understood that the number of pluripotent stem cells that can be obtained from a single pluripotent stem cell depends on the proliferation ability of pluripotent stem cells. The ability to proliferate pluripotent stem cells can be calculated from the cell doubling time, i.e. the time the cell needs to undergo mitotic division in culture, as well as the time during which pluripotent stem cells can be maintained in an undifferentiated state, which is equivalent to the number of passages multiplied by the number of days between each passage.

Дифференцировка - это процесс, посредством которого неспециализированная («некоммитированная») или менее специализированная клетка приобретает черты специализированной клетки, такой как нервная клетка или мышечная клетка. Дифференцированная клетка или клетка, индуцированная дифференциацией, представляет собой клетку, занявшую более специализированное («коммитированное») положение в линии дифференцировки клетки. Термин «коммитированная» применительно к процессу дифференцировки относится к клетке, дошедшей в ходе процесса дифференцировки до стадии, с которой в нормальных условиях она продолжит дифференцироваться до конкретного типа клеток или подмножества типов клеток и не сможет в нормальных условиях дифференцироваться в иной тип клеток или вернуться к менее дифференцированному типу. «Дедифференцировка» обозначает процесс, в ходе которого клетка возвращается к менее специализированной (или коммитированной) позиции в клеточной линии дифференцировки. Применяемый в настоящем документе термин «клеточная линия дифференцировки» означает наследственность клетки, т.е. из каких клеток произошла данная клетка и каким клеткам она может дать начало. В клеточной линии дифференцировки клетка помещается в наследственную схему развития и дифференцировки. Маркер, специфичный для линии дифференцировки, относится к характеристике, специфически ассоциированной с фенотипом клеток интересующей линии дифференцировки, и его можно использовать для оценки дифференцировки некоммитированной клетки в клетки интересующей линии дифференцировки.Differentiation is the process by which a unspecialized (“uncommitted”) or less specialized cell acquires the features of a specialized cell, such as a nerve cell or a muscle cell. A differentiated cell or cell induced by differentiation is a cell that has taken a more specialized (“committed”) position in the lineage of the cell. The term “committed” as applied to the differentiation process refers to a cell that has reached the stage of differentiation to a stage from which under normal conditions it will continue to differentiate to a particular cell type or a subset of cell types and will not be able to differentiate to a different cell type less differentiated type. “Dedifferentiation” refers to the process by which a cell returns to a less specialized (or committed) position in the cell lineage. As used herein, the term "cell lineage" refers to the heredity of the cell, i.e. from which cells the given cell originated and which cells it can give rise to. In the cell line of differentiation, the cell is placed in the hereditary scheme of development and differentiation. A differentiation line-specific marker refers to a characteristic specifically associated with the phenotype of cells of a differentiation line of interest, and can be used to assess the differentiation of a non-committed cell into cells of a differentiation line of interest.

В настоящем документе термин «маркеры» означает молекулы нуклеиновых кислот или полипептидов с дифференциальной экспрессией в исследуемых клетках. В данном контексте под дифференциальной экспрессией понимают повышенный уровень положительного маркера и пониженный уровень отрицательного маркера по сравнению с недифференцированной клеткой. Обнаруживаемый уровень маркерной нуклеиновой кислоты или полипептида в интересующих клетках оказывается значительно выше или ниже по сравнению с другими клетками, что позволяет идентифицировать интересующую клетку и отличить ее от других клеток с помощью любого из множества способов, известных в данной области.In this document, the term "markers" means molecules of nucleic acids or polypeptides with differential expression in the studied cells. In this context, differential expression is understood as an increased level of a positive marker and a reduced level of a negative marker in comparison with an undifferentiated cell. The detectable level of a marker nucleic acid or polypeptide in the cells of interest is significantly higher or lower than other cells, which allows the cell of interest to be identified and distinguished from other cells using any of a variety of methods known in the art.

В настоящем документе клетка «положительна по» заданному маркеру или «положительна», если заданный маркер явно обнаруживается в клетке. Аналогично клетка «отрицательна по» заданному маркеру или «отрицательна», если заданный маркер не обнаруживают в клетке. В частности, положительность по FACS как правило выше, чем 2%, в то время как отрицательный предел по FACS как правило менее 1%. Положительность по PCR, как правило, составляет менее 34 циклов (Cts); в время как отрицательность по PCR составляет, как правило, более 34,5 циклов.In this document, a cell is “positive for” a given marker or “positive” if the specified marker is clearly detected in the cell. Similarly, a cell is "negative for" a given marker or "negative" if the specified marker is not found in the cell. In particular, FACS positivity is usually higher than 2%, while the FACS negative limit is usually less than 1%. PCR positivity is typically less than 34 cycles (Cts); while PCR negativity is usually over 34.5 cycles.

В настоящем документе термины «плотность клеток» и «плотность посева» применяются взаимозаменяемо и относятся к числу клеток, высеваемых на единицу площади поверхности твердого или полутвердого плоского или криволинейного субстрата.In this document, the terms “cell density” and “seeding density” are used interchangeably and refer to the number of cells sown per unit surface area of a solid or semi-solid flat or curvilinear substrate.

В настоящем документе термин «суспензионная культура» относится к культуре клеток, отдельным клеткам или кластерам, суспендированным в среде, а не прикрепленным к какой-либо поверхности.In this document, the term "suspension culture" refers to a cell culture, individual cells or clusters suspended in a medium, and not attached to any surface.

В настоящем документе термин «бессывороточный» относится к среде, лишенной человеческой или животной сыворотки. Соответственно, бессывороточная культуральная среда не содержит сыворотку или части сыворотки.In this document, the term "serum-free" refers to a medium devoid of human or animal serum. Accordingly, the serum-free culture medium does not contain serum or portions of serum.

В попытках воспроизвести дифференцировку плюрипотентных стволовых клеток в функциональные панкреатические эндокринные клетки в культуре клеток, процесс дифференцировки часто рассматривается как прогрессирование через несколько последовательных стадий. В настоящем документе различные стадии определяются временем культивирования и реактивами, изложенными в приведенных здесь примерах.In an attempt to reproduce the differentiation of pluripotent stem cells into functional pancreatic endocrine cells in a cell culture, the differentiation process is often seen as progression through several successive stages. In this document, the various stages are determined by the cultivation time and reagents described in the examples given here.

В настоящем документе «дефинитивная энтодерма» относится к клеткам, обладающим характеристиками клеток, происходящих от эпибласта при гаструляции, и формирующим желудочно-кишечный тракт и его производные. Клетки дефинитивной энтодермы экспрессируют по меньшей мере один из следующих маркеров: FOXA2 (также известный как гепатоцитный ядерный фактор 3-β (HNF3β)), GATA4, GATA6, MNX1, SOX17, CXCR4, Cerberus, OTX2, brachyury, goosecoid, C-Kit, CD99 и MIXL1. Маркерные характеристики клеток дефинитивной энтодермы включают CXCR4, FOXA2 и SOX17. Таким образом, клетки дефинитивной энтодермы могут быть охарактеризованы их экспрессией CXCR4, FOXA2 и SOX17. Дополнительно, в зависимости от длительности времени, на протяжении которого клеткам позволяется оставаться на стадии 1, можно наблюдать рост в HNF4α.In this document, "definitive endoderm" refers to cells that have the characteristics of cells derived from epiblast during gastrulation and that form the gastrointestinal tract and its derivatives. Definitive endoderm cells express at least one of the following markers: FOXA2 (also known as hepatocyte nuclear factor 3-β (HNF3β)), GATA4, GATA6, MNX1, SOX17, CXCR4, Cerberus, OTX2, brachyury, goosecoid, C-Kit, CD99 and MIXL1. Marker characteristics of definitive endoderm cells include CXCR4, FOXA2 and SOX17. Thus, definitive endoderm cells can be characterized by their expression of CXCR4, FOXA2 and SOX17. Additionally, depending on the length of time during which cells are allowed to remain in stage 1, growth in HNF4α can be observed.

Используемый в настоящей заявке термин «панкреатическая эндокринная клетка» относится к клеткам, способным к секреции по меньшей мере одного из следующих гормонов: инсулин, глюкагон, соматостатин или панкреатический полипептид. В дополнение к этим гормонам, маркерные характеристики панкреатических эндокринных клеток включают один или несколько из NGN3, NeuroD1, ISL1, PDX1, NKX6.1, PAX4, ARX, NKX2.2, и PAX6. Панкреатические эндокринные клетки, экспрессирующие маркеры бета-клеток, могут характеризоваться их экспрессией инсулина и по меньшей мере одного из следующих транскрипционных факторов: PDX1, NKX2.2, NKX6.1, NeuroD1, ISL1, HNF3β, MAFAPAX4 и PAX6.As used herein, the term “pancreatic endocrine cell” refers to cells capable of secreting at least one of the following hormones: insulin, glucagon, somatostatin, or pancreatic polypeptide. In addition to these hormones, marker characteristics of pancreatic endocrine cells include one or more of NGN3, NeuroD1, ISL1, PDX1, NKX6.1, PAX4, ARX, NKX2.2, and PAX6. Pancreatic endocrine cells expressing markers of beta cells may be characterized by their expression of insulin and at least one of the following transcription factors: PDX1, NKX2.2, NKX6.1, NeuroD1, ISL1, HNF3β, MAFAPAX4 and PAX6.

В настоящем документе взаимозаменяемо применяются выражения «d1», «d 1» и «сутки 1»; «d2», «d 2» и «сутки 2»; «d3», «d 3» и «день 3» и так далее. Эти комбинации цифр и букв относятся к конкретным суткам инкубации на различных стадиях в процессе постадийного протокола дифференцировки настоящей заявки.In this document, the expressions “d1”, “d 1” and “day 1” are used interchangeably; "D2", "d 2" and "day 2"; "D3", "d 3" and "day 3" and so on. These combinations of numbers and letters refer to specific days of incubation at various stages in the process of stepwise differentiation protocol of this application.

Термины «глюкоза» и «D-глюкоза» используются в настоящем документе взаимозаменяемо и относятся к декстрозе, сахару, широко встречающемуся в природе.The terms “glucose” and “D-glucose” are used interchangeably herein and refer to dextrose, a sugar widely found in nature.

В настоящем документе термины «NeuroD» и «NeuroD1» используются взаимозаменяемо для обозначения белка, экспрессируемого в клетках-предшественниках панкреатических эндокринных клеток, и кодирующего его гена.In this document, the terms "NeuroD" and "NeuroD1" are used interchangeably to refer to the protein expressed in the progenitor cells of pancreatic endocrine cells, and the gene encoding it.

«LDN» и «LDN-193189» относится к ((6-(4-(2-(пиперидин-1-ил)этокси)фенил)-3-(пиридин-4-ил)пиразоло[1,5-a]пиримидин гидрохлориду; DM-3189)) ингибитору рецептора BMP, доступному под торговой маркой STEMOLECULETM от Stemgent, Inc., г. Кембридж, штат Массачусетс, США.“LDN” and “LDN-193189” refers to ((6- (4- (2- (piperidin-1-yl) ethoxy) phenyl) -3- (pyridin-4-yl) pyrazolo [1,5-a] pyrimidine hydrochloride; DM-3189)) a BMP receptor inhibitor available under the trademark STEMOLECULE TM from Stemgent, Inc., Cambridge, Massachusetts, USA.

Выделение, размножение и культивирование плюрипотентных стволовых клетокIsolation, reproduction and cultivation of pluripotent stem cells

Плюрипотентные стволовые клетки могут экспрессировать одно или более из указанных TRA-1-60 и TRA-1-81 антител (Thomson и др. 1998, Science 282:1145-1147). Дифференцирование плюрипотентных стволовых клеток in vitro приводит к потере экспрессии TRA-1-60 и TRA-1-81. Недифференцированные плюрипотентные стволовые клетки, как правило, имеют щелочнофосфатазную активность, которую можно обнаружить путем обработки клеток 4% раствором параформальдегида, а затем выращивая с Vector Red в качестве субстрата, как описано производителем (Vector Laboratories, Inc., г. Берлингейм, штат Калифорния, США). Недифференцированные плюрипотентные стволовые клетки также, как правило, экспрессируют OCT4 и TERT, определяемые с помощью RT-PCR.Pluripotent stem cells can express one or more of the indicated TRA-1-60 and TRA-1-81 antibodies (Thomson et al. 1998, Science 282: 1145-1147). In vitro differentiation of pluripotent stem cells leads to loss of TRA-1-60 and TRA-1-81 expression. Undifferentiated pluripotent stem cells, as a rule, have alkaline phosphatase activity, which can be detected by treating the cells with 4% paraformaldehyde solution and then growing with Vector Red as a substrate, as described by the manufacturer (Vector Laboratories, Inc., Burrheim, California, USA). Undifferentiated pluripotent stem cells also tend to express OCT4 and TERT, as determined by RT-PCR.

Другим желательным фенотипическим свойством выращенных плюрипотентных клеток является потенциал дифференцировки в клетки всех трех зародышевых листков: в энтодертмальные, мезодермальные и эктодермальные ткани. Плюрипотентность стволовых клеток можно подтвердить, например, путем инъекции клеток мышам с тяжелым комбинированным иммунодефицитом (SCID), фиксирования образующихся тератом с помощью 4% параформальдегида и их последующего гистологического исследования на наличие клеточных типов, происходящих от трех зародышевых листков. Плюрипотентность можно альтернативно определить по созданию эмбриоидных телец и анализа эмбриоидных телец на наличие маркеров, ассоциирующихся с тремя зародышевыми листками.Another desirable phenotypic property of grown pluripotent cells is the potential for differentiation into cells of all three germ layers: endodermal, mesodermal, and ectodermal tissues. Pluripotency of stem cells can be confirmed, for example, by injecting cells into mice with severe combined immunodeficiency (SCID), fixing the resulting teratomas with 4% paraformaldehyde and their subsequent histological examination for the presence of cell types derived from three germ layers. Pluripotency can alternatively be identified by creating embryoid bodies and analyzing embryoid bodies for the presence of markers associated with three germ layers.

Выращенные линии плюрипотентных стволовых клеток можно кариотипировать с использованием стандартного метода G-бэндинга и сравнить с опубликованными кариотипами соответствующих видов приматов. Желательно получить клетки, имеющие «нормальный кариотип», т. е. эуплоидные клетки, в которых все хромосомы человека присутствуют и не имеют видимых изменений. Плюрипотентные клетки можно легко размножить в культуре путем использования различных питательных слоев или с помощью сосудов, покрытых матриксными белками. Альтернативно для стандартного размножения клеток можно использовать химически определенные поверхности в комбинации со средами определенного состава, такими как среды mTeSR®1 (StemCell Technologies, г. Ванкувер, провинции Британская Колумбия, Канада).Grown lines of pluripotent stem cells can be karyotyped using the standard G-banding method and compared with the published karyotypes of the respective primate species. It is desirable to obtain cells that have a “normal karyotype,” that is, euploid cells in which all human chromosomes are present and have no visible changes. Pluripotent cells can be easily propagated in culture by using different nutrient layers or by using vessels coated with matrix proteins. Alternatively, for standard cell multiplication, chemically defined surfaces can be used in combination with media of specific composition, such as mTeSR ® 1 media (StemCell Technologies, Vancouver, British Columbia, Canada).

Культивирование в суспензионной культуре в соответствии со способом, указанным в некоторых вариантах осуществления настоящего изобретения, осуществляется с помощью посева плюрипотентных стволовых клеток в сосуд для культивирования, при плотности клеток, которая способствует выживанию клеток и пролиферации, но ограничивает дифференцировку. Как правило, применяется плотность посева, которая обеспечивает отсутствие дифференцировки клеток. Следует иметь в виду, что, хотя можно высеивать суспензии отдельных стволовых клеток, предпочтительнее высеивать небольшие скопления клеток.Cultivation in suspension culture in accordance with the method indicated in some embodiments of the present invention is carried out by planting pluripotent stem cells in a culture vessel, at a cell density that promotes cell survival and proliferation, but limits differentiation. As a rule, seeding density is applied, which ensures the absence of cell differentiation. It should be borne in mind that, although it is possible to sow suspensions of individual stem cells, it is preferable to sow small clumps of cells.

Для обеспечения плюрипотентных стволовых клеток достаточной и постоянной подачей питательных веществ и факторов роста в суспензионной культуре, культуральная среда могут быть заменена или пополнена на ежедневной основе или по заранее установленному графику, например, каждые 1-5 суток. Большие кластеры плюрипотентных стволовых клеток могут привести к началу клеточной дифференцировки, таким образом, могут быть приняты меры для избежания появления больших агрегатов плюрипотентных стволовых клеток. В соответствии с некоторыми вариантами осуществления изобретения, образовавшиеся кластеры плюрипотентных стволовых клеток диссоциируют, например, каждые 2-7 суток, и отдельные клетки или небольшие скопления клеток, либо разделяют и переносят в другой культуральный сосуд (т. е. пересеивают), или оставляют в том же культуральном сосуде и заменяют либо пополняют культуральную среду.To provide pluripotent stem cells with sufficient and constant supply of nutrients and growth factors in suspension culture, the culture medium can be replaced or replenished on a daily basis or according to a predetermined schedule, for example, every 1-5 days. Large clusters of pluripotent stem cells can lead to the onset of cell differentiation, so measures can be taken to avoid the emergence of large aggregates of pluripotent stem cells. In accordance with some embodiments of the invention, the clusters of pluripotent stem cells dissociate, for example, every 2-7 days, and individual cells or small clusters of cells are either separated and transferred to another culture vessel (i.e. they are subcultured), or left in the same culture vessel and replace or replenish the culture medium.

Большие скопления плюрипотентных стволовых клеток, включая осадок плюрипотентных стволовых клеток, полученный центрифугированием, могут быть подвергнуты ферментативному расщеплению и/или механической диссоциации. Ферментативное расщепление скоплений плюрипотентных стволовых клеток может быть выполнено помещением скопления клеток в фермент, например, в коллагеназу IV типа, Dispase® или Accutase®. Механическая диссоциация больших скоплений плюрипотентных стволовых клеток может быть выполнена с использованием устройства, предназначенного для разделения скоплений до заданного размера. Дополнительно или альтернативно, механическая диссоциация может быть выполнена вручную с помощью иглы или пипетки.Large clusters of pluripotent stem cells, including the precipitate of pluripotent stem cells obtained by centrifugation, can be subjected to enzymatic cleavage and / or mechanical dissociation. Enzymatic cleavage of clusters of pluripotent stem cells may be accomplished by placing the cell cluster in the enzyme, for example in type IV collagenase, Dispase ® or Accutase ®. Mechanical dissociation of large clusters of pluripotent stem cells can be performed using a device designed to separate clusters to a given size. Additionally or alternatively, mechanical dissociation can be performed manually with a needle or pipette.

Культуральным сосудом для культивирования плюрипотентных стволовых клеток в суспензии в соответствии со способами, описанными в некоторых вариантах осуществления изобретения, может быть любой сосуд тканевой культуры (например, обладающий достаточным уровнем чистоты для культивирования плюрипотентных стволовых клеток), внутренняя поверхность которого выполнена так, что плюрипотентные стволовые клетки, культивируемые в нем, не могут удерживаться или прикрепляться к такой поверхности (например, сосуд, не обработанный для тканевого культивирования, для предотвращения прикрепления или присоединения к поверхности). Для получения необходимой разрастающейся культуры, культивирование в соответствии с некоторыми вариантами осуществления изобретения осуществляется с помощью управляемой системы культивирования (предпочтительно, системы культивирования с компьютерным управлением), в котором параметры культуры, такие как температура, перемешивание, рН и уровень кислорода автоматически контролируются и регулируются с использованием подходящего устройства. Как только определены нужные параметры культуры, система может быть настроена на автоматическую регулировку параметров культуры по мере необходимости для улучшения роста и дифференцировки плюрипотентных стволовых клеток.A culture vessel for cultivating pluripotent stem cells in suspension in accordance with the methods described in some embodiments of the invention may be any tissue culture vessel (for example, having a sufficient level of purity for cultivating pluripotent stem cells), the inner surface of which is designed so that the pluripotent stem cells cultured in it cannot be held or attached to such a surface (for example, a vessel not treated for tissue tivirovaniya to prevent attachment or adhering to the surface). To obtain the required growing culture, cultivation in accordance with some embodiments of the invention is carried out using a controlled cultivation system (preferably a computer-controlled cultivation system), in which culture parameters such as temperature, agitation, pH and oxygen level are automatically controlled and regulated with using a suitable device. Once the desired culture parameters have been determined, the system can be configured to automatically adjust culture parameters as needed to improve growth and differentiation of pluripotent stem cells.

Плюрипотентные стволовые клетки можно культивировать в динамических условиях (т. е. в условиях, в которых плюрипотентные стволовые клетки постоянно движутся в суспензионной культуре, например, в перемешиваемой суспензионной культуральной системе) или в нединамических условиях (например, в статической культуре), сохраняя их способность к пролиферации, плюрипотентности и кариотипическую стабильность в течение нескольких пересевов.Pluripotent stem cells can be cultivated under dynamic conditions (i.e., under conditions in which pluripotent stem cells constantly move in suspension culture, for example, in a mixed suspension culture system) or in non-dynamic conditions (for example, in a static culture), preserving their ability proliferation, pluripotency, and karyotypic stability over several transfers.

Для нединамического культивирования плюрипотентных стволовых клеток, плюрипотентные стволовые клетки можно культивировать в чашках Петри, Т-колбах, HyperFlasks® (Corning Incorporated, г. Корнинг, штат Нью-Йорк, США), CellStacks® (Corning Incorporated, г. Корнинг, штат Нью-Йорк, США) или Cell Factories (NUNC™ Cell Factory™ Systems (Thermo Fisher Scientific, Inc., г. Питтсбург, штат Пенсильвания, США)) с покрытием или без. Для динамического культивирования плюрипотентных стволовых клеток, плюрипотентные стволовые клетки можно культивировать в подходящем сосуде, например, центрифужных пробирках или колбах Эрленмейера, на нержавеющей стали, стекле, в одноразовом пластиковом шейкере или сосуде-смесителе. Культуральный сосуд может быть соединен с блоком управления и, таким образом, представляют собой управляемую систему культивирования. Перемешивание в культуральном сосуде (например, центрифужная пробирка или колба Эрленмейера) осуществляется непрерывно или периодически. Перемешивание в культуральном сосуде осуществляется в той степени, чтобы поддерживать плюрипотентные стволовые клетки в суспензии.For non-dynamic cultivation of pluripotent stem cells, pluripotent stem cells can be cultured in Petri dishes, T-flasks, HyperFlasks ® (Corning Incorporated, Corning, NY, USA), CellStacks ® (Corning Incorporated, Corning, New York, USA) or Cell Factories (NUNC ™ Cell Factory ™ Systems (Thermo Fisher Scientific, Inc., Pittsburgh, Pennsylvania, USA)) with or without coating. For dynamic cultivation of pluripotent stem cells, pluripotent stem cells can be cultured in a suitable vessel, for example, centrifuge tubes or Erlenmeyer flasks, on stainless steel, glass, in a disposable plastic shaker or in a blender vessel. The culture vessel can be connected to the control unit and, thus, constitute a controlled culture system. Mixing in the culture vessel (for example, a centrifuge tube or an Erlenmeyer flask) is carried out continuously or periodically. Mixing in the culture vessel is carried out to the extent that the pluripotent stem cells are maintained in suspension.

Плюрипотентные стволовые клетки могут быть выращены в любой среде, которая обеспечивает достаточное количество питательных веществ и внешних стимулов для стимуляции росту и деления. Подходящие среды включают в себя E8™, IH3 и mTeSR®1 или mTeSR®2. Среда можно периодически заменять для обновления запаса питательных веществ и удаления побочных продуктов, выделяемых клетками. В соответствии с некоторыми вариантами осуществления изобретения, культуральную среду меняли ежедневно.Pluripotent stem cells can be grown in any environment that provides enough nutrients and external stimuli to stimulate growth and division. Suitable media include E8 ™, IH3 and mTeSR ® 1 or mTeSR ® 2. The medium can be periodically replaced to renew nutrient supply and remove by-products secreted by cells. In accordance with some embodiments of the invention, the culture medium was changed daily.

ИСТОЧНИКИ ПЛЮРИПОТЕНТНЫХ СТВОЛОВЫХ КЛЕТОКSOURCES OF PLURIPOTENT STEM CELLS

Любые плюрипотентные стволовые клетки могут быть использованы в способах по настоящему изобретению. К типам плюрипотентных стволовых клеток, которые можно использовать, относятся устойчивые линии плюрипотентных клеток, получаемые из ткани, формируемой после вынашивания плода, в том числе из преэмбриональной ткани (такой как бластоциста), эмбриональной ткани или ткани плода, взятой в любой момент в период вынашивания, как правило, но не обязательно, до срока приблизительно 10-12 недель беременности. Неограничивающими примерами являются устойчивые линии эмбриональных стволовых клеток человека (hES) или эмбриональные зародышевые клетки человека, такие как, например, эмбриональные стволовые клетки человека линий H1, H7 и H9 (WiCell Research Institute, г. Мэдисон, штат Висконсин, США). Также допустимыми являются клетки, взятые из популяции плюрипотентных стволовых клеток, уже культивированных в отсутствие питающих клеток.Any pluripotent stem cells can be used in the methods of the present invention. Types of pluripotent stem cells that can be used include resistant lines of pluripotent cells derived from tissue formed after gestation, including pre-embryonic tissue (such as blastocyst), fetal tissue, or fetal tissue taken at any time during the gestation period as a rule, but not necessarily, up to a period of about 10-12 weeks of gestation. Non-limiting examples are resistant lines of human embryonic stem cells (hES) or human embryonic germ cells, such as, for example, human embryonic stem cells of H1, H7 and H9 lines (WiCell Research Institute, Madison, Wis., USA). Also acceptable are cells taken from a population of pluripotent stem cells already cultured in the absence of feeding cells.

Также соответствуют целям настоящего изобретения индуцибельные плюрипотентные клетки (IPS) или перепрограммированные плюрипотентные клетки, которые могут быть получены из взрослых соматических клеток с помощью принудительной экспрессии ряда факторов, относящихся к плюрипотентным транскрипционным факторам, таким как OCT4, NANOG, Sox2, KLF4 и ZFP42( Annu Rev Genomics Hum Genet 2011, 12:165-185). Эмбриональные стволовые клетки человека, применяемые в способах настоящего изобретения, также могут быть подготовлены, как описано Thomson и др. (патент США № 5,843,780; Science, 1998 г., 282:1145-1147; Curr Top Dev Biol 1998, 38:133-165; Proc Natl Acad Sci U.S.A. 1995, 92:7844-7848). Также подходят мутантные линии эмбриональных стволовых клеток человека, такие как, к примеру, BG01v (BresaGen, Athens, Ga.), или клетки, полученные из зрелых соматических клеток человека, такие как, к примеру, клетки, описанные в Takahashi с соавторами, Cell 131: 1-12 (2007). Плюрипотентные стволовые клетки, пригодные для применения в настоящем изобретении, могут быть получены с помощью методов, описанных у Li с соавторами: ( Cell Stem Cell 4: 16-19, 2009); Maherali et al. ( Cell Stem Cell 1: 55-70, 2007); Stadtfeld et al. ( Cell Stem Cell 2: 230-240); Nakagawa et al. ( Nature Biotechnology 26: 101-106, 2008); Takahashi et al. ( Cell 131: 861-872, 2007); и публикации заявки на патент США № 2011-0104805. Другие источники плюрипотентных стволовых клеток включают индуцированные плюрипотентные клетки (IPS, Cell , 126(4): 663-676). Другие источники клеток, подходящих для использования в способах по изобретению, включают клетки, полученные из ткани пуповины человека, клетки, полученные из амниотической жидкости, клетки, клетки, полученные из плаценты человека и человеческие партеноты. В одном варианте осуществления, клетки, полученные из ткани пуповины человека могут быть получены с использованием методов, описанных в патенте США №7510873, раскрытие которого включено в качестве ссылки в полном объеме, где они относятся к выделению и характеризации клеток. В другом варианте, клетки, полученные из ткани плаценты, могут быть получены с использованием методов, описанных в заявке на патент США на патент США № 2005/0058631, раскрытие которой включено в качестве ссылки в полном объеме, как она относится к выделению и характеризации клеток. В другом варианте, клетки, полученные из амниотической жидкости могут быть получены с использованием методов, описанных в заявке на патент США на патент США № 2007/0122903, раскрытие которой включено в качестве ссылки в полном объеме, как она относится к выделению и характеризации клеток. Also consistent with the objectives of the present invention are inducible pluripotent cells (IPS) or reprogrammed pluripotent cells that can be obtained from adult somatic cells by forcibly expressing a number of factors related to pluripotent transcription factors such as OCT4, NANOG, Sox2, KLF4 and ZFP42 ( Annu Rev Genomics Hum Genet 2011, 12: 165-185). Human embryonic stem cells used in the methods of the present invention can also be prepared as described by Thomson et al. (US Patent No. 5,843,780; Science, 1998 , 282: 1145-1147; Curr Top Dev Biol 1998, 38: 133- 165; Proc Natl Acad Sci USA 1995, 92: 7844-7848). Also suitable are mutant lines of human embryonic stem cells, such as, for example, BG01v (BresaGen, Athens, Ga.), Or cells derived from mature human somatic cells, such as, for example, the cells described in Takahashi et al., Cell 131: 1-12 (2007). Pluripotent stem cells suitable for use in the present invention can be obtained using the methods described in Li and co-authors: ( Cell Cell Cell 4: 16-19, 2009); Maherali et al. ( Cell Stem Cell 1: 55-70, 2007); Stadtfeld et al. ( Cell Stem Cell 2: 230-240); Nakagawa et al. ( Nature Biotechnology 26: 101-106, 2008); Takahashi et al. ( Cell 131: 861-872, 2007); and publication of US Patent Application No. 2011-0104805. Other sources of pluripotent stem cells include induced pluripotent cells (IPS, Cell , 126 (4): 663-676). Other sources of cells suitable for use in the methods of the invention include cells derived from human umbilical cord tissue, cells derived from amniotic fluid, cells, cells derived from human placenta, and human parthenotes. In one embodiment, cells derived from human umbilical cord tissue may be obtained using the methods described in US Pat. No. 7,510,873, the disclosure of which is incorporated by reference in its entirety, where they relate to cell isolation and characterization. In another embodiment, cells derived from placental tissue can be obtained using the methods described in US Patent Application No. 2005/0058631, the disclosure of which is incorporated by reference in its entirety as it relates to the isolation and characterization of cells . In another embodiment, cells derived from amniotic fluid can be obtained using the methods described in US patent application US No. 2007/0122903, the disclosure of which is incorporated by reference in its entirety as it relates to the isolation and characterization of cells.

Характеристики плюрипотентных стволовых клеток хорошо известны специалистам в данной области, и продолжается выявление дополнительных характеристик плюрипотентных стволовых клеток. К маркерам плюрипотентных стволовых клеток относится, например, экспрессия одного или более (например 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 или все) из следующих маркеров: ABCG2, cripto, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, NANOG, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, TRA-1-60 и TRA-1-81. В одном варианте осуществления, плюрипотентные стволовые клетки, пригодные для использования в способах по изобретению, экспрессируют один или более (например, 1, 2, 3 или все) маркеров CD9, SSEA4, TRA-1-60 и TRA-1-81 и лишены экспрессии маркера дифференцировки CXCR4 (также известного как CD184), что было определено с помощью проточной цитометрии. В другом варианте осуществления плюрипотентные стволовые клетки, пригодные для использования в способах по изобретению, экспрессируют один или несколько (например, 1, 2 или все) маркеров CD9, NANOG и POU5F1/OCT4, что было определено с помощью RT-PCR.The characteristics of pluripotent stem cells are well known to those skilled in the art, and the identification of additional characteristics of pluripotent stem cells continues. Pluripotent stem cell markers include, for example, the expression of one or more (for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or all) of the following markers: ABCG2 , cripto, FOXD3, CONNEXIN43, CONNEXIN45, OCT4, SOX2, NANOG, hTERT, UTF1, ZFP42, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81. In one embodiment, pluripotent stem cells suitable for use in the methods of the invention express one or more (for example, 1, 2, 3 or all) markers CD9, SSEA4, TRA-1-60 and TRA-1-81 and are devoid of expression of the CXCR4 differentiation marker (also known as CD184), as determined by flow cytometry. In another embodiment, pluripotent stem cells suitable for use in the methods of the invention express one or more (for example, 1, 2 or all) markers of CD9, NANOG and POU5F1 / OCT4, as determined by RT-PCR.

Примеры плюрипотентных стволовых клеток включают линию эмбриональных стволовых клеток человека H9 (код NIH: WA09), эмбриональные стволовые клетки человека линии H1 (код NIH: WA01), эмбриональные стволовые клетки человека линии H7 (код NIH: WA07), а также эмбриональные стволовые клетки человека линии SA002 (Cellartis, Швеция). В одном из вариантов осуществления настоящего изобретения указанные плюрипотентные стволовые клетки представляют собой эмбриональные стволовые клетки, например, клетки линии H1 hES. В альтернативных вариантах используются плюрипотентные стволовые клетки не эмбрионального происхождения.Examples of pluripotent stem cells include the H9 human embryonic stem cell line (NIH code: WA09), H1 human embryonic stem cells (NIH: WA01 code), H7 human embryonic stem cells (NIH code: WA07), and human embryonic stem cells lines SA002 (Cellartis, Sweden). In one embodiment of the present invention, said pluripotent stem cells are embryonic stem cells, for example, H1 hES cells. In alternative embodiments, pluripotent stem cells of non-embryonic origin are used.

Дифференцировка клеток, экспрессирующих маркеры, характерные для линии панкреатической энтодермы, из плюрипотентных стволовых клетокDifferentiation of cells expressing markers characteristic of the pancreatic endoderm line from pluripotent stem cells

Рост плюрипотентных стволовых клетокGrowth of pluripotent stem cells

Настоящее изобретение, в некоторых вариантах, как описано ниже, относится к изоляции и культивированию стволовых клеток, в частности культивированию кластеров стволовых клеток, которые сохраняют плюрипотентность в динамической суспензионной культуральной системе. Плюрипотентные кластеры клеток могут быть дифференцированы для производства функциональных β клеток.The present invention, in some embodiments, as described below, relates to the isolation and cultivation of stem cells, in particular the cultivation of stem cell clusters that retain pluripotency in a dynamic suspension culture system. Pluripotent cell clusters can be differentiated to produce functional β cells.

Плюрипотентные стволовые клетки, используемые в способах по настоящему изобретению, предпочтительно выращиваются в динамическом культуральной суспензии до дифференцировки к желаемой конечной точке. Было обнаружено, что плюрипотентные стволовые клетки могут культивироваться и расти в виде кластеров клеток в суспензии в подходящей среде без потери плюрипотентности. Такое культивирование может произойти в динамической суспензионной культуральной системе, где клетки или клеточные кластеры поддерживаются в движении для предотвращения потери плюрипотентности. Полезные динамические суспензионные культуральные системы включают в себя системы, оснащенные средствами для поддержания движения в культуре, например, методом перемешивания, встряхивания, рециркуляции или пропускания газов через среду. Такое перемешивание может быть прерывистым или непрерывным, оно должно обеспечивать достаточное движение кластеров клеток, чтобы способствовать росту и предотвращать преждевременную дифференцировку. Предпочтительно перемешивание включает непрерывное перемешивание например, посредством лопасти, вращающейся с определенной скоростью. Лопасть может быть закругленной или плоской. Скорость движения лопасти должна быть такой, чтобы кластеры поддерживались в суспендированном состоянии и оседание было минимальным. Кроме того, угол лопасти может быть изменен, чтобы способствовать движению клеток и кластеров клеток вверх для избежания оседания. Кроме того, тип лопастного колеса, угол и скорость вращения могут быть скоординированы таким образом, что клетки и кластеры будут поддерживаться в состоянии однородной коллоидной суспензии.The pluripotent stem cells used in the methods of the present invention are preferably grown in a dynamic culture suspension prior to differentiation to the desired end point. It was found that pluripotent stem cells can be cultured and grow as clusters of cells in suspension in a suitable medium without loss of pluripotency. Such cultivation can occur in a dynamic suspension culture system where cells or cell clusters are kept in motion to prevent loss of pluripotency. Useful dynamic suspension culture systems include systems equipped with means for maintaining movement in culture, for example, by mixing, shaking, recirculating, or passing gases through a medium. Such mixing can be intermittent or continuous, it should provide sufficient movement of clusters of cells to promote growth and prevent premature differentiation. Preferably, the mixing comprises continuous mixing, for example, by means of a blade rotating at a certain speed. The blade may be rounded or flat. The speed of the blade should be such that the clusters are maintained in a suspended state and the subsidence is minimal. In addition, the blade angle can be changed to facilitate the upward movement of cells and cell clusters to avoid settling. In addition, the type of impeller, angle and speed of rotation can be coordinated in such a way that the cells and clusters will be maintained in a state of uniform colloidal suspension.

Суспензионное культивирование и роста кластеров плюрипотентных стволовых клеток может быть достигнуто путем переноса статических культивированных стволовых клеток в соответствующую динамическую культуральную систему, такую как одноразовые пластиковые, многоразовые пластиковые, изготовленные из нержавеющей стали или стекла сосуды, например центрифужную пробирку или колбу Эрленмейера. Например, стволовые клетки, культивированные в адгезивной статической среде, т.е. на поверхности носителей, могут быть сначала удалены с поверхности методом обработки хелатирующим агентом или ферментом. Подходящие ферменты включают, без ограничений, следующие: коллагеназа типа I, Dispase® (Sigma Aldrich LLC, г. Сент-Луис, штат Миссури, США) или коммерчески доступная готовая форма, продаваемая под торговым названием Accutase® (Sigma Aldrich LLC, г. Сент-Луис, штат Миссури, США). Accutase® представляет собой раствор для открепления клеток, содержащий коллагенолитические и протеолитические ферменты (выделенные из ракообразных) и не содержит продуктов, выделенных из млекопитающих или бактерий. Таким образом, в одном варианте осуществления фермент является коллагенолитическим, или протеолитическим ферментом, или раствором для открепления клеток, содержащим коллагенолитические и протеолитические ферменты. Подходящие хелатирующие агенты включают, без ограничений, этилендиаминтетрауксусную кислоту (EDTA). В некоторых вариантах осуществления плюрипотентные стволовые клетки культуры инкубируют с ферментом или хелатирующим агентом, предпочтительно до того момента, когда края колонии начнут сворачиваться и отделяться, но до полного отрыва колоний от поверхности культуры. В одном варианте осуществления клеточные культуры инкубируют при комнатной температуре. В одном варианте осуществления клетки инкубируют при температуре выше 20°С, выше 25°С, выше 30°С или выше 35°С, например, при температуре между примерно 20°С и примерно 40°С, примерно от 25°С до примерно 40°С, примерно от 30°С до около 40°С, например, приблизительно 37°С. В одном варианте осуществления клетки инкубировали в течение по меньшей мере примерно 1, по меньшей мере приблизительно 5, по меньшей мере приблизительно 10, по меньшей мере около 15, по меньшей мере около 20 минут, например, от примерно 1 до примерно 30 минут, от примерно 5 до примерно 30 минут, от примерно 10 до примерно 25 минут, от 15 до 25 минут, например, приблизительно 20 минут. В одном варианте осуществления способ включает в себя стадию удаления фермента или хелатирующего агента из культуры клеток после обработки. В одном варианте осуществления клеточную культуру промывают один раз или два раза или более после удаления фермента или хелатирующего агента. В одном варианте культуру клеток промывают подходящей культуральной средой, такой как mTeSR®1 (Stem Cell Technologies, Ванкувер, Британская Колумбия, Канада). В одном варианте осуществления используется ингибитор Rho-киназы (например, Y-27632, Axxora № по каталогу ALX-270-333, San Diego, CA). Ингибитор Rho-киназы может быть в концентрации от примерно 1 до примерно 100 мкМоль, приблизительно от 1 до 90 мкМоль, от около 1 до около 80 мкМоль, от около 1 до около 70 мкМоль, от приблизительно 1 до приблизительно 60 мкМоль, от около 1 до около 50 мкМоль, от приблизительно 1 до приблизительно 40 мкМоль, от около 1 до около 30 мкМоль, от около 1 до около 20 мкМоль, от около 1 до около 15 мкМоль, от приблизительно 1 до приблизительно 10 мкМоль или 10 мкМоль. В одном варианте осуществления ингибитор Rho-киназы добавляется в количестве по меньшей мере 1 мкМоль, по меньшей мере 5 мкМоль или по меньшей мере 10 мкМоль. Клетки могут быть сняты с поверхности статической системе культивирования с скребком или резиновой палочкой. Среда и клетки могут быть перемещены в динамическую культуральную систему с помощью стеклянной пипетки или других подходящих средств. В предпочтительном варианте, среда в динамической культуральной системе заменяется ежедневно.Suspension cultivation and cluster growth of pluripotent stem cells can be achieved by transferring static cultured stem cells to an appropriate dynamic culture system, such as disposable plastic, reusable plastic, made of stainless steel or glass vessels, such as a centrifuge tube or an Erlenmeyer flask. For example, stem cells cultured in an adherent static medium, i.e. on the surface of the carriers, can be first removed from the surface by the method of treatment with a chelating agent or enzyme. Suitable enzymes include, without limitation, the following: collagenase type I, Dispase ® (Sigma Aldrich LLC , St. Louis, Missouri, USA) or the commercially available formulation marketed under the tradename Accutase ® (Sigma Aldrich LLC, of St. Louis, Missouri, USA). Accutase ® is a cell detachment solution containing collagenolytic and proteolytic enzymes (isolated from crustaceans) and does not contain products isolated from mammals or bacteria. Thus, in one embodiment, the enzyme is a collagenolytic, or proteolytic enzyme, or cell detachment solution containing collagenolytic and proteolytic enzymes. Suitable chelating agents include, without limitation, ethylenediaminetetraacetic acid (EDTA). In some embodiments, the implementation of pluripotent stem cells of the culture is incubated with an enzyme or chelating agent, preferably until the edges of the colony begin to fold and separate, but until complete separation of the colonies from the surface of the culture. In one embodiment, cell cultures are incubated at room temperature. In one embodiment, the cells are incubated at a temperature above 20 ° C, above 25 ° C, above 30 ° C or above 35 ° C, for example, at a temperature between about 20 ° C and about 40 ° C, from about 25 ° C to about 40 ° C., from about 30 ° C. to about 40 ° C., for example, about 37 ° C. In one embodiment, the cells are incubated for at least about 1, at least about 5, at least about 10, at least about 15, at least about 20 minutes, for example, from about 1 to about 30 minutes, from about 5 to about 30 minutes, from about 10 to about 25 minutes, from 15 to 25 minutes, for example, about 20 minutes. In one embodiment, the method includes a step of removing the enzyme or chelating agent from the cell culture after treatment. In one embodiment, the cell culture is washed once or twice or more after removal of the enzyme or chelating agent. In one embodiment, the cell culture is washed with a suitable culture medium, such as mTeSR ® 1 (Stem Cell Technologies, Vancouver, BC, Canada). In one embodiment, an Rho kinase inhibitor is used (eg, Y-27632, Axxora catalog number ALX-270-333, San Diego, CA). The Rho kinase inhibitor may be in a concentration of from about 1 to about 100 μM, about 1 to 90 μM, from about 1 to about 80 μM, from about 1 to about 70 μM, from about 1 to about 60 μM, from about 1 to about 50 μmol, from about 1 to about 40 μmol, from about 1 to about 30 μmol, from about 1 to about 20 μmol, from about 1 to about 15 μmol, from about 1 to about 10 μmol or 10 μmol. In one embodiment, the Rho kinase inhibitor is added in an amount of at least 1 μM, at least 5 μM, or at least 10 μM. Cells can be removed from the surface of a static cultivation system with a scraper or rubber rod. The medium and cells can be transferred to a dynamic culture system using a glass pipette or other suitable means. In a preferred embodiment, the medium in the dynamic culture system is replaced daily.

Изобретение обеспечивает в одном варианте осуществления способы культивирования и роста плюрипотентных стволовых клеток в трехмерной суспензионной культуре. В частности, предоставлены способы культивирования и роста плюрипотентных стволовых клеток путем формирования агрегированных кластеров клеток этих плюрипотентных стволовых клеток. Клеточные кластеры могут образовывать в результате обработки плюрипотентных стволовых клеток культур ферментом (например, нейтральной протеазой, или Dispase®) или хелатирующим агентом до культивирования клеток. Предпочтительно клетки культивируют в перемешиваемой или встряхиваемой суспензионной культуральной системе. В одном варианте осуществления настоящего изобретения также представлено образование из таких кластеров плюрипотентных стволовых клеток дифференцированных клеток, экспрессирующих маркеры, характерные для линии клеток поджелудочной энтодермыThe invention provides, in one embodiment, methods for cultivating and growing pluripotent stem cells in a three-dimensional suspension culture. In particular, methods are provided for the cultivation and growth of pluripotent stem cells by forming aggregated clusters of cells of these pluripotent stem cells. Cell clusters may form by treating the pluripotent stem cell cultures enzyme (e.g., a neutral protease, or Dispase ®) or chelating agent prior to culturing the cells. Preferably, the cells are cultured in a stirred or shaken suspension culture system. In one embodiment of the present invention, the formation from these clusters of pluripotent stem cells of differentiated cells expressing markers characteristic of the pancreatic endoderm cell line is also presented.

Предпочтительно, клеточные кластеры состоят из агрегированных плюрипотентных стволовых клеток. Агрегированные стволовые клетки экспрессируют один или несколько маркеров плюрипотентности, например, один или более (например, 1, 2, 3 или все) из маркеров CD9, SSEA4, TRA-1-60, TRA-и 1-81, а также показывают отсутствие экспрессия одного или более маркеров дифференцировки, например, лишены экспрессии CXCR4. В одном варианте осуществления, агрегированные стволовые клетки экспрессируют маркеры плюрипотентности CD9, SSEA4, TRA-1-60, TRA-и 1-81 и лишены экспрессии маркера дифференцировки CXCR4Preferably, cell clusters consist of aggregated pluripotent stem cells. Aggregated stem cells express one or more markers of pluripotency, for example, one or more (for example, 1, 2, 3 or all) of the markers CD9, SSEA4, TRA-1-60, TRA- and 1-81, and also show the absence of expression one or more differentiation markers, for example, are deprived of CXCR4 expression. In one embodiment, the aggregated stem cells express the pluripotency markers CD9, SSEA4, TRA-1-60, TRA-and 1-81, and lack expression of the CXCR4 differentiation marker

Один вариант представляет собой способ культивирования плюрипотентных стволовых клеток в виде клеточных кластеров в суспензионной культуре. Клеточные кластеры представляют собой агрегированные плюрипотентные стволовые клетки, культивируемые в динамической перемешиваемой или встряхиваемой суспензионной культуральной системе. Клеточные кластеры могут быть перемещены из плоской прикрепленной культуры путем добавления фермента, такого как нейтральная протеаза, например Dispase, в качестве клеткоотделяющего агента к перемешиваемой или встряхиваемой суспензионной культуральной системе. Примеры подходящих ферментов включают, без ограничений, коллагеназу IV типа, Dispase® или Accutase®. Клетки поддерживают плюрипотентность в перемешиваемой или встряхиваемой культуральной системе, в частности в перемешиваемой суспензионной культуральной системе.One embodiment is a method for cultivating pluripotent stem cells as cell clusters in suspension culture. Cell clusters are aggregated pluripotent stem cells cultured in a dynamic stirred or shaken suspension culture system. Cell clusters can be transferred from a flat attached culture by adding an enzyme, such as a neutral protease, such as Dispase, as a cell-separating agent to a stirred or shaken suspension culture system. Examples of suitable enzymes include, without limitation, type IV collagenase, Dispase ® or Accutase ®. Cells maintain pluripotency in a stirred or shaken culture system, in particular in a stirred suspension culture system.

Другой вариант осуществления изобретения относится к способу культивирования плюрипотентных стволовых клеток как клеточных кластеров в суспензионной культуре, в котором кластеры клеток представляют собой агрегированные плюрипотентные стволовые клетки, перемещенные из плоской прикрепленной культуры с помощью хелатирующего агента, например, EDTA, и культивированные в перемешиваемой или встряхиваемой суспензионной культуральной системе. Клеточные кластеры поддерживают плюрипотентность в перемешиваемой или встряхиваемой суспензионной культуральной системе, в частности в перемешиваемой суспензионной культуральной системе.Another embodiment of the invention relates to a method of cultivating pluripotent stem cells as cell clusters in suspension culture, in which clusters of cells are aggregated pluripotent stem cells displaced from a flat attached culture using a chelating agent, for example, EDTA, and cultured in a stirred or shaken suspension culture system. Cell clusters support pluripotency in a stirred or shaken suspension culture system, in particular in a mixed suspension culture system.

Другой вариант осуществления изобретения относится к способу культивирования плюрипотентных стволовых клеток как клеточных кластеров в суспензионной культуре, в котором кластеры клеток представляют собой агрегированные плюрипотентные стволовые клетки, перемещенные из плоской прикрепленной культуры с помощью фермента Accutase® и культивированные в перемешиваемой или встряхиваемой суспензионной культуральной системе. Клеточные кластеры поддерживают плюрипотентность в динамичной суспензионной культуральной системе.Another embodiment of the invention relates to a method of cultivating pluripotent stem cells as cell clusters in suspension culture, in which the cell clusters are aggregated pluripotent stem cells transferred from a flat attached culture using the enzyme Accutase ® and cultured in a stirred or shaken suspension culture system. Cell clusters support pluripotency in a dynamic suspension culture system.

Клеточные кластеры по изобретению могут быть дифференцированы в мезодермальные клетки, такие как сердечные клетки, клетки эктодермы, нервные клетки, одногормональные положительные клетки или клетки поджелудочной энтодермы. Способ может дополнительно включать в себя дифференцировку, например, дифференцировку клеток поджелудочной энтодермы в клетки-предшественники панкреатических клеток и клетки, экспрессирующие гормон поджелудочной железы. В другом варианте, клетки-предшественники панкреатических клеток характеризуются экспрессией транскрипционных факторов β-клеток Pdx1 и Nkx6.1.The cell clusters of the invention can be differentiated into mesodermal cells, such as heart cells, ectoderm cells, nerve cells, single-hormone positive cells, or pancreatic endoderm cells. The method may additionally include differentiation, for example, differentiation of pancreatic endoderm cells into progenitor cells of pancreatic cells and cells expressing pancreatic hormone. In another embodiment, the progenitor cells of pancreatic cells are characterized by the expression of the transcription factors β-cells Pdx1 and Nkx6.1.

В одном варианте осуществления, стадия дифференцировки осуществляется через по меньшей мере 12 часов, по меньшей мере 24 часа, по меньшей мере 36 часов, по меньшей мере 48 часов, по меньшей мере 72 часа, по меньшей мере 96 часов, по меньшей мере 120 часов, по меньшей мере 144 ч, по меньшей мере 168 часов, по меньшей мере 196 часов или, более предпочтительно, от около 48 часов до около 72 часа в суспензионной культуральной системе. Дифференцировка может быть осуществлена с использованием постадийного прогрессирования компонентов среды, например, как описано в примерах (например, см. таблицу A и таблицы 1а и 1c).In one embodiment, the stage of differentiation takes place after at least 12 hours, at least 24 hours, at least 36 hours, at least 48 hours, at least 72 hours, at least 96 hours, at least 120 hours at least 144 hours, at least 168 hours, at least 196 hours, or, more preferably, from about 48 hours to about 72 hours in a suspension culture system. Differentiation can be carried out using stepwise progression of environmental components, for example, as described in the examples (for example, see Table A and Tables 1a and 1c).

В предпочтительном варианте, трехмерный кластер клеток получают путем выращивания плюрипотентных стволовых клеток в плоской прикрепленной культуре; выращивания плюрипотентных стволовых клеток в агрегированные кластеры клеток; и переноса кластеров плюрипотентных стволовых клеток из плоской прикрепленной культуры в динамическую культуральную суспензию с использованием фермента или хелатирующего агента. Еще один предпочтительный вариант осуществления представляет собой способ выращивание и дифференцировки плюрипотентных стволовых клеток в динамически перемешиваемой суспензионной культуральной системе путем выращивания плюрипотентных стволовых клеток в плоской прикрепленной культуре; выращивания плюрипотентных стволовых клеток в агрегированные кластеры клеток; и переноса кластеров плюрипотентных стволовых клеток из плоской прикрепленной культуры в динамическую культуральную суспензию с использованием фермента или хелатирующего агента; и дифференцировки кластеров плюрипотентных клеток в динамической перемешиваемой суспензионной культуральной системе для создания популяции клетки-предшественника панкреатических клеток.In a preferred embodiment, a three-dimensional cluster of cells is obtained by growing pluripotent stem cells in a flat, attached culture; growing pluripotent stem cells into aggregated cell clusters; and transferring clusters of pluripotent stem cells from an attached flat culture to a dynamic culture suspension using an enzyme or chelating agent. Another preferred embodiment is a method of growing and differentiating pluripotent stem cells in a dynamically mixed suspension culture system by growing pluripotent stem cells in a flat, attached culture; growing pluripotent stem cells into aggregated cell clusters; and transferring clusters of pluripotent stem cells from an attached flat culture to a dynamic culture suspension using an enzyme or chelating agent; and differentiation of clusters of pluripotent cells in a dynamic stirred suspension culture system to create a population of pancreatic progenitor cells.

Другое вариант осуществления представляет собой выделенный трансплантируемый продукт стволовых клеток, содержащий дифференцированные стволовые клетки, полученные из суспензии разросшихся кластеров плюрипотентных стволовых клеток, которые дифференцируются в клетки-предшественники панкреатических клеток. Более конкретно, выделенный трансплантируемый продукт стволовых клеток получают путем выращивания плюрипотентных стволовых клеток в плоской прикрепленной культуре; выращивания плюрипотентных стволовых клеток в агрегированные кластеры клеток; и переноса кластеров плюрипотентных стволовых клеток из плоской прикрепленной культуры в динамическую культуральную суспензию с использованием фермента или хелатирующего агента; и дифференцировки кластеров плюрипотентных клеток в динамически перемешиваемой суспензионной культуральной системе. Выделенный трансплантируемый продукт стволовых клеток предпочтительно используют для лечения диабета.Another embodiment is an isolated stem cell transplant product containing differentiated stem cells obtained from a suspension of expanded clusters of pluripotent stem cells that differentiate into progenitor cells of pancreatic cells. More specifically, the isolated stem cell transplant product is obtained by growing pluripotent stem cells in a flat attached culture; growing pluripotent stem cells into aggregated cell clusters; and transferring clusters of pluripotent stem cells from an attached flat culture to a dynamic culture suspension using an enzyme or chelating agent; and differentiation of clusters of pluripotent cells in a dynamically stirred suspension culture system. The isolated stem cell transplant product is preferably used for the treatment of diabetes.

В другом варианте осуществления способ включает в себя трансплантацию в животное, больное диабетом для дальнейшего созревания in vivo в функциональные панкреатические эндокринные клетки.In another embodiment, the method includes transplantation into an animal suffering from diabetes for further maturation in vivo into functional pancreatic endocrine cells.

Другой вариант осуществления представляет собой способ выращивания и дифференцировки плюрипотентных стволовых клеток в суспензионной культуральной системе, содержащей растущие плюрипотентные стволовые клетки в плоской прикрепленной культуре; удаления плюрипотентных стволовых клеток с плоской прикрепленной культуры с использованием фермента; прикрепления плюрипотентных стволовых клеток к микроносителям в статической культуре; выращивания плюрипотентных клеток в динамически перемешиваемой суспензионной культуральной системе; и дифференцировки плюрипотентных клеток в динамически перемешиваемой суспензионной культуральной системе для создания популяции клетки-предшественника панкреатических клеток.Another embodiment is a method of growing and differentiating pluripotent stem cells in a suspension culture system containing growing pluripotent stem cells in a flat, attached culture; removing pluripotent stem cells from a flat attached culture using an enzyme; attaching pluripotent stem cells to microcarriers in static culture; growing pluripotent cells in a dynamically stirred suspension culture system; and differentiation of pluripotent cells in a dynamically mixed suspension culture system to create a population of pancreatic progenitor cells.

Микроносители могут быть любой формы, известной в данной области техники крепления клеток, в частности, микроносители могут быть сферами. Микроноситель может состоять их материалов натурального или синтетического происхождения. Примеры включают микроносители на коллагеновой основе, на основе декстрана или на основе целлюлозы. Например, сферы микроносителя могут быть модифицированными полистирольными сферами с прикрепленным к поверхности катионным триметил аммонием для обеспечения микроносителю положительно заряженной поверхности. Диаметр сферы может изменяться в диапазоне от около 90 до около 200 мкм, в альтернативном варианте от около 100 до около 190 мкм, в альтернативном варианте от около 110 до около 180 мкм, в альтернативном варианте от около 125 до 175 мкм в диаметре. Сферы микроносителей могут состоять из тонкого слоя денатурированного коллагена, химически связанного с матрицей из сшитого декстрана. Сферы микроносителей могут состоять из следующих материалов: стекло, керамика, полимеры (такие как полистирол) или металлы. Кроме того, микроносители могут быть непокрытыми или с покрытием, например, из кремния или белка, такого как коллаген. В дополнительном аспекте микроноситель может состоять или иметь покрытие из соединений, улучшающих связывание клетки с микроносителем и улучшающих отделение клетки от микроносителя, включая, помимо прочего, такие соединения, как натрия гиалуронат, поли(моностеароилглицерид-ко-янтарная кислота), поли-D,L-лактид-ко-гликолид, фибронектин, ламинин, эластин, лизин, n-изопропилакриламид, витронектин и коллаген. Примеры дополнительно включают микроносители, обладающие микротоком, такие как микроносители с частичной гальванической парой цинка и меди, которая производит низкие уровни биологически значимого электричества; или микроносители, являющиеся парамагнетическими, такие как парамагнетические кальций-альгинатные микроносители.Microcarriers can be of any form known in the art of cell attachment, in particular, microcarriers can be spheres. The microcarrier may consist of materials of natural or synthetic origin. Examples include collagen based microcarriers, dextran-based or cellulose-based. For example, the microcarrier spheres can be modified polystyrene spheres with cationic trimethyl ammonium attached to the surface to provide the microcarrier with a positively charged surface. The diameter of the sphere can range from about 90 to about 200 microns, alternatively from about 100 to about 190 microns, alternatively from about 110 to about 180 microns, in an alternative embodiment, from about 125 to 175 microns in diameter. The spheres of microcarriers may consist of a thin layer of denatured collagen, chemically bound to a matrix of cross-linked dextran. Microcarrier spheres can consist of the following materials: glass, ceramics, polymers (such as polystyrene), or metals. In addition, microcarriers can be uncoated or coated, for example, of silicon or protein, such as collagen. In an additional aspect, the microcarrier may consist of or have a coating of compounds that improve the binding of the cell to the microcarrier and improve the separation of the cell from the microcarrier, including, among other things, compounds such as sodium hyaluronate, poly (monostearoylglyceride-co-succinic acid), poly-D, L-lactide-co-glycolide, fibronectin, laminin, elastin, lysine, n-isopropylacrylamide, vitronectin and collagen. Examples further include microcarriers having microcurrents, such as microcarriers with a partial galvanic pair of zinc and copper, which produces low levels of biologically significant electricity; or microcarriers that are paramagnetic, such as paramagnetic calcium-alginate microcarriers.

В некоторых вариантах осуществления популяцию клеток панкреатической энтодермы получают путем поэтапной дифференцировки плюрипотентных клеточных кластеров. В некоторых вариантах осуществления плюрипотентные клетки представляют собой эмбриональные плюрипотентные стволовые клетки человека. В одном аспекте настоящего изобретения клетка, экспрессирующая маркеры, характерные для линии дефинитивной энтодермы, представляет собой клетку-предшественник первичной полоски. В альтернативном аспекте настоящего изобретения клетка, экспрессирующая маркеры, характерные для линии дефинитивной энтодермы, представляет собой клетку мезэнтодермы.In some embodiments, a population of pancreatic endoderm cells is produced by phased differentiation of pluripotent cell clusters. In some embodiments, the implementation of pluripotent cells are human embryonic pluripotent stem cells. In one aspect of the present invention, a cell expressing markers characteristic of the definitive endoderm lineage is a precursor cell of a primary strip. In an alternative aspect of the present invention, a cell expressing markers characteristic of the definitive endoderm lineage is a mesentoderm cell.

В некоторых вариантах осуществления настоящее изобретение относится к способу поэтапной дифференцировки плюрипотентных клеток, содержащему культивирование клеток на стадиях 3-5 в динамической суспензионной культуре. В некоторых вариантах осуществления образованная панкреатическая энтодермальная популяция трансплантируется в животное, больное диабетом, для дальнейшего созревания in vivo до функциональных эндокринных клеток. Настоящее изобретение также предусматривает системы или наборы для использования со способами настоящего изобретения.In some embodiments, the implementation of the present invention relates to a method of phased differentiation of pluripotent cells, containing the cultivation of cells in stages 3-5 in a dynamic suspension culture. In some embodiments, the formed pancreatic endodermal population is transplanted into a diabetic animal for further maturation in vivo to functional endocrine cells. The present invention also provides systems or kits for use with the methods of the present invention.

Настоящее изобретение также представляет клетку или популяцию клеток, которые можно получить методами настоящего изобретения. Настоящее изобретение также представляет клетку или популяцию клеток, полученную методами настоящего изобретения.The present invention also represents a cell or population of cells that can be obtained by the methods of the present invention. The present invention also provides a cell or cell population obtained by the methods of the present invention.

Изобретение представляет методы обработки. В частности, настоящее изобретение представляет способ обработки пациента, страдающего диабетом или подвергающегося риску развития данного заболевания.The invention provides processing methods. In particular, the present invention provides a method for treating a patient suffering from diabetes or at risk of developing the disease.

Настоящее изобретение также представляет клетку или популяцию клеток, которые можно получить или полученные методом настоящего изобретения для применения в методе обработки. В частности, настоящее изобретение также представляет клетку или популяцию клеток, которые можно получить или полученные методом настоящего изобретения для применения в методе обработки пациента, страдающего диабетом или подвергающегося риску развития данного заболевания. Диабет может быть диабетом типа I или типа II.The present invention also provides a cell or population of cells that can be obtained or obtained by the method of the present invention for use in a processing method. In particular, the present invention also represents a cell or a population of cells that can be obtained or obtained by the method of the present invention for use in treating a patient with diabetes or at risk of developing the disease. Diabetes can be type I or type II diabetes.

В одном из вариантов осуществления метод обработки включает имплантацию клеток, которые получены или могут быть получены методом настоящего изобретения, пациенту.In one of the embodiments, the processing method includes the implantation of cells that are obtained or can be obtained by the method of the present invention, the patient.

В одном варианте осуществления способа обработки включает дифференцировку плюрипотентных стволовых клеток в пробирке в стадии 1, стадии 2, стадии 3, стадии4 или стадии 5 клеток, например, как описано здесь, и имплантацию дифференцированных клеток в тело пациента.In one embodiment, the processing method comprises differentiating pluripotent stem cells in a test tube in stage 1, stage 2, stage 3, stage 4 or stage 5 cells, for example, as described herein, and implanting differentiated cells into the patient's body.

В одном из вариантов осуществления метод также содержит стадию культивирования плюрипотентных стволовых клеток, например как описано в настоящем документе, предшествующую стадии дифференцировки плюрипотентных стволовых клеток.In one embodiment, the method also comprises the step of cultivating pluripotent stem cells, for example, as described herein, prior to the differentiation step of pluripotent stem cells.

В одном из вариантов осуществления метод также включает стадию дифференцировки клеток in vivo, после стадии имплантации.In one embodiment, the method also includes a step of differentiating cells in vivo, after an implantation step.

В одном из вариантов осуществления пациент является млекопитающим, предпочтительно человеком.In one embodiment, the patient is a mammal, preferably a human.

В одном из вариантов осуществления клетки можно имплантировать в форме дисперсных клеток или клеток, образующих кластеры, которые можно вводить в воротную вену печени методом инфузии. Клетки можно альтернативно вводить в биосовместимые разлагающиеся полимерные опорные материалы, пористые неразлагающиеся устройства или в инкапсулированном виде для защиты от иммунного ответа организма-хозяина. Клетки можно имплантировать в подходящее место в организме реципиента. Места имплантации включают в себя, например, печень, естественную поджелудочную железу, пространство под почечной капсулой, сальник, брюшную полость, субсерозное пространство, кишечник, желудок или подкожный карман.In one embodiment, the implementation of the cells can be implanted in the form of dispersed cells or cells forming clusters, which can be entered into the portal vein of the liver by the method of infusion. Cells can alternatively be introduced into biocompatible, degradable polymeric support materials, porous, non-degradable devices or in encapsulated form to protect against the immune response of the host organism. Cells can be implanted in a suitable place in the body of the recipient. Implantation sites include, for example, the liver, the natural pancreas, the space below the renal capsule, the omentum, the abdominal cavity, the subserous space, the intestine, the stomach, or the subcutaneous pocket.

Для стимуляции дальнейшего дифференцировки, выживаемости или активности имплантированных клеток in vivo, до, одновременно с или после введения клеток можно вводить дополнительные факторы, такие как факторы роста, антиоксиданты или противовоспалительные вещества. Данные факторы могут секретироваться эндогенными клетками и воздействовать на внедренные клетки in situ. Дифференцирование имплантированных клеток можно индуцировать любой комбинацией известных в данной области эндогенных факторов роста и экзогенным введением известных в данной области факторов роста.To stimulate further differentiation, survival or activity of the implanted cells in vivo, before, simultaneously with or after the introduction of the cells, additional factors can be introduced, such as growth factors, antioxidants or anti-inflammatory substances. These factors can be secreted by endogenous cells and act on the embedded cells in situ. Differentiation of implanted cells can be induced by any combination of endogenous growth factors known in the art and exogenous administration of the growth factors known in the art.

Количество клеток, используемых при имплантации, зависит от ряда различных факторов, включая состояние пациента и его реакцию на лечение, и может быть определено специалистом в данной области.The number of cells used in implantation depends on a number of different factors, including the condition of the patient and his response to treatment, and can be determined by a person skilled in the art.

В одном из вариантов осуществления метод обработки также включает встраивание клеток перед имплантацией в трехмерный опорный материал. Клетки можно поддерживать in vitro на данном опорном материале перед имплантацией пациенту. Опорный материал, содержащий клетки, альтернативно можно имплантировать непосредственно в организм пациента без дополнительного культивирования in vitro. В опорный материал может быть необязательно включено по меньшей мере одно фармацевтическое вещество, обеспечивающее выживаемость и функционирование трансплантированных клеток.In one embodiment, the processing method also includes embedding the cells prior to implantation into a three-dimensional support material. Cells can be maintained in vitro on this support material prior to implantation into a patient. Alternatively, the supporting material containing cells can be implanted directly into the patient's body without additional in vitro culture. The supporting material may optionally include at least one pharmaceutical substance that ensures the survival and functioning of the transplanted cells.

В некоторых вариантах осуществления настоящего изобретения один или несколько из следующих вариантов может быть использован в способах по настоящему изобретению.In some embodiments, implementation of the present invention, one or more of the following options can be used in the methods of the present invention.

Таблица ATable A Компоненты/УсловияComponents / Terms СтадияStage Подходящие количестваSuitable quantities Активин A (AA)Activin A (AA) 1,31,3 Стадия 1: приблизительно 100 мг/мл
Стадия 3: приблизительно 5 нг/мл, от приблизительно 3 нг/мл до приблизительно 6 нг/мл
Stage 1: approximately 100 mg / ml
Stage 3: about 5 ng / ml, from about 3 ng / ml to about 6 ng / ml
AlbuMAX® AlbuMAX ® 3-53-5 Приблизительно 0,1%Approximately 0.1% Ингибитор ALK5ALK5 inhibitor 4, 54, 5 Приблизительно 1 мкМоль, приблизительно 500 до приблизительно 1000 нМоль, приблизительно 600 до приблизительно 1000 нМоль, приблизительно 700 до приблизительно 1000 нМоль, приблизительно 800 до приблизительно 1000 нМоль, приблизительно 100 нМоль, приблизительно 500 нМоль или приблизительно 1 мкМоль, от приблизительно 0,6 до приблизительно 1 мкМольAbout 1 μMol, about 500 to about 1000 nM, about 600 to about 1000 nM, about 700 to about 1000 nM, about 800 to about 1000 nM, about 100 nM, about 500 nM or about 1 μM, from about 0.6 to about 1 μm BSABSA 1-51-5 Приблизительно 2%, от 0,1% до приблизительно 2% Approximately 2%, from 0.1% to approximately 2% Cypi (ингибитор Cyp26)Cypi (Cyp26 inhibitor) 4, 54, 5 Приблизительно 100 нМоль, от приблизительно 80 нМоль до приблизительно 120 нМоль, от приблизительно 50 нМоль до приблизительно 150 нМольApproximately 100 nM, from about 80 nM to about 120 nM, from about 50 nM to about 150 nM FGF7 (“F7”)FGF7 (“F7”) 2, 32, 3 Приблизительно 50 нг/мл, от приблизительно 30 нг/мл до приблизительно 60 нг/мл, от приблизительно 25 нг/мл до приблизительно 55 нг/млApproximately 50 ng / ml, from approximately 30 ng / ml to approximately 60 ng / ml, from approximately 25 ng / ml to approximately 55 ng / ml GDF8GDF8 1one Приблизительно 100 нг/мл, от приблизительно 80 нг/мл до приблизительно 150 нг/мл, от приблизительно 75 нг/мл до приблизительно 125 нг/мл, от приблизительно 75 нг/мл до приблизительно 150 нг/млApproximately 100 ng / ml, from approximately 80 ng / ml to approximately 150 ng / ml, from approximately 75 ng / ml to approximately 125 ng / ml, from approximately 75 ng / ml to approximately 150 ng / ml ГлюкозаGlucose 1-51-5 Стадии 1-4:
Приблизительно 8 мМоль, от приблизительно 1 мМоль до приблизительно 8 мМоль, от приблизительно 3 мМоль до приблизительно 5 мМоль
или
Стадии 3-4:
Приблизительно 25 мМоль, от приблизительно 10 до приблизительно 25 мМоль
или
Стадия 5
Менее чем приблизительно 11 мМоль, от приблизительно 1 мМоль до приблизительно 10 мМоль
или
Стадия 5
Более чем приблизительно 25 мМоль, от приблизительно 25 мМоль до приблизительно 50 мМоль
Stages 1-4:
Approximately 8 mmol, from about 1 mmol to about 8 mmol, from about 3 mmol to about 5 mmol
or
Stages 3-4:
Approximately 25 mmol, from about 10 to about 25 mmol
or
Stage 5
Less than about 11 mM, from about 1 mM to about 10 mM
or
Stage 5
More than about 25 mmol, from about 25 mmol to about 50 mmol
ITS-XITS-X 1-51-5 Приблизительно 1:50 000, приблизительно 1:200, приблизительно 1:1000, приблизительно 1:10 000Approximately 1:50 000, approximately 1: 200, approximately 1: 1000, approximately 1:10 000 LDNLDN 33 Приблизительно 100 нМоль, от приблизительно 80 нМоль до приблизительно 120 нМоль, от приблизительно 50 нМоль до приблизительно 150 нМольApproximately 100 nM, from about 80 nM to about 120 nM, from about 50 nM to about 150 nM L-глутаминL-glutamine 1-51-5 Приблизительно 2 мМоль, от приблизительно 1 мМоль до приблизительно 3 мМоль, от приблизительно 2 мМоль до приблизительно 6 мМоль, от приблизительно 1 мМоль до приблизительно 6 мМольApproximately 2 mM, from about 1 mM to about 3 mM, from about 2 mM to about 6 mM, from about 1 mM to about 6 mM Количество липидовAmount of lipids От приблизительно 0,1% до приблизительно 0,2%, от приблизительно 0,05% до приблизительно 0,15%, от приблизительно 0,15% до приблизительно 0,2%From approximately 0.1% to approximately 0.2%, from approximately 0.05% to approximately 0.15%, from approximately 0.15% to approximately 0.2% MCXMCX 1one Приблизительно 3 мкМоль, приблизительно 2 мкМоль, приблизительно от 1 мкМоль до приблизительно 5 мкМоль, приблизительно от 2 мкМоль до приблизительно 4 мкМоль, приблизительно от 1 мкМоль до приблизительно 3 мкМоль, приблизительно от 2 мкМоль до приблизительно 3 мкМольApproximately 3 μM, approximately 2 μM, from about 1 μM to about 5 μM, from about 2 μM to about 4 μM, from about 1 μM to about 3 μM, from about 2 μM to about 3 μM Количество кислородаAmount of oxygen 1-51-5 От гипоксии до приблизительно 30% стандартного, от приблизительно 10% до приблизительно 25% стандартного, от приблизительно 15% до приблизительно 30% стандартногоHypoxia to about 30% standard, from about 10% to about 25% standard, from about 15% to about 30% standard Ретиноевая кислотаRetinoic acid 33 Приблизительно 2 мкМоль, от приблизительно 1 мкМоль до приблизительно 3 мкМоль, от приблизительно 1.5 мкМоль до приблизительно 2.5 мкМольApproximately 2 μmol, from approximately 1 μmol to approximately 3 μmol, from approximately 1.5 μmol to approximately 2.5 μmol SANTSANT 3, 43, 4 Приблизительно 0,25 мкМоль, от приблизительно 0,1 мкМоль до приблизительно 0,3 мкМоль, от приблизительно 0,2 до приблизительно 0,3 мкМоль. от приблизительно 0,1 мкМоль до приблизительно 0,25 мкМольApproximately 0.25 μmol, from about 0.1 μmol to about 0.3 μmol, from about 0.2 to about 0.3 μmol. from about 0.1 μmol to about 0.25 μmol SCIO (ингибитор Alk5)SCIO (Alk5 inhibitor) 4four Приблизительно 100 нМоль, приблизительно 2 мкМольApproximately 100 nM, approximately 2 μM Время дифференцировки клеток от плюрипотентных до клеток дефинитивной энтодермыTime of differentiation of cells from pluripotent to definitive endoderm cells Менее чем 48 часа, менее чем 30 часов, менее чем 24 часа, менее чем 18 часов, приблизительно от 18 до 30 часовLess than 48 hours, less than 30 hours, less than 24 hours, less than 18 hours, approximately 18 to 30 hours TppB или TPBTppB or TPB 4four Приблизительно 500 нМоль, приблизительно 100 нМоль, от приблизительно 50 нМоль до приблизительно 550 нМоль, от приблизительно 50 нМоль до приблизительно 150 нМоль, от приблизительно 200 нМоль до приблизительно 500 нМоль, от приблизительно 300 нМоль до приблизительно 550 нМоль, приблизительно 50нМоль, от приблизительно 25нМоль до приблизительно 75нМольApproximately 500 nM, approximately 100 nM, from about 50 nM to about 550 nM, from about 50 nM to about 150 nM, from about 200 nM to about 500 nM, from about 300 nM to about 550 nM, about 50 nM, from about 25 nm to about 75nM Wnt3AWnt3A 1one Приблизительно 20 нг/мл, от приблизительно 10 нг/мл до приблизительно 25 нг/мл, от приблизительно 18 нг/мл до приблизительно 30 нг/мл, от приблизительно 18 нг/мл до приблизительно 22 нг/млApproximately 20 ng / ml, from approximately 10 ng / ml to approximately 25 ng / ml, from approximately 18 ng / ml to approximately 30 ng / ml, from approximately 18 ng / ml to approximately 22 ng / ml Y-27632Y-27632 00 Приблизительно 10 мкМоль, от приблизительно 5 мкМоль до приблизительно 15 мкМоль, от приблизительно 5 мкМоль до приблизительно 10 мкМольApproximately 10 μmol, from about 5 μmol to about 15 μmol, from about 5 μmol to about 10 μmol

Публикации, цитируемые в настоящем документе, полностью включаются в настоящий документ посредством ссылки. Настоящее изобретение дополнительно иллюстрируется, среди прочего, следующими примерами.Publications cited in this document are fully incorporated herein by reference. The present invention is further illustrated, inter alia, by the following examples.

ПРИМЕРЫEXAMPLES

НАСТОЯЩЕЕ ИЗОБРЕТЕНИЕ ДАЛЕЕ ПРОИЛЛЮСТРИРОВАНО СЛЕДУЮЩИМИ НЕОГРАНИЧИВАЮЩИМИ ПРИМЕРАМИ.THE PRESENT INVENTION IS FURTHER ILLUMINATED BY THE FOLLOWING UNLIMITED EXAMPLES.

ПРИМЕР 1EXAMPLE 1

СУСПЕНДИРОВАНИЕ И КЛАСТЕРИЗАЦИЯ ЧЕЛОВЕЧЕСКИХ ЭМБРИОНАЛЬНЫХ СТВОЛОВЫХ КЛЕТОК КЛЕТОЧНОЙ ЛИНИИ H1 С ПОМОЩЬЮ DISPASE/НЕЙТРАЛЬНОЙ ПРОТЕАЗЫSUSPENDING AND CLUSTERING OF HUMAN EMBRYONIC STEM CELLS OF CELL LINE H1 USING DISPASE / NEUTRAL PROTEASE

Клетки линии эмбриональных стволовых клеток человека Н1, (клетки WA01, WiCell, г. Мэдисон, штат Висконсин, США) при пассировании 41 раз промывали PBS (№ по каталогу 14190, Invitrogen) и обрабатывали 1 мг/мл раствора Dispase® (Neutral Protease, Sigma Aldrich Co LLC, № по каталогу D4818, г. Сент-Луис, штат Миссури, США) в DMEM/F12 (Invitrogen № по каталогу 11330, г. Гранд Айленд, штат Нью-Йорк, США). Клетки инкубировали при 37°С в течение 15-25 минут, пока края колонии не стали скручиваться и отходить, но перед полным отрывом колоний от поверхности культуры. Dispase® затем удаляли, и чашку Петри дважды промывали средой mTeSR®1 (Stem Cell Technologies, г. Ванкувер, Британская Колумбия, Канада), содержащей 10 мкМоль Y-27632 (Axxora, № по каталогу ALX-270-333, г. Сан-Диего, штат Калифорния, США). Среду mTeSR®1, содержащую 10 мкМоль Y-27632, затем добавляли в чашку для культивирования в кол-ве 5 мл/60 см2, и клетки снимали с поверхности скребком или резиновой палочкой. Среду и клетки переносили в коническую пробирку на 50 мл с помощью стеклянной пипетки и кластеры центрифугировали при 90 g (ОЦС, относительная центробежная сила) в течение 3 минут.Cell line of human embryonic stem cells H1, (WA01 cells, WiCell, Madison, Wisconsin, USA) with passaging 41 times with PBS (№ catalog 14190, Invitrogen) and treated with 1 mg / ml Dispase ® (Neutral Protease, Sigma Aldrich Co LLC, Catalog No. D4818, St. Louis, Missouri, USA) at DMEM / F12 (Invitrogen Catalog No. 11330, Grand Island, New York, USA). Cells were incubated at 37 ° C for 15-25 minutes, until the edges of the colony began to curl and move away, but before complete separation of the colonies from the surface of the culture. Dispase ® was then removed, and the Petri dish was washed twice with mTeSR ® 1 (Stem Cell Technologies, Vancouver, British Columbia, Canada) containing 10 μM Y-27632 (Axxora, catalog number ALX-270-333, San Diego, California, USA). The mTeSR ® 1 medium containing 10 μM Y-27632 was then added to the culture dish in a quantity of 5 ml / 60 cm 2 , and the cells were removed from the surface with a scraper or a rubber rod. The medium and cells were transferred to a 50 ml conical tube using a glass pipette and the clusters were centrifuged at 90 g (OCS, relative centrifugal force) for 3 minutes.

После центрифугирования среду отсасывали и клетки осторожно ресуспендировали и быстро измельчали в 12 мл среды mTeSR®1, содержащей по 10 мкМоль Y-27632 на каждые 225-240 см2 общей плоской культуры (эквивалентно одной колбе T225 или четырем чашкам 10 см, приблизительно 90 миллионов клеток). Суспензию клеток затем переносили (1 мл/лунку) на 6-луночные планшеты Ultra Low Binding Culture (Corning Incorporated, № по каталогу 3471, г. Корнинг, штат Нью-Йорк, США), содержащие 2 мл/лунка свежей среды mTeSR®1 с 10 мкМоль Y-27632. Отделенные таким образом клетки напоминал фрагменты монослоя со средним диаметром поднимаемых фрагментов около 20-30 мкМоль (фиг.1а), каждый из которых состоит из скопления клеток. Эти фрагменты монослоя инкубировали в суспензии в течение 2 часов (время инкубации может лежать в диапазоне от 0,5 до 4 часов), при этом наблюдались точечные агрегаты фрагментов. Агрегаты затем быстро растирают кратко со стеклянной пипеткой 10 мл среды и инкубировали в течение ночи (агрегаты могут переходить непосредственно в суспензию) в планшет слабого связывания (агрегаты также можно инкубировать на необработанной пластике для культивирования клеток и обработанной пластике для культивирования клеток).After centrifuging, the medium was aspirated and the cells were carefully resuspended and quickly crushed in 12 ml of mTeSR ® 1 medium containing 10 μM Y-27632 for every 225-240 cm 2 of total flat culture (equivalent to one T225 flask or four plates 10 cm, approximately 90 million cells). The cell suspension was then transferred (1 ml / well) to 6-well Ultra Low Binding Culture plates (Corning Incorporated, Cat. No. 3471, Corning, New York, USA) containing 2 ml / well of fresh mTeSR ® 1 medium with 10 μM Y-27632. The cells thus separated resembled monolayer fragments with an average diameter of the lifted fragments of about 20–30 μmol (FIG. 1a), each of which consists of a cluster of cells. These monolayer fragments were incubated in suspension for 2 hours (the incubation time can be in the range from 0.5 to 4 hours), while dotted aggregates of fragments were observed. The aggregates are then quickly triturated with a glass pipette 10 ml of medium and incubated overnight (the aggregates can go directly into suspension) into a loose binding plate (the aggregates can also be incubated on untreated plastics for cell culture and processed plastics for cell culture).

После инкубации в течение ночи (18-24 часа), клетки и среду переносили непосредственно в центрифужную пробирку на 125 мл (Corning Incorporated, № по каталогу 4500-125, г. Корнинг, штат Нью-Йорк, США), содержащую 25 мл среды mTeSR®1 и перемешивали со скоростью 50 оборотов в минуту (диапазон может составлять 30-80+ оборотов в минуту) с получением конечного объема приблизительно 75 мл. Среду меняли ежедневно в течение 4 суток. Плюрипотентность определяли после 4 суток в культуре и результаты проточной цитометрии показали высокую экспрессию маркеров плюрипотентности (CD9, SSEA4, TRA-1-60, TRA-и 1-81) почти без экспрессии маркера дифференцировки (CXCR4) , См. рис. 1b. Эти данные показывают, что клетки линии H1 HES могут быть успешно перенесены как кластеры клеток плоской прикрепленной культуры в суспензионную культуру с помощью Dispase® как клеткоотделяющего агента и поддерживать плюрипотентность в динамической суспензионной культуральной системе. Этот пример также может быть осуществлен с помощью встряхивания, а не с перемешиванием суспензионной системы на носителях и в колбах Эрленмейера с сопоставимыми результатами.After incubation overnight (18-24 hours), the cells and medium were transferred directly to a 125 ml centrifuge tube (Corning Incorporated, catalog number 4500-125, Corning, New York, USA) containing 25 ml of medium mTeSR ® 1 and mixed at a speed of 50 revolutions per minute (range can be 30-80 + revolutions per minute) to obtain a final volume of approximately 75 ml. The medium was changed daily for 4 days. Pluripotency was determined after 4 days in culture and flow cytometry results showed high expression of pluripotency markers (CD9, SSEA4, TRA-1-60, TRA- and 1-81) with almost no expression of the differentiation marker (CXCR4). See fig. 1b. These data show that H1 HES cells can be successfully transferred as clusters of cells of a flat, attached culture into a suspension culture using Dispase ® as a cell-separating agent and maintain pluripotency in a dynamic suspension culture system. This example can also be carried out by shaking, rather than by mixing the suspension system on media and in Erlenmeyer flasks with comparable results.

После 4 суток в суспензионной культуре (дифференцировка может также начаться через 24-120 часов после формирования агрегатов, предпочтительно культура должна сформироваться за 2-3 суток до начала дифференцировки), плюрипотентные агрегаты клеток дифференцируются с использованием постадийного прогрессирования компонентов среды, чтобы побудить клетки к формированию панкреатического пути развития. Центрифужное перемешивание для дифференцировки агрегатов проходит на скорости 65 оборотов в минуту. Среда и компоненты показаны в таблице 1а.After 4 days in suspension culture (differentiation can also begin 24-120 hours after the formation of aggregates, preferably a culture should form 2-3 days before the start of differentiation), pluripotent cell aggregates are differentiated using stepwise progression of environmental components to induce cells to form pancreatic development. Centrifugal mixing to differentiate the aggregates takes place at a speed of 65 revolutions per minute. The medium and components are shown in Table 1a.

В конце стадии 1 образцы подвергали проточной цитометрии и PCR. Суспензионные дифференцированные культуры образовали однородную и гомогенную популяцию клеток в виде рыхлых агрегатов в конце стадии 1 (фиг.1c), с практически отсутствующей экспрессией маркера плюрипотентности (CD9), в то время как маркеры окончательного дифференцировки энтодертмы были достаточно высоки, 97,2% CXCR4 (CD184)-положительны и 97,3% CD99-положительны (фиг.1D). Эти результаты коррелируют с результатами Qrt-PCR, которые показали резкое снижение экспрессии генов плюрипотентности (CD9, NANOG и POU5F1/OCT4) и большим увеличением в генах, связанных с дефинитивной энтодермой (CXCR4, Cerberus, РКГ, Foxa2, GATA4, GATA6, MNX1 и SOX17) по сравнению с недифференцированными клетками линии HES WA01 (фиг.1е).At the end of stage 1, the samples were subjected to flow cytometry and PCR. Suspension differentiated cultures formed a homogeneous and homogeneous cell population in the form of loose aggregates at the end of stage 1 (Fig. 1c), with practically no expression of the pluripotency marker (CD9), while the markers of the final differentiation of endoderm were quite high, 97.2% CXCR4 (CD184) -positive and 97.3% CD99-positive (fig.1D). These results correlate with the results of Qrt-PCR, which showed a sharp decrease in the expression of pluripotency genes (CD9, NANOG and POU5F1 / OCT4) and a large increase in the genes associated with definitive endoderm (CXCR4, Cerberus, GSC, Foxa2, GATA4, GATA6, MNX1 and SOX17) compared with undifferentiated cells of the HES WA01 line (Figure 1e).

Окончательные кластеры энтодермы были затем дополнительно дифференцированы в направлении примитивной кишки путем удаления веществ семейства TGF-β, GDF8, и добавлением FGF7 в среду. После трех суток культивирования с FGF7, кластеры дифференцировались в поджелудочные PDX1-экспрессирующие клетки добавлением полностью-транс-ретиноевой кислоты либо к среде, содержащей высокий уровень глюкозы (25 мМоль) и низкую концентрацию богатого липидами бычьего сывороточного альбумина (AlbuMAX® (Life Technologies Corporation, г. Карлсбад, штат Калифорния, США)), либо к среде, содержащей относительно низкую концентрацию глюкозы (8 мМоль) и 2% бычьего сывороточного альбумина без жирных кислот. Подробное добавление компонентов в этих средах перечислено в таблице 1а. В конце дифференцировки был проведен анализ образцов на экспрессию маркеров панкреатических клеток-предшественников. Было отмечено, что кластеры, дифференцированные либо с условием низкий уровень глюкозы + 2% FAF-BSA (А), или с высоким содержанием глюкозы + 0,1% AlbuMAX® (B) - что было определено с помощью проточной цитометрии, экспрессировали высокие уровни NKX6.1, необходимого фактора транскрипции функциональных β-клеток, и высокие уровни маркеров эндокринной поджелудочной, таких как синаптофизин и хромогранин (таблица 1b). Эти результаты согласуются с результатами RT-PCR, которые показали высокие уровни нескольких панкреатических генов-предшественников, выраженные в образцах, взятых по условиям А и В (данные не показаны).The final endoderm clusters were then further differentiated towards the primitive gut by removing the substances of the TGF-β family, GDF8, and adding FGF7 to the medium. After three days of cultivation with FGF7, the clusters differentiated into pancreatic PDX1-expressing cells by adding all-trans-retinoic acid or to medium containing high glucose (25 mM) and a low concentration of lipid-rich bovine serum albumin (AlbuMAX ® (Life Technologies Corporation, Carlsbad, California, USA)), or to a medium containing a relatively low concentration of glucose (8 mmol) and 2% bovine serum albumin without fatty acids. The detailed addition of components in these environments is listed in Table 1a. At the end of differentiation, samples were analyzed for the expression of pancreatic progenitor cell markers. It was noted that clusters differentiated with either low glucose + 2% FAF-BSA (A), or high glucose + 0.1% AlbuMAX ® (B) - as determined by flow cytometry, expressed high levels NKX6.1, a necessary transcription factor for functional β-cells, and high levels of endocrine pancreatic markers, such as synaptophysin and chromogranin (Table 1b). These results are consistent with the results of RT-PCR, which showed high levels of several pancreatic progenitor genes expressed in samples taken on conditions A and B (data not shown).

Типичные морфологии кластеров клеток в ходе прогрессирования через дифференцировку от дефинитивной энтодермы (DE) (фиг.1c) к клеткам примитивной кишки и панкреатической энтодермы (фиг.1f) показали видимые морфологические изменения в клетках и клеточных кластерах. Как правило, плюрипотентные кластеры плотные и темные по данным фазоконтрастной микроскопии, затем становятся менее плотными по ходу того как клетки прогрессируют до клеток примитивной кишки в стадии 2. Эта морфология реверсирует при последующей обработке полностью-транс-ретиноевой кислотой и кластеры вновь становятся более плотными и равномерными, с гладкой границей кластера.Typical morphologies of cell clusters during progression through differentiation from definitive endoderm (DE) (Fig. 1c) to primitive gut cells and pancreatic endoderm (Fig. 1f) showed visible morphological changes in cells and cell clusters. As a rule, pluripotent clusters are dense and dark according to phase-contrast microscopy, then become less dense as the cells progress to primitive intestine cells in stage 2. This morphology reverses with subsequent trans-retinoic acid during subsequent processing and the clusters again become more dense and uniform, with a smooth cluster boundary.

Клетки, дифференцированные по условию B в стадии 4, были обработаны в течение дополнительных 5 суток в стадии 5 средой, содержащей ингибитор ALK5 (таблица 1c). Этот период дополнительного созревания в культуре приводит к значительному увеличению экспрессии эндокринных маркеров: INS, GCG, SST, PPY и PCSK1. Клеточные кластеры затем имплантировали в почечную капсулу мышей линии SCID-BGв соответствии с утвержденным протоколом исследования IACUC, и далее у мышей в течение 20 недель измеряли уровень С-пептида каждые 2-4 недели в голодном и сытом состоянии. Через 4 недели после имплантации, после 20 часового голодания, а затем стимуляции глюкозой, С-пептид не был обнаружен. К 6 неделе, 2 из 5 мышей показали некоторое положительное (0,087 и 0,137 нг/мл) количество человеческого С-пептида, и к 10 неделе, 5 из 5 мышей были положительными (0,085 - 0,291 нг/мл) на содержание С-пептида. Через 16 недель, после 20 часового голодания и стимуляции глюкозой, все 4 мыши (4/4) показали положительную (0,377 - 3,627 нг/мл) экспрессию С-пептида.Cells differentiated according to condition B in stage 4 were treated for an additional 5 days in stage 5 with medium containing the ALK5 inhibitor (table 1c). This period of additional maturation in culture leads to a significant increase in the expression of endocrine markers: INS, GCG, SST, PPY and PCSK1. Cell clusters were then implanted into the kidney capsule of SCID-BG mice in accordance with the approved IACUC test protocol, and then in mice for 20 weeks, the C-peptide level was measured every 2-4 weeks in a hungry and fed state. 4 weeks after implantation, after a 20-hour fast, and then stimulation with glucose, C-peptide was not detected. By week 6, 2 out of 5 mice showed some positive (0.087 and 0.137 ng / ml) amounts of human C-peptide, and by week 10, 5 out of 5 mice were positive (0.085 - 0.291 ng / ml) for C-peptide. After 16 weeks, after a 20-hour fast and stimulation with glucose, all 4 mice (4/4) showed positive (0.377–3.627 ng / ml) C-peptide expression.

Эти результаты показывают, что агрегаты плюрипотентных клеток могут быть сформированы, а затем дифференцированы в суспензионной культуре для генерирования популяции панкреатических клеток-предшественников, характеризующихся экспрессией факторов транскрипции β-клеток, таких как Pdx1 и Nkx6.1. Таким образом, дифференцированные кластеры клеток, имплантированные и дозревающие in vivo , способны экспрессировать инсулин в ответ на нагрузку глюкозой в физиологически соответствующих уровнях.These results indicate that aggregates of pluripotent cells can be formed and then differentiated in suspension culture to generate a population of pancreatic progenitor cells characterized by the expression of β-cell transcription factors, such as Pdx1 and Nkx6.1. Thus, differentiated cell clusters that are implanted and mature in vivo can express insulin in response to glucose load at physiologically relevant levels.

Таблица 1aTable 1a
Протокол дифференцированияDifferentiation protocol
Стадия 1Stage 1 Стадия 2Stage 2 Стадия 3Stage 3 Стадия 4Stage 4 Базовая средаBase environment
(конечная концентрация глюкозы)(final glucose concentration)
MCDB131
8мМоль глюкозы
MCDB131
8mM glucose
MCDB131
8 мМоль (A) или
25 мМоль глюкозы (B)
MCDB131
8 mmol (A) or
25 mM glucose (B)
Белковые добавкиProtein supplements 2% не содержащего жирных кислот бычьего сывороточного альбумина (FAF-BSA) и 2мМоль L-Glutamine2% fatty acid free bovine serum albumin (FAF-BSA) and 2 mM L-Glutamine 2% не содержащего жирных кислот бычьего сывороточного альбумина (FAF-BSA) и 2мМоль L-Glutamine (A)
или 0,1% Albumax (бычьего сывороточного альбумина) и 2мМоль L-Glutamine (B)
2% fatty acid free bovine serum albumin (FAF-BSA) and 2 mM L-Glutamine (A)
or 0.1% Albumax (bovine serum albumin) and 2 mM L-Glutamine (B)
Факторы ростаGrowth factors
И/ИЛИAND / OR
Малые молекулыSmall molecules
MCX (3 мкМоль)
0-24 часа
GDF8 (100 нг/мл) на 0-96 часа
ITS-X (1:50 000)
MCX (3 μM)
0-24 hours
GDF8 (100 ng / ml) for 0-96 hours
ITS-X (1:50 000)
FGF7 (50 нг/мл)
ITS-X (1:50 000)
FGF7 (50 ng / ml)
ITS-X (1:50 000)
FGF7 (50 нг/мл)
ITS-X (1:200)
RA (2мкМоль)
SANT (0,25мкМоль)
AA (5 нг/мл)
LDN (100 нМоль)
FGF7 (50 ng / ml)
ITS-X (1: 200)
RA (2µmol)
SANT (0.25 μM)
AA (5 ng / ml)
LDN (100 nM)
ITS-X (1:200)
SANT (0,25мкМоль)
Cypi (100 нМоль)
TppB (500 нМоль)
LDN (100 нМоль)
ITS-X (1: 200)
SANT (0.25 μM)
Cypi (100 nM)
TppB (500 nM)
LDN (100 nM)
Всего сутокTotal day 4four 33 4four 5five Замена средыMedium change Каждые 24 часаEvery 24 hours Каждые 24 часаEvery 24 hours Каждые 24 часаEvery 24 hours Каждые 24 часаEvery 24 hours

Таблица 1bTable 1b
Результаты проточной цитометрии для выбранных маркеров дифференцировкиFlow cytometry results for selected differentiation markers
Глюкоза (образец)Glucose (sample) BSABSA %
NKX6.1
%
NKX6.1
%
CDX2
%
CDX2
%
Инсулин
%
Insulin
%
Синаптофизин
%
Synaptophysin
%
Хромогранин
%
Chromogranin
Низкий (A)Low (A) 2$ FAF
BSA
2 $ FAF
BSA
5555 77 5,55.5 34,534.5 26,526.5
Высокий уровень (B)High level (B) 0,1%
Albumax
0.1%
Albumax
4848 77 0,50.5 26,926.9 30thirty

Таблица 1cTable 1c
Протокол дифференцированияDifferentiation protocol
Стадия 5Stage 5 Базовая средаBase environment
(конечная концентрация глюкозы)(final glucose concentration)
MCDB131
(25мМоль глюкозы)
MCDB131
(25mM glucose)
Белковые добавкиProtein supplements 0,1% AlbuMAX® (бычий сывороточный альбумин)
и 2мМоль L-глутамина
0.1% AlbuMAX ® (bovine serum albumin)
and 2mM L-glutamine
Факторы ростаGrowth factors
И/ИЛИAND / OR
Малые молекулыSmall molecules
ITS-X (1:200)
Cypi (100 нМоль)
LDN (100 нМоль)
ALKVi (10мМоль)
ITS-X (1: 200)
Cypi (100 nM)
LDN (100 nM)
ALKVi (10mM)
Всего сутокTotal day 5five Замена средыMedium change Каждые 24 часаEvery 24 hours

ПРИМЕР 2EXAMPLE 2

СУСПЕНДИРОВАНИЕ И КЛАСТЕРИЗАЦИЯ ЧЕЛОВЕЧЕСКИХ ЭМБРИОНАЛЬНЫХ СТВОЛОВЫХ КЛЕТОК КЛЕТОЧНОЙ ЛИНИИ H1 С ПОМОЩЬЮ EDTASUSPENDING AND CLUSTERING OF HUMAN EMBRYONIC STEM CELLS OF CELL LINE H1 BY EDTA

Клетки линии эмбриональных стволовых клеток человека Н1, (клетки WA01, WiCell, г. Мэдисон штат Висконсин, США) при пассировании 41 раз промывали один раз PBS (№ по каталогу 14190, Invitrogen) и обрабатывали EDTA, неферментативным клеткоотделяющим агентом / агентом пассирования (Lonza, № по каталогу 17-7-11 Е). Клетки инкубировали при комнатной температуре в течение 8 минут. Затем удаляли EDTA, и через 1 или 2 минуты (9-10 минут общего воздействия EDTA) планшет промывали средой mTeSR®1, содержащей 10 мкМоль Y-27632 (№ по каталогу Axxora ALX-270-333, г. Сан-Диего, штат Калифорния, США) и отделившиеся клетки собирали в 50 мл коническую пробирку с помощью стеклянной пипетки. После одного дополнительный цикла промывания планшета средой mTeSR®1, содержащей 10 мкМоль Y-27632, смыв собирали и объединяли с отделившимися клетками. Следует отметить, что некоторые клетки оставались на пластине через 9-10 минут после контакта с EDTA при комнатной температуре, и отделившиеся клетки не были полностью измельчены в суспензию отдельных клеток. Вместо этого клетки были удалены с поверхности в виде мелких агрегатов. Затем среду и клетки переносили в 50 мл коническую пробирку с помощью стеклянной пипетки и проводили подсчет клеток (NucleoCounter®-ChemoMetec A/S, № по каталогу YC-Т100, Дания). При необходимости добавляли дополнительную среду mTeSR®1, содержащую 10 мкМоль Y-27632 для того, чтобы довести концентрацию клеток до 1,0-1,5 млн клеток/мл.Human embryonic stem cell lines H1, (WA01, WiCell cells, Madison, WI, USA), when passaged, were washed once with PBS (Catalog No. 14190, Invitrogen) 41 times and treated with EDTA, a non-enzymatic cell-separating agent / passaging agent (Lonza , Catalog number 17-7-11 e). Cells were incubated at room temperature for 8 minutes. EDTA was then removed, and after 1 or 2 minutes (9-10 minutes of total EDTA exposure), the plate was washed with mTeSR ® 1 containing 10 μM Y-27632 (Axxora No. ALX-270-333, San Diego, state California, USA) and separated cells were collected in a 50 ml conical tube using a glass pipette. After one additional washing cycle of the plate with mTeSR ® 1 containing 10 μM Y-27632, the washings were collected and combined with the separated cells. It should be noted that some cells remained on the plate 9-10 minutes after contact with EDTA at room temperature, and the separated cells were not completely crushed into a suspension of individual cells. Instead, cells were removed from the surface in the form of small aggregates. Then the medium and the cells were transferred to a 50 ml conical tube using a glass pipette and cells were counted (NucleoCounter ® -ChemoMetec A / S, catalog number YC-T100, Denmark). If necessary, additional mTeSR ® 1 medium containing 10 μM Y-27632 was added in order to bring the cell concentration to 1.0-1.5 million cells / ml.

Клетки не центрифугировали, так как кластеры свободно агрегированы и могут разделиться на отдельные клетки при центрифугировании в осадок и ресуспендировании с помощью пипетки. Вместо этого, среда и клетки в пробирки осторожно перемешивали до формирования однородной суспензии. При желании, можно также удлинить период обработки EDTA и отделять клетки вблизи суспензии отдельных клеток. Затем суспензию клеток переносили в обработанные двумя нетканевыми культурами 6-луночные планшеты (Becton Dickinson, № по каталогу Falcon 351146, г. Франклин-Лейкс, штат Нью-Джерси, США) при 37°C в увлажненном инкубаторе с 5% CO2, по 3 мл/лунку из стеклянной пипетки. Клетки инкубировали в суспензии в течение 2 ч, после чего наблюдались точечные агрегаты. Агрегаты затем измельчали осторожным пипетированием с помощью стеклянной пипетки для разделения крупных агрегатов и создания суспензии однородных, равномерных кластеров, затем инкубировали в течение ночи без воздействия.The cells were not centrifuged, since the clusters are freely aggregated and can divide into individual cells by centrifuging the pellet and resuspending it with a pipette. Instead, the medium and the cells in the tubes were gently mixed until a homogeneous suspension was formed. If desired, it is also possible to lengthen the EDTA treatment period and separate cells near a suspension of individual cells. The cell suspension was then transferred to 6-well plates treated with two non-woven cultures (Becton Dickinson, catalog number Falcon 351146, Franklin Lakes, NJ, USA) at 37 ° C in a humidified incubator with 5% CO 2 , according to 3 ml / well from a glass pipette. Cells were incubated in suspension for 2 h, after which point aggregates were observed. The aggregates were then crushed by careful pipetting with a glass pipette to separate large aggregates and create a suspension of homogeneous, uniform clusters, then incubated overnight without exposure.

Через 18-24 часа клетки и среды центрифугировали в 50 мл конических пробирках при 90g (ОЦС) в течение 3 минут. Отработанный супернатант среды утилизировали, клеточные агрегаты суспендировали в свежей mTeSR®1, и суспензию переносили в центрифужную пробирку (Corning Incorporated, № по каталогу 4500-125, г. Корнинг, штат Нью-Йорк, США), перемешивали при 55 оборотах в минуту при 37°C в увлажненном 5% СО2-инкубаторе. Среду меняли ежедневно в течение 2 суток. Плюрипотентность была определена после 2 суток в перемешанной суспензии культуры до перехода к дифференцировки культуры. Результаты проточной цитометрии для CD9, SSEA4, TRA-1-60, TRA-1-81 и экспрессии CXCR4 приведены в виде графика разброса на фиг. 2а. Эти данные показывают высокую экспрессию маркеров плюрипотентности (CD9, SSEA4, TRA-1-60, TRA-1-81) и низкую или отсутствующую экспрессию маркера дифференцировки (CXCR4). Эти результаты показывают, что клетки линии H1 HES могут быть перенесены в суспензионную культуру из плоской прикрепленной культуры с использованием неферментативного способа отделения и будут поддерживать плюрипотентность в динамической суспензионной культуральной системе.After 18-24 hours, cells and media were centrifuged in 50 ml of conical tubes at 90g (OCS) for 3 minutes. The spent medium supernatant was disposed of, the cell aggregates suspended in fresh mTeSR ® 1, and the suspension was transferred to a centrifuge tube (Corning Incorporated, catalog number 4500-125, Corning, New York, USA), stirred at 55 revolutions per minute at 37 ° C in a humidified 5% CO 2 incubator. The medium was changed daily for 2 days. Pluripotency was determined after 2 days in a mixed suspension of the culture before proceeding to differentiation of the culture. The results of flow cytometry for CD9, SSEA4, TRA-1-60, TRA-1-81 and CXCR4 expression are shown as a scatter plot in FIG. 2a These data show high expression of pluripotency markers (CD9, SSEA4, TRA-1-60, TRA-1-81) and low or absent expression of the differentiation marker (CXCR4). These results show that H1 HES cells can be transferred to a suspension culture from a flat, attached culture using a non-enzymatic method of separation and will maintain pluripotency in a dynamic suspension culture system.

Через 2 суток в суспензионной культуре, плюрипотентные агрегаты клеток дифференцируются с постадийным прогрессированием компонентов среды, чтобы побудить клетки к формированию панкреатического пути развития. Счетчик перемешивания поддерживают на скорости 55 оборотов в минуту. Среда и компоненты показаны в таблице 2а.After 2 days in suspension culture, pluripotent cell aggregates differentiate with a stepwise progression of environmental components to induce cells to form a pancreatic pathway. The mixing counter is maintained at a speed of 55 revolutions per minute. The medium and components are shown in Table 2a.

В конце стадии 1 образцы подвергали проточной цитометрии и PCR. Суспензионные дифференцированные культуры образовали однородную и гомогенную популяцию клеток в виде рыхлых агрегатов в конце стадии 1 (Фиг.2b), с практически отсутствующей экспрессией маркера плюрипотентности (CD9), в то время как экспрессия CXCR4 (CD184), маркера дифференцировки дефинитивной энтодертмы, была достаточно высокой, 95,9% ± 1,8sd (Фиг. 2c) после трех пробегов центрифуги. Эти результаты коррелируют с результатами Qrt-PCR, которые показали резкое снижение экспрессии генов плюрипотентности (CD9, NANOG и POU5F1/OCT4) и большим увеличением в генах, связанных с дефинитивной энтодермой (CXCR4, Cerberus, РКГ, Foxa2, GATA4, GATA6, MNX1 и SOX17) по сравнению с недифференцированными клетками линии HES WA01 (Фиг. 2d).At the end of stage 1, the samples were subjected to flow cytometry and PCR. Suspension differentiated cultures formed a homogeneous and homogeneous cell population in the form of loose aggregates at the end of stage 1 (Fig.2b), with virtually no expression of the pluripotency marker (CD9), while expression of CXCR4 (CD184), a marker for differentiation of definitive endoderm, was sufficient high, 95.9% ± 1.8 sd (Fig. 2c) after three runs of the centrifuge. These results correlate with the results of Qrt-PCR, which showed a sharp decrease in the expression of pluripotency genes (CD9, NANOG and POU5F1 / OCT4) and a large increase in the genes associated with definitive endoderm (CXCR4, Cerberus, GSC, Foxa2, GATA4, GATA6, MNX1 and SOX17) compared with undifferentiated cells of the HES WA01 line (Fig. 2d).

Кластеры дефинитивной энтодермы из центрифужных пробирок затем объединяют, перемещают либо в другую центрифужную пробирку или колбу Эрленмейера (с системой встряхивания) и направляют на дальнейшую дифференцировку в клетки примитивной кишки путем удаления из среды GDF8 и добавления FGF7. После трех суток культуры с FGF7, кластеры дифференцировались в поджелудочные Pdx1-экспрессирующие клетки добавлением полностью-транс-ретиноевой кислоты к среде, содержащей относительно низкую концентрацию глюкозы (8 мМ) и 2% свободной жирной кислоты бычьего сывороточного альбумина. Подробное добавление компонентов в этих средах перечислено в таблице 2а. В конце дифференцировки был проведен анализ образцов на экспрессию маркеров панкреатических клеток-предшественников. В результате проточной цитометрии в обеих суспензиях наблюдались высокие уровни Nkx6.1, транскрипционного фактора, необходимого для функциональных β-клеток, и высокие уровни маркеров эндокринной поджелудочной, таких как синаптофизин и хромогранин (Табл. 2b и Фиг. 2e). Эти результаты согласуются с результатами RT-PCR, которые показали очень похожие высокие уровни нескольких панкреатических генов-предшественников, выраженных в образцах, полученных во центрифужных пробирках или колбах Эрленмейера (Фиг. 2F).Clusters of definitive endoderm from centrifuge tubes are then combined, transferred to either another centrifuge tube or an Erlenmeyer flask (with shaking system) and sent for further differentiation into primitive intestinal cells by removing GGF7 from the medium and adding FGF7. After three days of culture with FGF7, the clusters differentiated into pancreatic Pdx1-expressing cells by adding all-trans-retinoic acid to medium containing relatively low glucose concentrations (8 mM) and 2% bovine serum albumin free fatty acid. The detailed addition of components in these environments is listed in Table 2a. At the end of differentiation, samples were analyzed for the expression of pancreatic progenitor cell markers. As a result of flow cytometry, high levels of Nkx6.1, a transcription factor necessary for functional β-cells, and high levels of endocrine pancreatic markers, such as synaptophysin and chromogranin, were observed in both suspensions (Table 2b and Figure 2e). These results are consistent with the results of RT-PCR, which showed very similar high levels of several pancreatic progenitor genes expressed in samples obtained in centrifuge tubes or Erlenmeyer flasks (Fig. 2F).

Эти результаты показывают, что агрегаты плюрипотентныя клеток могут быть сформированы, а затем дифференцированы в суспензионной культуре в различных форматах суспензионной культуры, в том перемешиваемой или встряхиваемой суспензионной системе для генерирования популяции панкреатических клеток-предшественников, характеризующейся экспрессией факторов транскрипции β-клеток, таких как Pdx1 и Nkx6.1.These results show that pluripotent cell aggregates can be formed and then differentiated in suspension culture in different suspension culture formats, including a stirred or shake suspension system to generate a population of pancreatic progenitor cells characterized by the expression of β-cell transcription factors, such as Pdx1 and Nkx6.1.

Таблица 2aTable 2a
Компоненты среды и протокол дифференцировкиEnvironment components and differentiation protocol
Стадия 0Stage 0 Стадия 1Stage 1 Стадия 2Stage 2 Стадия 3Stage 3 Стадия 4Stage 4 Базовая средаBase environment mTeSR®1mTeSR ® 1 MCDB131
(8мМоль глюкозы)
3,64 г/л NaCO3
MCDB131
(8mM glucose)
3.64 g / l NaCO 3
MCDB131
(8мМоль глюкозы)
2,41 г/л NaCO3
MCDB131
(8mM glucose)
2.41 g / l NaCO 3
ДобавкиSupplements mTeSR®1mTeSR ® 1 2% FAF-BSA
1:50 000 ITS-X
1x GlutaMax
2% FAF-BSA
1:50 000 ITS-X
1x GlutaMax
2% FAF-BSA
1:200 ITS-X
1x GlutaMax
2% FAF-BSA
1: 200 ITS-X
1x GlutaMax
Факторы ростаGrowth factors GDF8 (только на d2)
100 нг/мл
GDF8 (d2 only)
100 ng / ml
FGF7
50 нг/мл
FGF7
50 ng / ml
FGF7
50 нг/мл
FGF7
50 ng / ml
Малые молекулыSmall molecules Y-27632
(только сутки 1)
[10 мкМоль]
Y-27632
( day 1 only )
[10 μm]
MCX
(0-24 часа)
[2 мкМоль]
MCX
(0-24 hours)
[2 μm]
RA [2 мкМоль]
SANT [0,25 мкМоль]
TPPB [100 нМоль]
LDN (только сутки 1) [100 нМоль]
RA [2 μM]
SANT [0.25 μM]
TPPB [100 nM]
LDN (day 1 only) [100 nM]
SANT [0,25 мкМоль]
Cypi [100 нМоль]
ингибитор ALK5 [1 мкМоль]
TPPB [100 нМоль]
SANT [0.25 μM]
Cypi [100 nM]
ALK5 inhibitor [1 μM]
TPPB [100 nM]
СуткиDay 33 33 33 33 33 ПРИМЕЧАНИЯ: NOTES : 1 с NTCT1 with NTCT
2 дня SF2 days SF
Замена средыMedium change
Сутки 1 и 2,Day 1 and 2,
Без замены на сутки 3No replacement for day 3
Замена средыMedium change
Сутки 1 и 3,Day 1 and 3,
Без замены на сутки 2No replacement for day 2
Замена средыMedium change
Сутки 1 и 2,Day 1 and 2,
Без замены на сутки 3No replacement for day 3
Замена среды на сутки 1Replacing the environment on day 1
и сутки 2,and day 2,
Без замены на сутки 3No replacement for day 3

Таблица 2bTable 2b
Результаты проточной цитометрии для выбранных маркеров дифференцировкиFlow cytometry results for selected differentiation markers
ОбразецSample %
NKX6.1
%
NKX6.1
%
CDX2
%
CDX2
%
SOX2
%
SOX2
%
NKX2.2
%
NKX2.2
%
Синаптофизин
%
Synaptophysin
%
Хромогранин
%
Chromogranin
Центрифужные пробирки (средн.)Centrifuge Tubes (avg.) 68,168.1 4,04.0 31,331.3 36,236.2 27,027.0 25,325.3 Колба ЭрленмейераErlenmeyer flask 65,865,8 7,97.9 28,128.1 30,030.0 30,730.7 17,017.0

ПРИМЕР 3EXAMPLE 3

СУСПЕНЗИОННАЯ КЛАСТЕРИЗАЦИЯ И СЕРИЙНОЕ СУСПЕНЗИОННОЕ ПАССИРОВАНИЕ ЧЕЛОВЕЧЕСКИХ ЭМБРИОНАЛЬНЫХ СТВОЛОВЫХ КЛЕТОК КЛЕТОЧНОЙ ЛИНИИ H1SUSPENSION CLUSTERING AND SERIAL SUSPENSION PASSAGE OF HUMAN EMBRYONIC STEM CELLS OF H1 CELL CELL LINE

Клетки линии эмбриональных стволовых клеток человека Н1, (клетки WA01, WiCell, г. Мэдисон штат Висконсин, США) в пассировании 40, выращенные на тканевой культуре, обработанной полистиролом, покрытым Matrigel® (Corning Incorporated, г. Корнинг, штат Нью-Йорк, США), дважды промывали PBS (№ по каталогу 14190, Invitrogen) и обрабатывали раствором Accutase® половинной эффективности (одна часть PBS на одну часть Accutase®, Sigma-Aldrich, № по каталогу A-6964, г. Сент-Луис, штат Миссури, США). Клетки инкубировали при комнатной температуре в течение 3 с половиной минут. (Accutase® представляет собой раствор для открепления клеток, состоящий из коллагенолитических и протеолитических ферментов (выделенных из ракообразных), и не содержащий продуктов, выделенных из млекопитающих или бактерий). Затем Accutase®удаляли, и через 3 минуты (6 1/2 минут общего воздействия Accutase®) планшет промывали средой mTeSR®1, содержащей 10 мкМоль Y-27632 и отделившиеся клетки собирали в 50 мл коническую пробирку с помощью стеклянной пипетки. После одного дополнительный цикла промывания планшета средой mTeSR®1, содержащей 10 мкМоль Y-27632, смыв собирали и объединяли с отделившимися клетками. Некоторые клетки оставались на планшете после воздействия Accutase® и отделившиеся клетки не были полностью измельчены в суспензию отдельных клеток. Клетки снимали с поверхности в виде мелких агрегатов (Фиг.3А). Среду и клетки переносили в 50 мл коническую пробирку с помощью стеклянной пипетки и проводили подсчет клеток. При необходимости добавляли дополнительную среду mTeSR®1, содержащую 10 мкМоль Y-27632 для того, чтобы довести концентрацию клеток до 1,0-1,5 млн клеток/мл.Cell line of human embryonic stem cells H1, (WA01 cells, WiCell, Madison, Wisconsin, USA) in 40 passaging grown on tissue culture treated polystyrene coated with Matrigel ® (Corning Incorporated, Corning, NY, USA), washed twice with PBS (catalog number 14190, Invitrogen) and treated with a solution of half Accutase ® efficiency (one part to one part PBS Accutase ®, Sigma-Aldrich, № catalog a-6964, St. Louis, Missouri , USA). Cells were incubated at room temperature for 3 and a half minutes. (Accutase ® is a cell detachment solution consisting of collagenolytic and proteolytic enzymes (isolated from crustaceans) and not containing products isolated from mammals or bacteria). Then Accutase ® was removed and after 3 minutes (6 minutes total exposure to 1/2 Accutase ®) plate was washed mTeSR ® 1 medium containing 10 micromolar Y-27632 and the separated cells were collected into 50 ml conical tube using a glass pipette. After one additional washing cycle of the plate with mTeSR ® 1 containing 10 μM Y-27632, the washings were collected and combined with the separated cells. Some cells remained on the plate after exposure to Accutase ® and the separated cells were not completely ground into a single cell suspension. Cells were removed from the surface in the form of small aggregates (Fig. 3A). The medium and cells were transferred to a 50 ml conical tube using a glass pipette and cells were counted. If necessary, additional mTeSR®1 medium containing 10 μM Y-27632 was added in order to bring the cell concentration to 1.0-1.5 million cells / ml.

Клетки не центрифугировали, так как кластеры свободно агрегированы и могут разделиться на отдельные клетки при центрифугировании в осадок и ресуспендировании с помощью пипетки. Вместо этого, среда и клетки в пробирки осторожно перемешивали до формирования однородной суспензии. Затем суспензию клеток переносили на 6-луночный планшет Ultra Low Binding Culture при 37°C в увлажненный инкубатор с 5% CO2, по 3 мл/лунку с помощью стеклянной пипетки. Клетки инкубировали в суспензии в течение 90 минут, после чего наблюдались точечные агрегаты. Агрегаты затем кратковременно обрабатывали и переносили непосредственно в центрифужную пробирку 125 мл, содержащую 25 мл среды mTeSR®1 перемешанной при 55 оборотах в минуту (всего конечный объем был примерно 75 мл). Среду меняют ежедневно в течение 3 суток, и плюрипотентность в культуре была определена на 3 сутки. Изображения кластеров, полученные с помощью фазоконтрастной микроскопии, показали популяцию кластеров сферической формы, которая сформировалась после 90 минут в статической суспензионной культуре после роста в течение трех суток в культуре (фиг.3b). В конце трех суток в суспензионной культуре, клетки анализируют на плюрипотентность с помощью проточной цитометрии на наличие маркеров CD9, SSEA4, TRA-1-60, TRA-1-81 и CXCR4. Клетки поддерживали высокий уровень экспрессии маркеров плюрипотентности (CD9, SSEA4, TRA-1-60, TRA-1-81), при этом практически отсутствовала экспрессия CXCR4, маркера дифференцировки (таблица 3). Эти результаты показывают, что клетки линии H1 hES могут быть перенесены в суспензионную культуру из плоской прикрепленной культуры с использованием ферментативного способ отделения, например, с помощью Accutase®, и будет поддерживать плюрипотентность в динамической суспензионной культуральной системе.The cells were not centrifuged, since the clusters are freely aggregated and can divide into individual cells by centrifuging the pellet and resuspending it with a pipette. Instead, the medium and the cells in the tubes were gently mixed until a homogeneous suspension was formed. Then, the cell suspension was transferred to a 6-well Ultra Low Binding Culture plate at 37 ° C in a humidified 5% CO2 incubator, 3 ml / well, using a glass pipette. Cells were incubated in suspension for 90 minutes, after which point aggregates were observed. The aggregates were then briefly processed and transferred directly to a 125 ml centrifuge tube containing 25 ml of mTeSR®1 medium mixed at 55 revolutions per minute (the final volume was about 75 ml). The medium is changed daily for 3 days, and pluripotency in culture was determined for 3 days. Cluster images obtained using phase-contrast microscopy showed a population of spherical clusters that formed after 90 minutes in a static suspension culture after growing for three days in culture (FIG. 3b). At the end of three days in suspension culture, cells are analyzed for pluripotency by flow cytometry for the presence of CD9, SSEA4, TRA-1-60, TRA-1-81 and CXCR4 markers. Cells maintained a high level of expression of pluripotency markers (CD9, SSEA4, TRA-1-60, TRA-1-81), while there was practically no expression of CXCR4, a differentiation marker (Table 3). These results show that H1 hES cell line may be transferred to suspension culture of a flat attached culture using the enzymatic separation method, for example using Accutase ®, and maintain pluripotency in dynamic suspension culture system.

Плюрипотентные кластеры затем последовательно пассировали с помощью диссоциации Accutase® в течение дополнительных 20 пассажей. На каждом пассаже 50 миллионов клеток осаждали под действием гравитации в течение 2 минут в 50 мл конической пробирке, дважды промывали PBS и обрабатывали раствором Accutase® половинной эффективности на водяной бане при 37°C с аккуратным вращением пробирки на второй и четвертой минуте после добавления Accutase®. После шести минут инкубации из пробирки удаляли Accutase®, не нарушая клеточный осадок. Затем клетки инкубировали еще 3 минуты (9 минут общей экспозиции Accutase®). Пробирку затем промывали средой mTeSR®1, содержащей 10 мкМоль Y-27632, измельчали дважды с помощью стеклянной пипетки, и суспендированные клетки пропускали через 70 мкМоль клеточный фильтр (BD Falcon, № по каталогу 352350, г. Франклин-Лейкс, штат Нью-Джерси, США). Выполняли два дополнительных промывания пробирки со средой mTeSR®1, содержащей 10 мкМоль Y-27632, и пропускали через клеточный фильтр.The pluripotent clusters were then sequentially passaged using Accutase ® dissociation for an additional 20 passages. At each passage, 50 million cells were precipitated by gravity for 2 minutes in a 50 ml conical tube, washed twice with PBS and treated with a half-efficiency Accutase ® solution in a water bath at 37 ° C with gentle rotation of the tube at the second and fourth minute after adding Accutase ® . After six minutes of incubation, Accutase ® was removed from the tube without disturbing the cell pellet. The cells were then incubated for a further 3 minutes (9 minutes total exposure Accutase ®). The tube was then washed with mTeSR®1 containing 10 μM Y-27632, crushed twice with a glass pipette, and the suspended cells were passed through a 70 μM cell filter (BD Falcon, Cat. No. 352350, Franklin Lakes, New Jersey , USA). Two additional washes were performed with the mTeSR®1 medium containing 10 μM Y-27632 and passed through a cell filter.

Среду и клетки в пробирке осторожно перемешивали до формирования однородной суспензии. Затем суспензию клеток переносили в 6-луночный планшет Ultra Low Binding Culture при 37°C в увлажненный 5% CO2 инкубатор по 3 мл/лунку с помощью стеклянной пипетки и инкубировали в суспензии в течение 2 часов (протестированы временные периоды 0-28 часов), после чего агрегаты переносили в стеклянную центрифужную пробирку с доведением до конечного объема среды 80 мл. Альтернативно, суспензия клеток может быть непосредственно помещена в центрифужную пробирку, перемешиваемую при 55 оборотах в минуту или колбу Эрленмейера, перемешиваемую при 40 оборотах в минуту, и кластеры, образованные в перемешиваемой суспензии (Фиг.3с) доводят до конечного объема среды 80 мл.The medium and cells in the tube were gently mixed until a homogeneous suspension was formed. Then the cell suspension was transferred to a 6-well Ultra Low Binding Culture plate at 37 ° C in a 3 ml / well humidified 5% CO2 incubator using a glass pipette and incubated in suspension for 2 hours (time periods 0-28 hours tested) after which the aggregates were transferred to a glass centrifuge tube with the 80 ml brought to the final medium volume. Alternatively, the cell suspension can be directly placed in a centrifuge tube stirred at 55 revolutions per minute or an Erlenmeyer flask stirred at 40 revolutions per minute, and the clusters formed in the stirred suspension (Figure 3c) are brought to a final medium volume of 80 ml.

С помощью этого метода последовательного пассирования, клетки пассировали 20 раз, с приблизительной кратностью пересева 1: 3 в каждом пассаже. Плюрипотентность измеряли при каждом пассировании с помощью проточной цитометрии, а кариотипирование было проведено с помощью анализа флуоресцентной гибридизации in-situ (FISH) для хромосом 12 и 17; две хромосомы определены как потенциально нестабильные в клетках линии hES. Результаты проточной цитометрии для CD9, SSEA4, TRA-1-60, TRA-1-81 и экспрессии CXCR4 показаны в виде графика и показывают высокий уровень экспрессии маркеров плюрипотентности и низкой или отсутствующей экспрессии маркера дифференцировки ( CXCR4), в то время как FISH анализы для хромосом 12 и 17 показали нормальное количество копий. Эти данные показывают, что клетки линии H1 hES могут быть сохранены в суспензионной культуре после стандартного серийного пассирования с использованием AccutaseUsing this sequential passaging method, cells were passaged 20 times, with an approximate multiplication rate of 1: 3 seeding in each passage. Pluripotency was measured at each passaging using flow cytometry, and karyotyping was performed using in-situ fluorescent hybridization analysis (FISH) for chromosomes 12 and 17; two chromosomes are identified as potentially unstable in hES cells. Flow cytometry results for CD9, SSEA4, TRA-1-60, TRA-1-81 and CXCR4 expression are shown in graph form and show a high expression level of pluripotency markers and low or absent differentiation marker expression (CXCR4), while FISH analyzes for chromosomes 12 and 17 showed a normal number of copies. These data show that H1 hES cells can be stored in suspension culture after standard serial passaging using Accutase ®® , применения ферментативного метод клеточной диссоциации с использованием ферментов, происходящих не от млекопитающих, и будут поддерживать плюрипотентность и стабильный кариотип в динамической суспензионной культуральной системе, при генерировании 1×10, applying the enzymatic method of cell dissociation using enzymes not originating from mammals, and will maintain pluripotency and stable karyotype in a dynamic suspension culture system, when generating 1 × 10 99 клеток на каждую исходную клетку в течение 20 пассажей. EDTA также может быть использована для этой серии суспензии в 6 пассажах. cells for each source cell for 20 passages. EDTA can also be used for this series of suspensions in 6 passages.

Таблица 3Table 3
Результаты проточной цитометрии на маркеры плюрипотентности клеток, показанные как функция по времени на основе результатов для маркеров CD9, SSEA4, TRA-1-60, TRA-1-81 и CD184 (CXCR4)The results of flow cytometry on cell pluripotency markers, shown as a function of time based on results for markers CD9, SSEA4, TRA-1-60, TRA-1-81 and CD184 (CXCR4)
Пассаж
(сутки культуры)
Passage
(culture day)
CD9CD9 SSEA4SSEA4 TRA-1-60TRA-1-60 TRA-1-81TRA-1-81 CD184CD184
1 (3)13) 92,0%92.0% 100,0%100.0% 57,4%57.4% 58,6%58.6% 0,2%0.2% 2 (4)2 (4) 73,3%73.3% 99,9%99.9% 63,5%63.5% 54,3%54.3% 0,1%0.1% 3 (3)3 (3) 87,5%87.5% 99,7%99.7% 65,8%65.8% 63,6%63.6% 0,1%0.1% 4 (4)4 (4) 86,7%86.7% 99,8%99.8% 60,9%60.9% 68,2%68.2% 0,1%0.1% 5 (3)5 (3) 79,3%79.3% 99,7%99.7% 67,6%67.6% 69,9%69.9% 0,3%0.3% 6 (3)6 (3) 79,3%79.3% 99,7%99.7% 67,6%67.6% 69,9%69.9% 0,3%0.3% 7 (3)7 (3) 93,7%93.7% 100,0%100.0% 60,1%60.1% 58,8%58.8% 0,2%0.2% 8 (3)8 (3) 83,0%83.0% 99,0%99.0% 73,0%73.0% 68,0%68.0% 0,5%0.5% 9 (4)9 (4) 94,6%94.6% 100,0%100.0% 65,5%65.5% 64,2%64.2% 0,1%0.1% 10 (4)10 (4) 96,3%96.3% 100,0%100.0% 77,3%77.3% 75,0%75.0% 0,2%0.2% 11 (4)11 (4) 97,3%97.3% 100,0%100.0% 69,1%69.1% 61,3%61.3% 0,2%0.2% 12 (4)12 (4) 91,6%91.6% 100,0%100.0% 56,9%56.9% 62,7%62.7% 0,6%0.6% 13 (4)13 (4) 97,3%97.3% 99,9%99.9% 62,9%62.9% 63,2%63.2% 0,2%0.2% 14 (4)14 (4) 97,1%97.1% 100,0%100.0% 71,1%71.1% 82,4%82.4% 1,0%1.0% 15 (4)15 (4) 96,1%96.1% 99,6% *99.6% * 79,0%79.0% 74,2%74.2% 0,2%0.2% 16 (4)16 (4) 87,7%87.7% 99,9%99.9% 77,1%77.1% 72,5%72.5% 0,3%0.3% 17 (4)17 (4) 98,6%98.6% 99,7%99.7% 69,9%69.9% 57,7%57.7% 0,3%0.3% 18 (4)18 (4) 97,7%97.7% 100,0%100.0% 68,6%68.6% 56,6%56.6% 0,2%0.2% 19 (4)19 (4) 97,1%97.1% 100,0%100.0% 79,4%79.4% 70,4%70.4% 0,1%0.1% 20 (4)20 (4) 96,9%96.9% 100,0%100.0% 57,4%57.4% 55,7%55.7% 0,4%0.4%

ПРИМЕР 4EXAMPLE 4

НАПРАВЛЕННАЯ ДИФФЕРЕНЦИРОВКА СУСПЕНЗИОННОЙ КУЛЬТУРЫ ЧЕЛОВЕЧЕСКИХ ЭМБРИОНАЛЬНЫХ СТВОЛОВЫХ КЛЕТОК КЛЕТОЧНОЙ ЛИНИИ H1DIRECTED DIFFERENTIATION OF SUSPENSION CULTURE OF HUMAN EMBRYONIC STEM CELLS OF H1 CELL CELL LINE

Клетки линии эмбриональных стволовых клеток человека Н1 (клетки WA01, WiCell, г. Мэдисон штат Висконсин, США) при пассировании 40 были сняты с плоской прикрепленной культуры с помощью Accutase® и перенесены в формат суспензионной культуры. Клетки поддерживали в динамической суспензионной культуральной системе в течение 30 пассажей с использованием метода, описанного в примере 3.Cell line of human embryonic stem cells H1 (WA01 cells, WiCell, Madison, Wisconsin, USA) at 40 passaging were removed from culture planar attached using Accutase ® and transferred to suspension culture format. The cells were maintained in a dynamic suspension culture system for 30 passages using the method described in example 3.

Плюрипотентность была подтверждена в течение первых 20 пассажей, как показано в таблице 3, со стабильно высокими уровнями маркеров плюрипотентности, которые сохранялись во всей культуре, что было определено с помощью проточной цитометрии. Чтобы подтвердить плюрипотентность и продемонстрировать способность источника клеток лечить диабет, клетки дифференцировали в панкреатические клетки-предшественники в динамической суспензионной культуральной системе с использованием метода ступенчатой прогрессии в различных средах, содержащих морфогены или факторы роста, предназначенные для нормального развития поджелудочной. Этот процесс приводит к появлению популяции панкреатических клеток-предшественников, которые характеризуются высокой коэкспрессией Pdx1 и Nkx6.1. Когда эти клетки были пересажены, они далее вызревали в ткани, способные к стимулированной глюкозой секреции инсулина, способные секретировать инсулин в ответ на глюкозу и поддерживать нормальный уровень глюкозы в крови при стрептозотоцин-индуцированной модели диабета. Смотрите Фиг. 4c и таблицу 4с.Pluripotency was confirmed during the first 20 passages, as shown in Table 3, with consistently high levels of pluripotency markers that were maintained throughout the culture, as determined by flow cytometry. To confirm pluripotency and demonstrate the ability of a cell source to treat diabetes, cells were differentiated into pancreatic progenitor cells in a dynamic suspension culture system using a stepwise progression method in various media containing morphogens or growth factors intended for normal pancreatic development. This process leads to the emergence of a population of pancreatic progenitor cells, which are characterized by high co-expression of Pdx1 and Nkx6.1. When these cells were transplanted, they further matured into tissues capable of glucose-stimulated insulin secretion, capable of secreting insulin in response to glucose and maintaining normal blood glucose levels in a streptozotocin-induced diabetes model. See FIG. 4c and table 4c.

Для генерирования этих клетки клеток-предшественников панкреатических клеток, человеческие эмбриональные стволовые клетки линии H1, которые были выращены и поддерживались в динамической суспензионной культуральной системе в течение 16 пассажей, дифференцировались по методу, описанному в примере 3. Таким образом, клетки были выращены в течение 30 пассажей, протестированы на плюрипотентность в течение первых 20 пассажей; клетки дифференцировались на 16 пассаже. Плюрипотентные клетки в формате кластера переносили из среды mTeSR®1 в раствор FBC (Таблица 4a) на 3 часа при 4°C. Кластеры клеток затем переносили в суспензию в 3-литровый стеклянный биореактор, регулируемый блоком управления Sartorius Stedim BioStat B-DCU (Goettingen, Германия) и суспендировали в среде для дифференцировки в количестве 0,55 клеток/мл в соответствии с таблицей 4b Клетки поддерживали 14 суток в закрытой стерильной суспензии в биореакторе с регулируемыми показателями температуры, рН и растворенного кислорода (DO) (FermProbe® рН электрод 225 мм, модель № F-635, датчик растворенного кислорода OxyProbe® 12 мм, номер модели D-145 от Broadley-James Corporation, г. Ирвин штат Калифорния, США).To generate these progenitor cells of the pancreatic cells, human H1 embryonic stem cells, which were grown and maintained in a dynamic suspension culture system for 16 passages, were differentiated according to the method described in example 3. Thus, the cells were grown for 30 Passages tested for pluripotency during the first 20 passages; cells differentiated at passage 16. Pluripotent cells in cluster format were transferred from mTeSR®1 medium to FBC solution (Table 4a) for 3 hours at 4 ° C. The cell clusters were then transferred to a suspension in a 3-liter glass bioreactor, controlled by a Sartorius Stedim BioStat B-DCU control unit (Goettingen, Germany) and suspended in a differentiation medium in the amount of 0.55 cells / ml in accordance with Table 4b The cells were maintained for 14 days in a closed sterile suspension in a bioreactor with adjustable temperature indicators, pH and dissolved oxygen (DO) (FermProbe ® pH electrode is 225 mm, the model № F-635, a sensor of dissolved oxygen OxyProbe ® 12 mm, model number D-145 from Broadley-James Corporation , Irvine, California, USA).

В течение пробега, уровни бикарбоната среды поддерживали в 3,64 г/л, рН поддерживали на уровне рН 7,4 с помощью регулирования потока СО2 в общем объеме среды ≤1,6 л. Свободное пространство биореактора непрерывно обрабатывалось CO2, воздухом и O2 под контролем блока управления Sartorious с установленным уровнем растворенного кислорода 20% на стадии 1 и установленным уровнем растворенного кислорода 30% на стадии 2 с последующим постоянным потоком газа 150cc/мин. Поток кислорода регулируется относительно содержания растворенного кислорода и поток CO2 регулируется относительно уровня рН. Температуру поддерживали на уровне 37°C в течение всего пробега электрическим нагреваемым кожухом. В начале пробега и для каждой замены среды (93% среды удалено за счет замены), лопасти (3”, резьбовое лопастное колеса из нержавеющей стали, работающее с частотой 70 оборотов в минуту) были остановлен, и среда была удалена или добавлена с помощью перистальтического насоса через погружную трубку в биореакторе, подключенную к трубке C-Flex® с использованием трубосварочного стана Terumo™ для поддержания замкнутой системы. Изображения клеток/кластеров были получены в конце каждой стадии дифференцировки, и подвергнутые проточной цитометрии образцы собирали и анализировали на экспрессию CXCR4 на стадии 1 сутки 3 и 3 суток в конце стадии 2 (фиг.4а). Наблюдался почти полное переход популяции от CXCR4-отрицательной плюрипотентной клеточной популяции в начале дифференцировки (таблица 3, канал 16) в популяцию CXCR4-положительную (98,5% клеток CXCR4-положительных, Фиг.4В) клетки. Эти клетки затем перешли к практически CXCR4-отрицательному состоянию через 3 суток в конце стадии 2 (7,0% клеток CXCR4-положительно), а к концу стадии 3 клетки почти полностью перешли в CD56-положительное состояние. В конце процесса дифференцировки на 4-е сутки 4-й стадии, клетки были на 88,5% Pdx1-положительными (4б) и показали паттерны экспрессии, соответствующие сочетанию панкреатических эндокринных клеток (33,5% хромогранин-положительные) и панкреатических клеток-предшественников (65,7% Nkx6.1-положительные). Характерные для данной стадии паттерны экспрессии маркеров указывают на эффективную постадийную дифференцировку от популяции плюрипотентных клеток в клетки поджелудочной железы. В конце процесса дифференцировки было получено 2,77 млн клеток/мл (4,1 миллиардов клеток в 1,5 л), что указывает на полный рост 5 дифференцированных клеток на каждую введенную клетку линии HES.During the run, the bicarbonate levels of the medium were maintained at 3.64 g / l, the pH was maintained at a pH of 7.4 by regulating the flow of CO2 in a total volume of medium ≤1.6 l The bioreactor void was continuously treated with CO2, air and O2 under the control of a Sartorious control unit with a set dissolved oxygen level of 20% at stage 1 and a set dissolved oxygen level of 30% at stage 2 followed by a constant gas flow of 150cc / min. The flow of oxygen is regulated relative to the content of dissolved oxygen and the flow of CO2 is regulated relative to the pH level. The temperature was maintained at 37 ° C during the entire run of an electric heated casing. At the beginning of the run and for each medium change (93% of the medium was removed by replacing), the blades (3 ”, threaded paddle wheels made of stainless steel operating at 70 revolutions per minute) were stopped and the medium was removed or added using peristaltic pump through a submersible tube in a bioreactor connected to a C-Flex® tube using a Terumo ™ pipe welding mill to maintain a closed system. Images of cells / clusters were obtained at the end of each stage of differentiation, and the samples subjected to flow cytometry were collected and analyzed for the expression of CXCR4 at stage 1 for 3 and 3 days at the end of stage 2 (Figure 4a). There was an almost complete transition of the population from the CXCR4-negative pluripotent cell population at the beginning of differentiation (table 3, channel 16) to the population of CXCR4-positive (98.5% of CXCR4-positive cells, Figure 4B) cells. These cells then moved to a near-CXCR4-negative state after 3 days at the end of stage 2 (7.0% of cells were CXCR4-positive), and by the end of stage 3, the cells almost completely went into a CD56-positive state. At the end of the process of differentiation on the 4th day of the 4th stage, the cells were 88.5% Pdx1-positive (4b) and showed expression patterns corresponding to a combination of pancreatic endocrine cells (33.5% chromogranin-positive) and pancreatic cells- predecessors (65.7% Nkx6.1-positive). Patterns of marker expression characteristic for this stage indicate an effective stepwise differentiation from the population of pluripotent cells into pancreatic cells. At the end of the differentiation process, 2.77 million cells / ml (4.1 billion cells in 1.5 l) was obtained, indicating a full growth of 5 differentiated cells per each HES cell line injected.

В конце концов, 500 мл были удалены центрифугированием и промыванием и были испытаны на животной модели приживления, созревания и функционирования. Остальные 1000 мл клеточной суспензии обрабатывали с помощью системы kSep®400 (KBI Biosystems, г. Дарем, штат Северная Каролина, США) для промывания, фильтрации и концентрирования клеточного продукта в полностью замкнутой системе. Клеточный продукт концентрируют от исходного объема 1 л в 50 мл концентрированных клеток до конечной концентрации 41 млн клеток/мл. Эти концентрированные клетки затем разливают в 24 флакона, по 1,2 мл в каждый с использованием автоматизированной машины для разливания во флаконы (Fill-It, TAP, Hertfordshire UK) и замораживают путем помещения в холодильник с жидким азотом.In the end, 500 ml were removed by centrifugation and washing and were tested on animal models of engraftment, maturation and functioning. The remaining 1000 ml of the cell suspension was treated with the kSep ® 400 system (KBI Biosystems, Durham, North Carolina, USA) for washing, filtering and concentrating the cell product in a fully closed system. The cell product is concentrated from an initial volume of 1 l in 50 ml of concentrated cells to a final concentration of 41 million cells / ml. These concentrated cells are then poured into 24 vials, 1.2 ml each, using an automated vial filling machine (Fill-It, TAP, Hertfordshire UK) and frozen by placing in a refrigerator with liquid nitrogen.

500 мл дифференцированных клеток, которые были промыты и концентрированы стандартным центрифугированием, трансплантировали в дозе 5 миллионов клеток на мышь линии SCID-Bg непосредственно под почечную капсулу, или размещали внутрь устройств иммунозащитной макроинкапсуляции (TheraCyte™, г. Ирвин штат Калифорния, США ), которые были имплантировали подкожно (6 животных на каждое условие). Через 12 недель после имплантации, имплантированные клетки экспрессировали значительные уровни циркулирующего человеческого C-пептида (> 0,1нг/мл), что было определено с помощью ИФА (ИФА человеческого C-пептида, Mercodia № по каталогу 10-1141-01) в ответ на голодание и последующее кормление и через 16-20 недель животные показывали более 1 нг/мл циркулирующего С-пептида (таблица 4в).500 ml of differentiated cells, which were washed and concentrated by standard centrifugation, were transplanted at a dose of 5 million cells per mouse SCID-Bg line directly below the renal capsule, or placed inside immuno-protective macro-encapsulation devices (TheraCyte ™, Irwin, California, USA), which were implanted subcutaneously (6 animals for each condition). 12 weeks after implantation, the implanted cells expressed significant levels of circulating human C-peptide (> 0.1 ng / ml), which was determined by ELISA (ELISA of the human C-peptide, Mercodia catalog number 10-1141-01) in response on starvation and subsequent feeding and after 16–20 weeks, animals showed more than 1 ng / ml of circulating C-peptide (Table 4c).

Через 27 недель (190 суток) после имплантации, два животных с устройства инкапсулироваными иммунозащищенными трансплантатами получили одну большую дозу высокой стрептозотицина (STZ)для избирательного уничтожения всех эндогенных мышиных островковых β-клеток и индуцировать диабет (250 мг/кг). После следующих двух недель после STZ-обработки, достаточной, чтобы вызвать явный диабет у контрольных животных, уровни глюкозы в крови животных с тансплантатами оставались в пределах нормы (<150 мг/дл). Через 29 недель после имплантации и две недели после введения STZ два животных были затем проверены на стимулируемую глюкозой секрецию инсулина (GSIS) и показали заметное увеличение циркуляции человеческого c-пептида в ответ на введение глюкозы. Кроме того, когда каждый из трансплантатов были удалены на 209 сутки (29,5 недели) после имплантации, уровень глюкозы в крови животных значительно увеличился до > 500 мг/дл.After 27 weeks (190 days) after implantation, two animals from the device with encapsulated immune-protective grafts received one large dose of high streptozoticin (STZ) to selectively destroy all endogenous mouse islet β-cells and induce diabetes (250 mg / kg). After the next two weeks after STZ treatment, sufficient to induce overt diabetes in control animals, blood glucose levels in animals with tangled grafts remained within the normal range (<150 mg / dL). At 29 weeks after implantation and two weeks after the introduction of STZ, the two animals were then tested for glucose-stimulated insulin secretion (GSIS) and showed a marked increase in the circulation of the human c-peptide in response to the introduction of glucose. In addition, when each of the grafts were removed at 209 days (29.5 weeks) after implantation, the blood glucose level of the animals significantly increased to> 500 mg / dl.

Эти результаты показывают, что продукт, выделенный из стволовых клеток эмбриона человека и предназначенный для лечения диабета, может быть получен из суспензии выращенных и дифференцированных стволовых клеток. Продукт может быть генерирован в масштабируемой, перемешивающей системе биореактора с замкнутым циклом и клеточный продукт может быть обработан промыванием в замкнутой системе и концентрирован, как и требуется для коммерческого производства cGMP. Продукт, выделенный из стволовых клеток эмбриона человека, подходит для лечения диабета в широко используемой модели животного диабета,что подтверждено GSIS-компетенций, обладает способностью регулировать уровень глюкозы в крови, и показывает возвращение диабетического состоянии после удаления клеточной терапии.These results indicate that a product isolated from human embryonic stem cells and intended to treat diabetes can be obtained from a suspension of grown and differentiated stem cells. The product can be generated in a scalable, closed-loop bioreactor mixing system and the cell product can be processed by washing in a closed system and concentrated, as required for commercial production of cGMP. The product, isolated from human embryonic stem cells, is suitable for treating diabetes in a widely used animal model of diabetes, which is confirmed by GSIS competencies, has the ability to regulate blood glucose levels, and shows the return of the diabetic state after removal of cell therapy.

Таблица 4a
Состав раствора FBC
Table 4a
The composition of the FBC solution
КомпонентComponent Количество (мг/л)Amount (mg / l) ФункцияFunction УровеньLevel Безводная декстрозаAnhydrous Dextrose 901901 СахарSugar ФСШАUnited States of America Хлористый калийPotassium chloride 559559 солиsalt ФСШАUnited States of America Бикарбонат натрияBicarbonate of soda 20002000 Буферный растворBuffer solution ФСШАUnited States of America СахарозаSucrose 68466846 СахарSugar ФСШАUnited States of America МаннитMannitol 36443644 Сахарный спиртSugar alcohol ФСШАUnited States of America Дигидрат хлорида кальция (CaCl2.2H2O)Calcium chloride dihydrate (CaCl 2 .2H 2 O) 7070 солиsalt ФСШАUnited States of America Хлорид магния (MgCl2.6H2O)Magnesium Chloride (MgCl 2 .6H 2 O) 10171017 солиsalt ФСШАUnited States of America Бикарбонат калия (KHCO3)Potassium bicarbonate (KHCO 3 ) 500500 Буферный растворBuffer solution ФСШАUnited States of America Моносульфат калия (KH2PO4)Potassium monosulfate (KH 2 PO 4 ) 13611361 Буферный растворBuffer solution NFb/FCCc NF b / FCC c Лактобионовая кислотаLactobionic acid 3583035830 Клеточный стабилизаторCell stabilizer Н/Дd N / D d L-глутатионL-glutathione 922922 АнтиоксидантAntioxidant Н/ДN / A HClHCl Для регулирования pHFor pH adjustment КислотаAcid ACSe ACS e Натрия гидроксидSodium hydroxide Для регулирования pHFor pH adjustment ОсноваThe foundation NF/FCCNF / FCC Вода для инъекцийWater for injections Для подготовки раствораTo prepare the solution Для подготовки раствораTo prepare the solution ФСШАUnited States of America a ФСША = Фармакопея США
b NF = Национальный формуляр
c FCC = Кодекс пищевых химикатов
d Н/Д = Нет данных
e ACS = Химическое общество США
a USP = United States Pharmacopoeia
b NF = National Formulary
c FCC = Food Chemical Codex
d N / A = No data
e ACS = United States Chemical Society

Таблица 4bTable 4b
Компоненты среды и протокол дифференцировкиEnvironment components and differentiation protocol
Стадия 1Stage 1 Стадия 2Stage 2 Стадия 3Stage 3 Стадия 4Stage 4 Базовая средаBase environment
(конечная концентрация глюкозы)(final glucose concentration)
MCDB131
3,64 г/л NaCO3
(8 мМоль глюкозы)
2% не содержащего жирных кислот бычьего сывороточного альбумина (FAF-BSA)
и 2мМоль L-глутамина
MCDB131
3.64 g / l NaCO 3
(8 mM glucose)
2% fatty acid free bovine serum albumin (FAF-BSA)
and 2mM L-glutamine
Белковые/аминокислотные добавкиProtein / amino acid supplements Факторы ростаGrowth factors
И/ИЛИAND / OR
Малые молекулыSmall molecules
MCX (3 мкМоль)
0-24 часа
GDF8 (100 нг/мл) на 24-72 часа
ITS-X (1:50 000)
MCX (3 μM)
0-24 hours
GDF8 (100 ng / ml) for 24-72 hours
ITS-X (1:50 000)
FGF7 (50 нг/мл)
ITS-X (1:50 000)
FGF7 (50 ng / ml)
ITS-X (1:50 000)
FGF7 (50 нг/мл)
ITS-X (1:200)
RA (2мкМоль)
SANT (0,25 мкМоль)
AA (5 нг/мл)
TppB (200 нМоль)
LDN (100 нМоль) на
0-24 часа стадия 3
FGF7 (50 ng / ml)
ITS-X (1: 200)
RA (2µmol)
SANT (0.25 μM)
AA (5 ng / ml)
TppB (200 nM)
LDN (100 nmol) on
0-24 hours stage 3
ITS-X (1:200)
SANT (0,25 мкМоль)
Cypi (100 нМоль)
SCIO (2μM)
TppB (100 нМоль)
ITS-X (1: 200)
SANT (0.25 μM)
Cypi (100 nM)
SCIO (2μM)
TppB (100 nM)
Всего сутокTotal day 33 33 33 5five Замена средыMedium change Время 0 и 24 часаTime 0 and 24 hours Время 0 и 48 часаTime 0 and 48 hours Время 0 и 24 часаTime 0 and 24 hours Время 0, 48 и 96 часовTime 0, 48 and 96 hours

(Номенклатура Время 0 = первый посев в новой стадии; время 24, 48 или 96 часов = время после замены среды стадии)(Nomenclature Time 0 = first seeding in a new stage; time 24, 48 or 96 hours = time after changing the medium of the stage)

Таблица 4cTable 4c
Экспрессия C-пептида (нг/мл) Expression of C-peptide (ng / ml)
C-пептид (нг/мл)C-peptide (ng / ml) 4wk4wk 8wk8wk 12wk12wk 16wk16wk 20wk20wk 24wk24wk 29wk29wk Имплант в почечную капсулу (N=6)Implant in the renal capsule (N = 6) 0,000.00 0,030.03 0,190.19 0,950.95 2,562.56 STDEVSTDEV 0,000.00 0,030.03 0,170.17 0,710.71 1,331.33 Имплантированное устройство Theracyte (N=6)Implanted Theracyte Device (N = 6) 0,000.00 0,020.02 0,350.35 0,580.58 1,451.45 2,492.49 2,852.85 СТ. ОТКЛ.ST. OFF 0,010.01 0,010.01 0,540.54 0,510.51 1,021.02 0,750.75 0,210.21

ПРИМЕР 5EXAMPLE 5

НАПРАВЛЕННАЯ ДИФФЕРЕНЦИРОВКА В ФОРМАТ СУСПЕНЗИОННОЙ КУЛЬТУРЫ ПРИКРЕПЛЕННЫХ ЧЕЛОВЕЧЕСКИХ ЭМБРИОНАЛЬНЫХ СТВОЛОВЫХ КЛЕТОК КЛЕТОЧНОЙ ЛИНИИ H1DIRECTED DIFFERENTIATION IN THE FORMAT OF SUSPENSION CULTURE OF ATTACHED HUMAN EMBRYONIC STEM CELLS OF H1 CELL CELL LINE

Клетки линии эмбриональных стволовых клеток человека Н1 (клетки WA01, WiCell, Мэдисон Висконсин) при пассировании 41 были сняты с плоской прикрепленной культуры с помощью EDTA и перенесены в формат суспензионной культуры по методу, описанному в примере 2.Human H1 embryonic stem cell lines (WA01, WiCell, Madison Wisconsin cells), with passaging 41, were removed from a flat attached culture using EDTA and transferred to the suspension culture format according to the method described in Example 2.

Плюрипотентность клеточных агрегатов измеряли при помощи проточной цитометрии, как показано на Фиг.5а, при этом наблюдалась высокая экспрессия маркеров плюрипотентности CD9, SSEA4, TRA-1-61, TRA-и 1-80, указывающая на высокий уровень плюрипотентности клеток. Эти плюрипотентные клетки затем дифференцируются в панкреатическое клетки-предшественники в динамически перемешиваемой суспензионной культуральной системе с использованием метода ступенчатой прогрессии в различных средах, содержащих малые молекулы и факторы роста, предназначенные для нормального развития поджелудочной. Этот процесс производит популяции панкреатических клеток-предшественников, характеризующихся коэкспрессией факторов транскрипции панкреатических клеток, Pdx1 и Nkx6.1. Когда эти клетки были пересажены, они далее вызревали в ткани, способные к стимулированной глюкозой секреции инсулина, которая может исправить высокий уровень глюкозы в крови в стрептозотоцин-индуцированной модели диабета.Cell aggregates pluripotency was measured using flow cytometry, as shown in Fig. 5a, with high expression of the pluripotency markers CD9, SSEA4, TRA-1-61, TRA-and 1-80, indicating a high level of cell pluripotency. These pluripotent cells are then differentiated into pancreatic progenitor cells in a dynamically mixed suspension culture system using a stepwise progression method in various media containing small molecules and growth factors designed for normal pancreatic development. This process produces pancreatic progenitor cell populations characterized by the coexpression of pancreatic transcription factors Pdx1 and Nkx6.1. When these cells were transplanted, they further matured into tissues capable of glucose-stimulated insulin secretion, which can correct the high level of blood glucose in the streptozotocin-induced diabetes model.

Для генерирования популяции панкреатических клеток-предшественников, плюрипотентные клетки в формате кластера, поддерживаемые в среде mTeSR®1, переносили в 0,2-литровый стеклянный биореактор с перемешиванием суспензии (Dasgip, № по каталогу DS0200 TBSC, г. Шрусбери, штат Массачусетс, США) с регулируемой контроллером температурой, рН и уровнем растворенного кислорода. Плюрипотентные кластеры клеток культивировали в биореакторе в течение двух суток. В это время (стадия 1, сутки 0) среду заменяли и была инициирована дифференцировка, клеточные агрегаты были суспендированы в количестве примерно 0,7 млн клеток/мл в среде для дифференцировки в соответствии с таблицей 5а. Клетки затем выдерживали в этой закрытой стерильной суспензии в биореакторе в течение 14 суток. На протяжении дифференцировки, уровни бикарбоната среды поддерживали в 3,64 г/л, рН поддерживали на уровне 7,4 с помощью регулирования потока СО2 в общем объеме среды 0,3 л. Свободное пространство биореактора непрерывно обрабатывалось CO2 и воздухом под контролем системы управления Dasgip с установленным уровнем растворенного кислорода 30% при постоянном потоке газа 5 л/час. Воздушный поток регулируется относительно содержания растворенного кислорода и поток CO2 регулируется относительно уровня рН.To generate a population of pancreatic progenitor cells, pluripotent cells in cluster format, supported in the mTeSR®1 medium, were transferred to a 0.2-liter suspension stirred glass bioreactor (Dasgip, DS0200 TBSC, Shrewsbury, Massachusetts, USA a) with adjustable controller temperature, pH and dissolved oxygen level. Pluripotent cell clusters were cultured in the bioreactor for two days. At this time (stage 1, day 0) the medium was replaced and differentiation was initiated, the cell aggregates were suspended in an amount of about 0.7 million cells / ml in the medium for differentiation in accordance with Table 5a. The cells were then kept in this closed sterile suspension in the bioreactor for 14 days. During differentiation, the levels of bicarbonate medium were maintained at 3.64 g / l, the pH was maintained at 7.4 by regulating the flow of CO2 in the total volume of the medium 0.3 l. The free space of the bioreactor was continuously treated with CO2 and air under the control of the Dasgip control system with a fixed level of dissolved oxygen of 30% at a constant gas flow of 5 l / h. The air flow is regulated relative to the dissolved oxygen content and the flow of CO2 is regulated relative to the pH level.

Таблица 5aTable 5a
Компоненты среды и протокол дифференцировкиEnvironment components and differentiation protocol
Стадия 1Stage 1 Стадия 2Stage 2 Стадия 3Stage 3 Стадия 4Stage 4 Базовая средаBase environment
(конечная концентрация глюкозы)(final glucose concentration)
MCDB131
3,64 г/л NaCO3
(8 мМоль глюкозы)
MCDB131
3.64 g / l NaCO 3
(8 mM glucose)
MCDB131
3,64 г/л NaCO3
(8 мМоль глюкозы)
MCDB131
3.64 g / l NaCO 3
(8 mM glucose)
MCDB131
3,64 г/л NaCO3
(8 мМоль глюкозы)
MCDB131
3.64 g / l NaCO 3
(8 mM glucose)
MCDB131
3,64 г/л NaCO3
(8 мМоль глюкозы)
MCDB131
3.64 g / l NaCO 3
(8 mM glucose)
Белковые добавкиProtein supplements 2% не содержащего жирных кислот бычьего сывороточного альбумина (FAF-BSA)
и 2мМоль L-глутамина
2% fatty acid free bovine serum albumin (FAF-BSA)
and 2mM L-glutamine
Факторы ростаGrowth factors
И/ИЛИAND / OR
Малые молекулыSmall molecules
MCX (3 мкМоль)
Как указано
GDF8 (100 нг/мл)
Как указано
ITS-X (1:50 000)
MCX (3 μM)
As noted
GDF8 (100 ng / ml)
As noted
ITS-X (1:50 000)
FGF7 (50 нг/мл)
ITS-X (1:50 000)
FGF7 (50 ng / ml)
ITS-X (1:50 000)
FGF7 (50 нг/мл)
ITS-X (1:200)
RA (2 мкМоль)
SANT (0,25 мкМоль)
AA (5 нг/мл)
TppB (200 нМоль)
LDN (100 нМоль) в течение 0-24 часов, стадия 3
FGF7 (50 ng / ml)
ITS-X (1: 200)
RA (2 μM)
SANT (0.25 μM)
AA (5 ng / ml)
TppB (200 nM)
LDN (100 nmol) for 0-24 hours, stage 3
ITS-X (1:200)
SANT (0,25 мкМоль)
Cypi (100 нМоль)
SCIO (2µM)
TppB (100 нМоль)
ITS-X (1: 200)
SANT (0.25 μM)
Cypi (100 nM)
SCIO (2µM)
TppB (100 nM)
Всего сутокTotal day 33 33 33 5five Замена средыMedium change Как указаноAs noted Время 0 и 48 часаTime 0 and 48 hours Время 0 и 24 часаTime 0 and 24 hours Время 0, 48 и 96 часовTime 0, 48 and 96 hours

В этом примере и в описании SCIO представляет собой ингибитор Alk5 с химическим названием 4-{[2-(5-хлор-2-фторфенил)-5-(1-метилэтил)пиримидин-4-ил]амино}-N-(2-гидроксипропил)пиридин-3-карбоксамид и CAS № 674794-97-9. Химическая структура SCIO представлена ниже:In this example and in the description, SCIO is an Alk5 inhibitor with the chemical name 4 - {[2- (5-chloro-2-fluorophenyl) -5- (1-methylethyl) pyrimidin-4-yl] amino} -N- (2 -hydroxypropyl) pyridine-3-carboxamide and CAS No. 674794-97-9. The chemical structure of SCIO is presented below:

Figure 00000001
Figure 00000001

На этой стадии температуру поддерживали на уровне 37°C. В начале пробега и для каждой замены среды (95% среды удалено за счет замены), лопасть была остановлена и среда была удалена, добавлена с помощью перистальтического насоса через погружную трубку в биореакторе, подключенную к трубке C-Flex® с использованием трубосварочного стана Terumo™ для поддержания замкнутой системы.At this stage, the temperature was maintained at 37 ° C. At the beginning of the run and for each medium change (95% of the medium was removed by replacing), the blade was stopped and the medium was removed, added using a peristaltic pump through a dip tube in a bioreactor connected to a C-Flex® tube using a Terumo ™ tube welding mill to maintain a closed system.

Несколько различных настроек подачи были испытаны во время стадии 1: (a) замена среды через 24 часа после начала дифференцировки, без замены среды через 48 часов; (b) замена среды через 24 часа после начала дифференцировки и добавление болюса глюкозы через 48 часов; и (c) без замены среды в течение стадии 1 с добавлением болюсов глюкозы и GDF8 через 24 ч после начала дифференцировки и последующего добавления болюса глюкозы через 48 часов после начала.Several different feed settings were tested during stage 1: (a) medium change 24 hours after differentiation began, without medium change after 48 hours; (b) replacing the medium 24 hours after the start of differentiation and adding a bolus of glucose after 48 hours; and (c) without changing the medium during stage 1 with the addition of glucose bolus and GDF8 24 hours after the start of differentiation and the subsequent addition of glucose bolus 48 hours after the start.

Количество клеток в момент начала, середины и конца процесса, взятые из для каждого реактора, указано в таблице 5b. В конце стадии 1 клетки отбирали для определения паттернов экспрессии белка с помощью проточной цитометрии. Клетки, дифференцированные по условию A- замена среды через 24 часа после начала дифференцировки к дефинитивную энтодерму, после чего без замены среды в течение следующих 48 часов - показали лучшие результаты при измерении индуцирования маркеров дифференцировки (CD99 и CXCR4) и снижения экспрессии маркера плюрипотентности (CD9) (5б). Более высокая экспрессия CXCR4 и CD99 в сочетании с низкой экспрессией CD9 в конце окончательного формирования энтодермы коррелирует с более высокой экспрессией панкреатических генов и низкой экспрессией генов, показывающих развитие альтернативных органов на поздних стадиях дифференцировки (Фиг. 5d и 5e). В частности, отсутствие замены среды в течение первой стадии дифференцировки или добавление глюкозы к среде на стадии 1 в формате объемной подачи привело к снижению уровней CXCR4 в конце стадии 1, которое коррелировало с отличающейся морфологией агрегатов на конец четвертой стадии дифференцировки (Фиг. 5c). В частности, условия В и С имели более низкую экспрессию гена поджелудочной (Nkx6.1 и CHGA) и более высокую экспрессию не-панкреатических генов (CDX2 и Sox2) в конце стадии 4, что было измерено с помощью проточной цитометрии (Фиг.5d и Таблица 5b). Эти выводы были подтверждены проведением qRT-PCR (Фиг. 5e), так как условие A показало значительно более высокую экспрессию панкреатических генов, чем условие С, условие B дало результаты, средние между А и С. Кроме того, условие С показало значительно более высокие уровни индикативных генов альтернативного непанкреатического развития, например, CDX2, AFP и альбумина (Фиг. 5e). Эти данные показывают, что однородная дефинитивная энтодерма (DE) с высоким уровнем экспрессии CXCR4, которая генерируется без замены среды за последние 48 часов формирования DE, способна позже превратиться в чистую популяцию клеток панкреатической энтодермы.The number of cells at the start, middle and end of the process, taken from each reactor, is shown in Table 5b. At the end of stage 1, cells were selected to determine protein expression patterns using flow cytometry. Cells differentiated by Condition A — replacement of the medium 24 hours after the start of differentiation to the definitive endoderm, then without changing the medium for the next 48 hours — showed better results in measuring the induction of differentiation markers (CD99 and CXCR4) and reducing the expression of the pluripotency marker (CD9 ) (5 B). Higher expression of CXCR4 and CD99 in combination with low CD9 expression at the end of the final endoderm formation correlates with higher expression of pancreatic genes and low expression of genes showing the development of alternative organs in the late stages of differentiation (Fig. 5d and 5e). In particular, the absence of medium substitution during the first stage of differentiation or the addition of glucose to the medium in stage 1 in the volume feed format resulted in a decrease in CXCR4 levels at the end of stage 1, which correlated with a different aggregate morphology at the end of the fourth stage of differentiation (Fig. 5c). In particular, conditions B and C had lower pancreatic gene expression (Nkx6.1 and CHGA) and higher expression of non-pancreatic genes (CDX2 and Sox2) at the end of stage 4, as measured by flow cytometry (Fig. 5d and Table 5b). These findings were confirmed by qRT-PCR (Fig. 5e), since condition A showed significantly higher expression of pancreatic genes than condition C, condition B gave results averaging between A and C. In addition, condition C showed significantly higher levels of indicative genes of alternative non-pancreatic development, for example, CDX2, AFP and albumin (Fig. 5e). These data show that the homogeneous definitive endoderm (DE) with a high level of CXCR4 expression, which is generated without changing the medium in the last 48 hours of DE formation, can later turn into a pure population of pancreatic endoderm.

В конце стадии 4 дифференцировки, клетки, дифференцированные по условию A, были удалены из биореактора, промыты в среде MCDB131, содержащей 0,1% FAF-BSA, и имплантированы мышам линии SCID-BG. Каждой мыши трансплантировали 5 миллионов клеток непосредственно под почечную капсулу. Каждый 4 недели после имплантации брались пробы крови и измерялись уровни глюкозы и С-пептида в крови. Через 12 недель после имплантации человеческий С-пептид был обнаружен на уровнях выше 1 нг/мл, а через 16 недель уровни С-пептида в среднем составляли 2,5 нг/мл. (фиг.5f). На 20 неделе после имплантации уровень С-пептида был измерен у животных в голодном и затем сытом состоянии. Обработка глюкозой вызвала значительное увеличение циркулирующего С-пептида человека от 0,93 нг/мл в голодном состоянии, до 2,39 нг/мл в сытом состоянии (фиг.5 г), что указывает на то, что трансплантированные клетки вызрели в функциональную GSIS-компетентную ткань. Кроме того, когда животным ввели стрептозотоцин (STZ) (β-клетки мыши более чувствительны к STZ и сильнее разрушаются по сравнению с β-клетками человека) для вызова диабетического состояния, животные с трансплантатом функциональной GSIS-компетентной ткани поддерживали нормальный уровень глюкозы в крови в отличие от необработанных контрольных животных, у которых развился явный диабет (Фиг. 5h). Эти результаты показывают, что животные с HES-дифференцированным трансплантатом клеток были защищены от STZ-индуцированного диабета с помощью функционального трансплантата ткани поджелудочной железы .At the end of stage 4 differentiation, cells differentiated according to Condition A were removed from the bioreactor, washed in MCDB131 medium containing 0.1% FAF-BSA, and implanted into SCID-BG mice. Each mouse was transplanted 5 million cells directly under the renal capsule. Every 4 weeks after implantation, blood samples were taken and glucose and C-peptide levels were measured in the blood. 12 weeks after implantation, the human C-peptide was detected at levels above 1 ng / ml, and after 16 weeks the levels of C-peptide averaged 2.5 ng / ml. (fig.5f). At week 20 after implantation, the level of C-peptide was measured in animals in a hungry and then fed state. Glucose treatment caused a significant increase in circulating human C-peptide from 0.93 ng / ml in a hungry state to 2.39 ng / ml in a full-bodied state (figure 5 g), indicating that the transplanted cells had matured into a functional GSIS -competent fabric. In addition, when animals were injected with streptozotocin (STZ) (mouse β-cells are more susceptible to STZ and more destroyed than human β-cells) to trigger a diabetic condition, animals with a graft of functional GSIS-competent tissue maintained normal blood glucose levels in contrast to untreated control animals that developed overt diabetes (Fig. 5h). These results indicate that animals with a HES-differentiated cell transplant were protected from STZ-induced diabetes with the help of a functional graft of pancreatic tissue.

Таблица 5bTable 5b
Количество клеток и данные проточной цитометрииCell count and flow cytometry data
ПлюрипотентностьPluripotency
(Условие)(Condition)
Плотность жизнеспособных клеток (млн клеток / мл)The density of viable cells (million cells / ml) CD9CD9 CD184CD184 SSEA4SSEA4 TRA-1-60TRA-1-60 TRA-1-81TRA-1-81
(a)(a) 0,7230.723 93,893,8 0,20.2 100100 74,374.3 67,367.3 (B)(B) 0,6770.677 92,392.3 0,20.2 100100 71,771.7 7171 (C)(C) 0,7380.738 89,989.9 0,10.1 100100 75,375.3 72,172.1 ДКDK
(Условие)(Condition)
Плотность жизнеспособных клеток (млн клеток / мл)The density of viable cells (million cells / ml) CD9CD9 CD184CD184 CD99CD99
(a)(a) 0,9650.965 1,71.7 99,699.6 84,384.3 (B)(B) 1,221.22 4,84.8 93,193.1 81,281.2 (C)(C) 1,21.2 8,38.3 6868 34,134.1 ПКPC
(Условие)(Condition)
Плотность жизнеспособных клеток (млн клеток / мл)The density of viable cells (million cells / ml) NKX6.1NKX6.1 СинаптофизинSynaptophysin CDX2CDX2 SOX2SOX2 NKX2.2NKX2.2 CHGACHGA
(a)(a) 0,7950.795 47,547.5 48,448.4 2,92.9 23,823.8 61,761.7 55,755.7 (B)(B) 0,980.98 44,444.4 38,538.5 10,310.3 21,421.4 45,445.4 41,541.5 (C)(C) 1,331.33 15,415.4 5,85.8 3737 18,418.4 9,69.6 6,76.7

ПРИМЕР 6EXAMPLE 6

НАПРАВЛЕННАЯ ДИФФЕРЕНЦИРОВКА В ФОРМАТ СУСПЕНЗИОННОЙ КУЛЬТУРЫ МИКРОНОСИТЕЛЕЙ С ПРИКРЕПЛЕННЫМИ ЧЕЛОВЕЧЕСКИМИ ЭМБРИОНАЛЬНЫМИ СТВОЛОВЫМИ КЛЕТКАМИ КЛЕТОЧНОЙ ЛИНИИ H1DIRECTED DIFFERENTIATION IN THE FORMAT OF SUSPENSION CULTURE OF MICRONS CARRIERS WITH ATTACHED HUMAN EMBRYONIC STEM CELLS OF H1 CELL LINE

Сферы микроносителя Cytodex® 3 (С3) (Sigma-Aldrich Co LLC, г. Сент-Луис, штат Миссури, США, № по каталогу C3275) были подготовлены к культуре путем замачивания 400 мг сфер в стеклянных сцинтилляционных флаконах с кремниевым покрытием объемом 20 мл, содержащих 15 мл PBS Дульбекко (DPBS), в течение 4-24 часов. Cytodex® 3 состоит из тонкого слоя денатурированного коллагена, химически связанного с матриксом из сшитого декстрана. Слой денатурированного коллагена на носителях Cytodex® 3 может разлагаться различными протеазами, включая трипсин и коллагеназу, что дает возможность извлекать клетки из микроносителя, сохраняя максимальную жизнеспособность, функциональность и целостность клеток.Cytodex ® 3 (C3) microcarrier spheres (Sigma-Aldrich Co LLC, St. Louis, Missouri, USA, catalog number C3275) were prepared for culture by soaking 400 mg of spheres in 20-ml silicon-coated glass scintillation vials containing 15 ml of Dulbecco's PBS (DPBS), for 4-24 hours. Cytodex ® 3 consists of a thin layer of denatured collagen, chemically bound to a matrix of cross-linked dextran. The layer of denatured collagen on Cytodex ® 3 carriers can be decomposed by various proteases, including trypsin and collagenase, which makes it possible to extract cells from the microcarrier, while maintaining maximum viability, functionality and integrity of the cells.

После замачивания сферы автоклавировали, промывали стерильной DPBS и ресуспендировали в кондиционированной среде мышиных эмбриональных фибробластов (MEF-CM) с добавлением 10 мкМоль Y-27632. Сферы затем переносили в 125 мл стеклянные центрифужные пробирки Corning® (Corning Incorporated, г. Корнинг, штат Нью-Йорк, США) при плотности 100 мг сфер/колба. Центрифужные пробирки, содержащие сферы и MEF-CM с Y-27632 уравновешивали в увлажненном инкубаторе с 5% СО2 при 37°C в течение по крайней мере 60 минут.After soaking, the spheres were autoclaved, washed with sterile DPBS, and resuspended in the conditioned medium of mouse embryonic fibroblasts (MEF-CM) with the addition of 10 μM Y-27632. The spheres are then transferred to 125 ml glass centrifuge tubes Corning ® (Corning Incorporated, Corning, NY, USA) at a density of 100 mg of spheres / flask. Centrifuge tubes containing spheres and MEF-CM with Y-27632 were equilibrated in a humidified 5% CO2 incubator at 37 ° C for at least 60 minutes.

Клетки линии эмбриональных стволовых клеток человека Н1 (клетки WA01, WiCell, г. Мэдисон, штат Висконсин, США) при пассировании 44 были сняты с плоской прикрепленной культуры с помощью TrypLE™ (Life Technologies Corporation, г. Гранд Айленд, штат Нью-Йорк, США) (8-минутная инкубация при 37°C с образованием суспензии отдельных клеток). Клетки затем промывали и суспендировали в MEF-CM с Y-27632 и 11 млн клеток линии hES крепились к сферам в течение 6 часов во время статического инкубационного периода. Затем в центрифужную пробирку добавляли MEF-CM с Y-27632, доводя конечный объем носителя до 75 мл, и клетки и сферы перемешивали в стеклянной центрифужной пробирке при скорости лопастей 50 оборотов в минуту. Клетки выращивали таким образом в течение 5 суток с ежедневной заменой 50 мл среды MEF-CM. Через 5 суток в культуре, колбы содержали 53×106 клеток (± 12×106 СО). В качестве контроля, один миллион клеток линии Н1 HES также высевали на дно 6-луночной чашки Петри из полистирола, покрытой разведенным 1:30 препаратом Matrigel™ и поддерживали с ежедневной заменой среды MEF-CM.Human H1 embryonic stem cell lines (WA01 cells, WiCell, Madison, WI, USA), when passaged 44 were removed from a flat attached culture using TrypLE ™ (Life Technologies Corporation, Grand Island, NY, USA) (8-minute incubation at 37 ° C with the formation of a suspension of individual cells). The cells were then washed and suspended in MEF-CM with Y-27632 and 11 million hES cells attached to spheres for 6 hours during the static incubation period. Then MEF-CM with Y-27632 was added to the centrifuge tube, bringing the final volume of the carrier to 75 ml, and the cells and spheres were mixed in a glass centrifuge tube at a blade speed of 50 revolutions per minute. Cells were grown in this way for 5 days with daily replacement of 50 ml of MEF-CM medium. After 5 days in culture, the flasks contained 53 × 10 6 cells (± 12 × 10 6 WITH). As a control, one million H1 HES cells were also seeded on the bottom of a 6-well polystyrene Petri dish, coated with Matrigel ™ diluted 1:30, and maintained with a daily MEF-CM medium change.

Через 5 суток в плюрипотентной культуре эти клетки были дифференцированы в панкреатические клетки-предшественники в динамической суспензионной культуральной системе путем постадийного прогрессирования в различных средах, содержащих одно или оба из малых молекул и факторов роста, предназначенных для рекапитуляции морфогенов нормального развития поджелудочной железы. Два состава среды были протестированы в качестве способа поддержания рекапитуляции нормального развития поджелудочной железы; один с использованием активина А и Wnt3a для формирования DE, и другой с использованием соединения MCX с GDF8 для формирования DE (таблицы 6a и 6b, соответственно). Среду меняли ежедневно и образцы характеризовались методами RT-PCR и проточной цитометрии для определения свойств клеток. Фазоконтрастные изображения клеток на микроносителях были получены, и график морфологии клеток в плюрипотентные культуры по времени вплоть до инициирования дифференцировки клеток показан на Фиг. 6а. График по времени, показывающий дифференцировку культур, показан на Фиг. 6b. Также было определено количество клеток, взятое в различные моменты времени по ходу эксперимента, а результаты представлены в зависимости от площади поверхности (клеток/см2 на фиг. 6С) или объема носителя (клеток/мл на Фиг. 6d) для препаратов среды на плоской культуры или суспендированной культуре на микроносителях.After 5 days in a pluripotent culture, these cells were differentiated into pancreatic progenitor cells in a dynamic suspension culture system by stepwise progression in various media containing one or both of small molecules and growth factors intended for the recapitulation of normal pancreatic morphogenes. Two medium formulations were tested as a way to maintain recapitulation of the normal development of the pancreas; one using activin A and Wnt3a to form DE, and the other using MCX compound with GDF8 to form DE (tables 6a and 6b, respectively). The medium was changed daily and the samples were characterized by RT-PCR and flow cytometry to determine cell properties. Phase-contrast images of cells on microcarriers were obtained, and a graph of cell morphology in pluripotent cultures over time until the initiation of cell differentiation is shown in FIG. 6a. A time chart showing the differentiation of cultures is shown in FIG. 6b. It was also determined the number of cells taken at different points in time during the experiment, and the results are presented depending on the surface area (cells / cm 2 in Fig. 6C) or the volume of the carrier (cells / ml in Fig. 6d) for medium preparations on a flat culture or suspended culture on microcarriers.

Клетки характеризуются в различных точках в течение всего процесса по результатам проточной цитометрии и RT-PCR. Результаты проточной цитометрии первой стадии дифференцировки и формирование дефинитивной энтодермы показаны в виде точечной диаграммы клеточной экспрессии CXCR4 (по оси Y) и CD9 (по оси Х) на Фиг. 6е, также показана общая экспрессия каждого маркера на Фиг. 6f. Результаты показывают, что при любых условиях значительное большинство клеток образуют дефинитивную энтодерму, что определено коэффициентом усиления экспрессии CXCR4 и потерей экспрессии поверхностного маркера плюрипотентности CD9. Кроме того, наиболее эффективное формирование дефинитивной энтодермы происходит в порядке убывания при обработке следующим образом: микроносители MCX/GDF8> плоская культура MCX/GDF8 > микроносители WNT3A/AA > планарная культура WNT3A/А.А. Так проявляется специфическое действие среды на клетки, так как клетки, обработанные MCX/GDF8 показывают низкую экспрессию CERBERUS (Cer 1), GOOSECOID и FGF17 (Фиг. 6g). Тем не менее, все условия обработки показывают сходные уровни экспрессии генов дефинитивной энтодермы; CD99, CXCR4, FOXA2, KIT и SOX17 (Фиг. 6g и таблица 6 с). Эти процессы порождают популяции панкреатических клеток-предшественников, характеризующихся коэкспрессией факторов транскрипции панкреатических клеток, Pdx1 и Nkx6.1. Когда эти клетки были пересажены, они далее вызревали в ткани, способные к стимулированной глюкозой секреции инсулина, которая может исправить высокий уровень глюкозы в крови в стрептозотоцин-индуцированной модели диабета.Cells are characterized at various points throughout the process by flow cytometry and RT-PCR. The results of flow cytometry of the first stage of differentiation and the formation of the definitive endoderm are shown in the form of a dotted diagram of cell expression of CXCR4 (Y axis) and CD9 (X axis) in FIG. 6e, also shows the total expression of each marker in FIG. 6f. The results show that under any conditions, the vast majority of cells form the definitive endoderm, which is determined by the gain of CXCR4 expression and the loss of expression of the surface marker of pluripotency CD9. In addition, the most efficient formation of definitive endoderm occurs in descending order when processed as follows: microcarriers MCX / GDF8> flat culture MCX / GDF8> microcarriers WNT3A / AA> planar culture WNT3A / A.A. This is how the specific effect of the medium on the cells manifests itself, since the cells treated with MCX / GDF8 show low expression of CERBERUS (Cer 1), GOOSECOID and FGF17 (Fig. 6g). However, all treatment conditions show similar levels of gene expression of definitive endoderm; CD99, CXCR4, FOXA2, KIT and SOX17 (Fig. 6g and Table 6c). These processes generate populations of pancreatic progenitor cells characterized by the co-expression of pancreatic cell transcription factors, Pdx1 and Nkx6.1. When these cells were transplanted, they further matured into tissues capable of glucose-stimulated insulin secretion, which can correct the high level of blood glucose in the streptozotocin-induced diabetes model.

Ниже, в таблице 6a, B27 представляет собой добавку Gibco® B-27® (Life Technologies Corporation, г. Карлсбад, штат Калифорния, США).Below, in Table 6a, B27 is an additive of Gibco® B-27® (Life Technologies Corporation, Carlsbad, California, USA).

Как используется в данном примере, соединение MCX представляет собой 14-проп-2-ен-1-ил-3,5,7,14,17,23,27-гептаазатетрацикло[19.3.1.1 ~ 2,6 ~ 0,1 ~ 8,12. ~] гептакоза-1 (25), 2 (27), 3,5,8 (26), 9,11,21,23-нон-ан-16-он, который имеет следующую формулу (формула 1):As used in this example, the MCX compound is 14-prop-2-en-1-yl-3,5,7,14,17,23,27-heptaazatetracyclo [19.3.1.1 ~ 2.6 ~ 0.1 ~ 8.12. ~] heptacosis-1 (25), 2 (27), 3,5,8 (26), 9,11,21,23-non-an-16-one, which has the following formula (formula 1):

Figure 00000002
Figure 00000002

Другие циклические анилин-пиридинотриазины также могут быть использованы вместо описанного выше соединения MCX. Такие соединения включают, но не ограничиваются 14-метил-3,5,7,14,18,24,28-гептаазатетрацикло [20.3.1.1 ~ 2,6 ~ .- 1 ~ 8,12 ~] октакоза-1 (26 ), 2 (28), 3,5,8 (27), 9,11,22,24-нонаен-17-он-е и 5-хлор-1,8,10,12,16,22,26, 32-октаазапентацикло [24.2.2.1 ~ 3,7 ~ -1 ~ 9,13 ~ 0,1 ~ 14,18 ~] тритриаконта-3 (33), 4,6,9 (32), 10, 12,14 ( 31), 15,17-нонаен-23-он. Эти соединения приведены ниже (формула 2 и формула 3):Other cyclic aniline-pyridinotriazines can also be used instead of the MCX compound described above. Such compounds include, but are not limited to, 14-methyl-3,5,7,14,18,24,28-heptaazatetracyclo [20.3.1.1 ~ 2.6 ~ .- 1 ~ 8.12 ~] octacose-1 (26) , 2 (28), 3,5,8 (27), 9,11,22,24-nona-17-one-e and 5-chloro-1,8,10,12,16,22,26, 32 -octaazapentacyclo [24.2.2.1 ~ 3.7 ~ -1 ~ 9.13 ~ 0.1 ~ 14.18 ~] tritriacont-3 (33), 4.6.9 (32), 10, 12.14 (31 ), 15,17-nonaen-23-he. These compounds are listed below (formula 2 and formula 3):

Figure 00000003
Figure 00000003

Примеры подходящих соединений описаны в заявке на патент США на патент США № 2010/0015711, раскрытие которой включено в полном объеме, как она относится к соединениям MCX, связанным с циклическими анилин-приридинотриазинами и их синтезом.Examples of suitable compounds are described in US patent application US No. 2010/0015711, the disclosure of which is included in its entirety as it relates to MCX compounds associated with cyclic aniline-priridinotriazinah and their synthesis.

Ингибитор Cyp26, используемый в этом примере на стадии 4 представлял собой N-{4-[2-этил-1-(1H-1,2,4-триазол-1-ил)бутил]фенил}-1,3-бензотиазол-2-амин, имеющий CAS № 201410-53-9 и следующую структуру.The Cyp26 inhibitor used in this example in step 4 was N- {4- [2-ethyl-1- (1H-1,2,4-triazol-1-yl) butyl] phenyl} -1,3-benzothiazole- 2-amine having CAS No. 201410-53-9 and the following structure.

Figure 00000004
Figure 00000004

Этот ингибитор Cyp26 также известен как Cypi. Структура и синтез этого ингибитора Cyp26 описана в патенте США № 7,378,433, раскрытие которого включено путем ссылки в полном объеме, как он относится к ингибиторам Cyp26 и их синтезу.This Cyp26 inhibitor is also known as Cypi. The structure and synthesis of this Cyp26 inhibitor is described in US Pat. No. 7,378,433, the disclosure of which is incorporated by reference in its entirety, as it relates to Cyp26 inhibitors and their synthesis.

Таблица 6aTable 6a
Препараты среды и протокол дифференцировкиMedications and differentiation protocol
Стадия 1Stage 1 Стадия 2Stage 2 Стадия 3Stage 3 Стадия 4Stage 4 Базовая средаBase environment RPMI
11 мМоль глюкозы
RPMI
11 mM glucose
DMEM/F12
17,5 мМоль глюкозы
DMEM / F12
17.5 mM glucose
DMEM
25 мМоль глюкозы
DMEM
25 mM glucose
ДобавкиSupplements +0.2% FBS+ 0.2% FBS +0,5% FBS+ 0.5% FBS +2% FBS+ 2% FBS +1% B27+ 1% B27 Рост
Показатель
И/или
Малые
молекулы
Growth
Indicator
And / or
Small
molecules
AA
(100 нг/мл)
Wnt3a
(20 нг/мл)
AA
(100 ng / ml)
Wnt3a
(20 ng / ml)
AA
(100 нг/мл)
AA
(100 ng / ml)
FGF7
(50 нг/мл)
FGF7
(50 ng / ml)
Noggin
(100 нг/мл)
ПП
(2µM)
SANT1
(250nM)
Noggin
(100 ng / ml)
PP
(2µM)
SANT1
(250nM)
Noggin
(100 нг/мл)
ALK5i
(1 мкМоль)
TPB (50 нМоль)
Noggin
(100 ng / ml)
ALK5i
(1 µmol)
TPB (50 nM)
Noggin
(100 нг/мл)
ALK5i
(1 мкМоль)
Noggin
(100 ng / ml)
ALK5i
(1 µmol)
СуткиDay 1d1d 2d2d 3d3d 4d 4d 4d4d 2d 2d

Таблица 6bTable 6b
Препараты среды и протокол дифференцировкиMedications and differentiation protocol
Стадия 1Stage 1 Стадия 2Stage 2 Стадия 3Stage 3 Стадия 4Stage 4 Базовая средаBase environment MCDB131
8 мМоль глюкозы
MCDB131
8 mM glucose
MCDB131
10,5 мМоль глюкозы
MCDB131
10.5 mM glucose
MCDB131
25 мМоль глюкозы
MCDB131
25 mM glucose
MCDB131
25 мМоль глюкозы
MCDB131
25 mM glucose
ДобавкиSupplements 2 % FAF-BSA2% FAF-BSA 2 % FAF-BSA2% FAF-BSA 0,1% AlbuMAX®0.1% AlbuMAX® 0,1% AlbuMAX®0.1% AlbuMAX® Рост
роста
Малые молекулы, агонист/
антагонист
Growth
growth
Small molecule agonist /
antagonist
GDF8
100 нг/мл
MCX (только сутки 1)
3 мкмоль
1:50000 ITS-X
GDF8
100 ng / ml
MCX (day 1 only)
3 µmol
1: 50,000 ITS-X
FGF7
50 нг/мл
1:50000 ITS-X
FGF7
50 ng / ml
1: 50,000 ITS-X
FGF7 (50 нг/мл)
AA (5 нг/мл)
RA (2 мкМоль)
SANT (250 мкМоль)
LDN 193189
1:200 ITS:X
FGF7 (50 ng / ml)
AA (5 ng / ml)
RA (2 μM)
SANT (250 μM)
LDN 193189
1: 200 ITS: X
активатор PKC (500 нМоль)
SANT (250 нМоль)
LDN 193189 (200 нМоль)
ингибитор Cyp26 (100 нМоль)
1:200 ITS:X
PKC activator (500 nM)
SANT (250 nM)
LDN 193189 (200 nM)
Cyp26 inhibitor (100 nM)
1: 200 ITS: X
СуткиDay 4four 33 4four 66

Таблица 6cTable 6c ОписаниеDescription Эталон H1 hESReference H1 hES WNT3A / AA ПЛОСКАЯWNT3A / AA FLAT WNT3A / AA микроносительWNT3A / AA microcarrier MCX / GDF8 ПЛОСКАЯMCX / GDF8 FLAT MCX / GDF8 микроносительMCX / GDF8 microcarrier Контроль GAPDHGAPDH control 1one 1one 1one 1one 1one AFPAFP 1one 0,60.6 0,00.0 4,74.7 0,00.0 CD9CD9 1one 1,01.0 0,90.9 0,30.3 0,50.5 CD99CD99 1one 10,510.5 10,910.9 18,518.5 7,17.1 CDH1CDH1 1one 1,21.2 0,60.6 0,50.5 0,60.6 CDH2CDH2 1one 24,824.8 28,428.4 47,847.8 27,827.8 CDX2CDX2 1one 23,223.2 0,00.0 74,974.9 27,827.8 CER1CER1 1one 346,2346.2 649,7649.7 8,18.1 5,65.6 CXCR4CXCR4 1one 280,3280.3 190,1190.1 153,9153.9 154,7154.7 FGF17FGF17 1one 1406,41406.4 3174,53174.5 92,092.0 112,9112.9 FGF4FGF4 1one 0,80.8 0,50.5 0,00.0 1,11.1 FOXA2FOXA2 1one 432,5432.5 424,3424.3 588,5588.5 321,2321.2 GATA4Gata4 1one 252,4252.4 165,3165.3 1100,11100.1 444,9444.9 GATA6GATA6 1one 607,1607.1 939,9939.9 709,4709.4 312,0312.0 GSCGSC 1one 49,049.0 81,681.6 0,30.3 0,60.6 KITKIT 1one 16,316.3 17,917.9 12,312.3 8,08.0 MIXL1MIXL1 1one 33,233.2 95,695.6 16,016,0 19,119.1 MNX1MNX1 1one 146,3146.3 111,4111.4 595,8595.8 392,6392.6 NanogNanog 1one 0,40.4 0,50.5 0,00.0 0,20.2 OTX2OTX2 1one 22,922.9 26,426.4 9,19.1 8,38.3 OCT4OCT4 1one 1,51.5 1,11.1 0,00.0 0,50.5 SOX17SOX17 1one 751,1751.1 1198,21198.2 1235,01235.0 796,3796.3 SOX7SOX7 1one 0,60.6 1,71.7 5,55.5 0,70.7 TT 1one 64,164.1 7,17.1 22,322.3 212,9212.9

Пример 7Example 7

Суб-клон клеточной линии H1 (WA01) hES - WB0106 используется для этого примера. Суб-клон WB0106 был получен в Научно-исследовательском институте WiCell (Мэдисон, Висконсин) от посевного материала линии H1, называемого DDL-13. Суб-клон WB0106 H1 линии был получен из флакона DDL-13, размороженного при пассировании 23 в среде mTeSR®1 на подложке Matrigel™, а затем пассированного с EDTA. WB0106 был заморожен при пассировании 28 и был выбран для этих исследований на основе нормального кариотипа (FISH и G-полосы), способности дифференцироваться в панкреатические клетки-предшественники и компетентности для формирования кластеров и роста в суспензионной культуре.A sub-clone of the cell line H1 (WA01) hES - WB0106 is used for this example. Sub-clone WB0106 was obtained at the WiCell Research Institute (Madison, WI) from a seed from the H1 line, called DDL-13. A sub-clone of the WB0106 H1 line was obtained from a vial of DDL-13 thawed by passaging 23 in mTeSR ® 1 on Matrigel ™ substrate, and then passaged with EDTA. WB0106 was frozen by passaging 28 and was selected for these studies based on the normal karyotype (FISH and G-bands), the ability to differentiate into pancreatic progenitor cells and the competence to form clusters and grow in suspension culture.

Флакон WB0106 WCB затем размораживали в среде на подложке Matrigel™ в колбе T225 (Corning Incorporated, г. Корнинг, штат Нью-Йорк, США) и при первом пассировании клетки разделили на несколько колб T225. На втором пассировании клетки из нескольких колб T225 были объединены и использованы для заполнения одной двухслойной емкости для клеток Cell Stack™ (CS2). После формирования в CS2 конфлюэнтного слоя на 70%, к портам среды прикрепили систему трубок с крышками C-Flex®, к которым подсоединяли ведущие к насосу трубки для замыкания системы. После того как система была замкнута с помощью трубок C-Flex®, к ней приваривались с помощью аппарата Terumo пакеты или бутыли, куда перистальтическим насосом переносились объемы жидкости (среда, PBS-/-, Accutase® или суспендированные клетки).The WB0106 WCB bottle was then thawed in medium on Matrigel ™ substrate in a T225 flask (Corning Incorporated, Corning, New York, USA) and, when first passaged, the cells were divided into several T225 flasks. On the second passaging, cells from several T225 flasks were combined and used to fill one Cell Stack ™ single bilayer cell (CS2). After forming a confluent layer in CS2 by 70%, a system of tubes with C-Flex® caps was attached to the ports of the medium, to which tubes leading to the pump were connected to close the system. After the system was closed using C-Flex® tubes, bags or bottles were welded to it using the Terumo machine, where fluid volumes (medium, PBS - / - , Accutase ®, or suspended cells) were transferred with a peristaltic pump.

Для отделения клеток от CS2, клетки промывали один раз PBS-/-, затем обрабатывали с раствором Accutase® половинной эффективности, разбавленным PBS-/- и инкубировали в течение 4-5 минут. Затем Accutase® удаляли, и через 3 минуты после нанесения раствора фермента, CS2 был использован для стимулирования клеточного отделения. Флакон со средой, дополненной 0,5% BSA, содержащей 10 мкмоль/л ингибитора Rho-киназы, Y-27632, закачивали в CS2 для промывания и инактивации остаточной Accutase®, после чего смыв собирали. Добавляли второй промывочный объем, собирали смыв и объединяли с первым. Затем 2,0-2,5 × 108 клеток в 200 мл переносили на однослойную емкость для клеток CellSTACK® и инкубировали при 37°C в течение 2 часов в увлажненном инкубаторе с 5% CO2. Используя замкнутый контур трубок C-Flex® с трубкой для насоса, прикрепленной между двумя портами среды CellSTACK®, клеточную суспензию измельчали в течение 5 минут при 75 оборотах в минуту с помощью перистальтического насоса для гомогенизации агрегатов. Замкнутый контур трубок был заменен стерильными фильтрами 0,2 микрона для газообмена и CellSTACK® инкубировали в течение ночи при 37°C в увлажненном инкубаторе с 5% CO2. После инкубации в течение ночи (12-22 часов, 18 часов оптимально), клетки в CellSTACK® образовали округлые сферические агрегаты (кластеры) плюрипотентных клеток.For separation of CS2 cells, the cells were washed once with PBS - / -, then treated with a solution of half Accutase ® efficiency diluted PBS - / - and incubated for 4-5 minutes. Then Accutase ® was removed and after 3 minutes after application of the enzyme solution, CS2 was used to stimulate cellular compartment. The vial with the medium supplemented with 0,5% BSA, containing 10 mmol / l of Rho-kinase inhibitor, Y-27632, was pumped into the washing and CS2 to inactivate residual Accutase ®, whereupon wash was collected. A second wash volume was added, the wash was collected and combined with the first. Then, 2.0-2.5 × 10 8 cells in 200 ml were transferred to a CellSTACK® single-layer cell container and incubated at 37 ° C for 2 hours in a humidified incubator with 5% CO 2 . Using a closed loop C-Flex® tube with a pump tube attached between the two ports of the CellSTACK® medium, the cell suspension was ground for 5 minutes at 75 revolutions per minute using a peristaltic pump to homogenize the aggregates. The closed loop of the tubes was replaced with 0.2 micron sterile filters for gas exchange and the CellSTACK® was incubated overnight at 37 ° C in a humidified 5% CO 2 incubator. After incubation overnight (12–22 hours, 18 hours optimally), the cells in CellSTACK® form rounded spherical aggregates (clusters) of iPS cells.

Среду с добавлением 0,5% BSA, содержащую суспендированные кластеры клеток, переносили из CellSTACK® в одноразовую 1-литровую центрифужную пробирку (Corning; г. Корнинг, штат Нью-Йорк, США) вместе с 0,4 л свежей среды, дополненной 0,5% BSA и выдерживали 55-65 оборотах в минуту. Через двадцать четыре часа после переноса, одноразовую 1-литровую центрифужную пробирку удаляли из увлажненного инкубатора с 5% CO2 и кластерам давали отстояться в течение 5-10 минут. Затем среду отсасывали, пока не осталось 200 мл и добавляли в центрифужную пробирку 400 мл дополнительной свежей культуральной среды. Этот процесс повторяли в конце 2 суток (через 48 часов после переноса).Medium supplemented with 0.5% BSA containing suspended cell clusters was transferred from CellSTACK® to a disposable 1-liter centrifuge tube (Corning; Corning, New York, USA) along with 0.4 l of fresh medium, supplemented with 0 , 5% BSA and kept 55-65 revolutions per minute. Twenty-four hours after transfer, a disposable 1-liter centrifuge tube was removed from the humidified 5% CO2 incubator and the clusters were allowed to settle for 5-10 minutes. Then the medium was aspirated until 200 ml remained and 400 ml of additional fresh culture medium was added to the centrifuge tube. This process was repeated at the end of 2 days (48 hours after transfer).

В конце 3 суток (72 часа после перевода в центрифужную пробирку с CS2), клеточные кластеры обрабатывали Accutase® для пассирования и дальнейшего роста. Процесс пассирования был инициирован путем удаления 1 л одноразовой центрифужной пробирки из увлажненного 5% CO2 инкубатора. Пробирку помещали в биологически безопасный бокс центрифуги для поддержания гомогенной суспензии клеток. После этого суспензию клеток удаляли из центрифужной пробирки 100 мл пипеткой, равномерно распределяется между четырьмя 175 мл коническими пробирками из поликарбоната (ThermoFisher-Nalgene; г. Буффало, штат Нью-Йорк, США), и центрифугировали в течение 5 минут при 80-200 ОЦС. Отработанную среду отсасывали, не нарушая клеточный осадок. Затем в каждую пробирку добавляли 25 мл DPBS без кальция или магния (DPBS-/), и клетки объединяли в одну коническую пробирку и центрифугировали в течение 5 минут при 80-200 ОЦС. DPBS-/ отсасывали из конической пробирки и в пробирку добавили 30 мл раствора 50% Accutase®/50% DPBS-/. Клеточные скопления пипетировали 1-3 раза, а затем периодически перемешивали в течение 4 минут, затем центрифугировали в течение 5 минут при 80-200 ОЦС. Accutase® затем отсасывали настолько полно, насколько это возможно, не нарушая клеточный осадок, и коническую пробирку непрерывно и осторожно постукивали в течение 3-5 минут до тех пор, пока суспензия клеток не стала равномерной молочно-белой. 10 мл среды с добавлением 0,5% BSA, содержащей 10 мкмоль/л ингибитора Rho-киназы, Y-27632, добавляли к суспензии клеток и измельчали 2-4 раза, чтобы инактивировать остаточный Accutase®. 90 мл среды, дополненной 0,5% BSA, содержащей 10 мкмоль/л ингибитора Rho-киназы, Y-27632, добавляли к клеткам и суспензию пропускали через клеточное сито 40 мкМоль (BD Falcon; г. Франклин-Лейкс, штат Нью-Джерси, США).At the end of 3 days (72 hours after transfer to the centrifuge tube with CS2), cell clusters were treated with Accutase ® for passaging and further growth. The passaging process was initiated by removing 1 liter of a disposable centrifuge tube from a humidified 5% CO 2 incubator. The tube was placed in a biologically safe centrifuge box to maintain a homogeneous suspension of cells. After that, the cell suspension was removed from the centrifuge tube with a 100 ml pipette, evenly distributed between four 175 ml conical polycarbonate tubes (ThermoFisher-Nalgene; Buffalo, New York, USA) and centrifuged for 5 minutes at 80-200 OCS . The spent medium was aspirated without disturbing the cell pellet. Then to each tube was added 25 ml of DPBS without calcium or magnesium (DPBS - / ), and the cells were combined into one conical tube and centrifuged for 5 minutes at 80-200 OCS. DPBS - / was aspirated from a conical tube and 30 ml of 50% Accutase ® / 50% DPBS - / solution was added to the tube. Cell clusters were pipetted 1-3 times, and then periodically mixed for 4 minutes, then centrifuged for 5 minutes at 80-200 OCS. Accutase ® was then aspirated as completely as possible without disturbing the cell pellet, and the conical tube was tapped continuously and gently for 3-5 minutes until the cell suspension became uniform milky white. 10 ml of medium supplemented with 0,5% BSA, containing 10 mmol / l of Rho-kinase inhibitor, Y-27632 was added to the cell suspension and milled 2-4 times to inactivate residual Accutase ®. 90 ml of medium supplemented with 0.5% BSA containing 10 μmol / l Rho kinase inhibitor, Y-27632, was added to the cells and the suspension was passed through a 40 μM cell sieve (BD Falcon; Franklin Lakes, NJ , USA).

Плотность клеток в объеме 100 мл отфильтрованной клеточной суспензии определяли с помощью аппарата NucleoCounter® NC-100 (ChemoMetec A/S, г. Аллерод, Дания) и добавляли дополнительную среду до конечной концентрации клеток 1×106 клеток/мл в среде, дополненной 0,5% BSA содержащий 10 мкмоль/л ингибитора Rho-киназы, Y-27632. Затем 225 мл (225 миллионов клеток) клеточной суспензии переносили в 1-литровый вращающийся сосуд одноразового и инкубировали в течение 1 часа без перемешивания в увлажненном инкубаторе с 5% CO2. Затем колбу вынимали из инкубатора и перемешивали при 100 оборотах в минуту на вращаемой пластине в биологически безопасном боксе в течение 1-3 минут. В то время как суспензия клеток смешивалась, дополнительно к суспензии клеток добавляли 225 мл среды, дополненной 0,5% BSA, содержащий 10 мкмоль/л ингибитора Rho-киназы, Y-27632. Центрифужную пробирку затем возвращали в увлажненный инкубатор с 5% CO2 на 30 минут. Затем колбу вынимали из инкубатора и перемешивали при 100 оборотах в минуту на вращаемой пластине в биологически безопасном боксе в течение 1-3 минут. В то время как суспензия клеток смешивалась, дополнительно к суспензии клеток добавляли 150 мл среды, дополненной 0,5% BSA, содержащей 10 мкмоль/л в Rho-киназы, Y-27632, чтобы довести окончательный объем до 600 мл, и колбу возвращали к перемешиваемой суспензии в инкубаторе , Через 24 и 48 часов после диссоциации Accutase®, кластерам клеток дали осесть на дно колбы в течение 5-10 минут. Для гарантированного сведения к минимуму потерь кластеров, 400 мл отработанной среды удаляли из колбы аспирацией и заменяли свежей средой. Используя этот процесс, H1 клетки были преобразованы из прикрепленной на подложке культуры в кластеры клеток в суспензионной культуре.The cell density in a volume of 100 mL of the filtered cell suspension were determined using the apparatus NucleoCounter ® NC-100 (ChemoMetec A / S, of Allerod, Denmark) was added and an additional medium to a final cell concentration of 1 × 10 6 cells / ml in medium supplemented with 0 , 5% BSA containing 10 µmol / l Rho kinase inhibitor, Y-27632. Then, 225 ml (225 million cells) of the cell suspension was transferred to a 1-liter rotating disposable vessel and incubated for 1 hour without stirring in a humidified 5% CO2 incubator. Then the flask was removed from the incubator and stirred at 100 revolutions per minute on a rotating plate in a biologically safe box for 1-3 minutes. While the cell suspension was mixed, in addition to the cell suspension, 225 ml of medium was added, supplemented with 0.5% BSA containing 10 μmol / L of Rho-kinase inhibitor, Y-27632. The centrifuge tube was then returned to a humidified 5% CO2 incubator for 30 minutes. Then the flask was removed from the incubator and stirred at 100 revolutions per minute on a rotating plate in a biologically safe box for 1-3 minutes. While the cell suspension was mixed, in addition to the cell suspension, 150 ml of medium was added, supplemented with 0.5% BSA containing 10 μmol / L in Rho-kinase, Y-27632, to bring the final volume to 600 ml, and the flask was returned to stirred suspension in an incubator. After 24 and 48 hours after the dissociation of Accutase ® , the cell clusters were allowed to settle to the bottom of the flask for 5-10 minutes. To ensure that the loss of clusters is minimized, 400 ml of the spent medium was removed by aspiration from the flask and replaced with fresh medium. Using this process, H1 cells were transformed from an attached culture onto clusters of cells in suspension culture.

Через 72 часа после первоначальной обработки Accutase® процесс клеточной диссоциации кластеров и посев (пассирование) в центрифужную пробирку повторяли для поддержания клеток в состоянии суспензии для многократного пассирования (диапазон испытаний: 1-10 пассажей). Описанный выше процесс был повторен, с той разницей, что после первых 24 часов среда не была удалена, а было добавлено 200 мл свежей среды. Через 48 часов после диссоциации Accutase®, кластерам клеток дали осесть на дно колбы в течение 5-10 минут, отсасывали 600 мл среды и добавляли в колбу 400 мл свежей среды.72 hours after the initial Accutase ® treatment, the process of cell dissociation of clusters and seeding (passaging) in a centrifuge tube was repeated to keep the cells in suspension for repeated passaging (test range: 1-10 passages). The process described above was repeated, with the difference that after the first 24 hours the medium was not removed, but 200 ml of fresh medium was added. 48 hours after the dissociation of Accutase ® , the cell clusters were allowed to settle to the bottom of the flask for 5-10 minutes, 600 ml of medium were aspirated and 400 ml of fresh medium was added to the flask.

Эти клетки, прошедшие пассажи суспензии и культивирование, можно затем криоконсервировать и хранить для будущего использования. Для того чтобы подготовить суспензию разросшихся клеток для криоконсервации, клеточные кластеры диссоциировали с Accutase®, как описано выше для пассирования суспензии, за исключением того, что клетки не пропускали через клеточный фильтр 40 микронов. Было определено количество клеток в 100 мл клеточной суспензии, созданной из раствора в каждой одноразовой 1-литровой колбе. Клеточные суспензии затем объединяли и центрифугировали в течение 5 минут при 80-200 ОЦС. Среду из центрифужной пробирки затем удаляли настолько полно, насколько это возможно, не нарушая клеточный осадок. Холодный (< 4°C) CryoStor®10 (Stem Cell Technologies, Inc., г. Ванкувер, Британская Колумбия, Канада) затем добавляли по каплям таким образом, чтобы достичь конечной концентрации 150 миллионов клеток на мл, и раствор клеток держали на ледяной бане во время переноса в 1,8 мл флакон для криоконсервирования Corning® (Corning Incorporated, г. Корнинг, штат Нью-Йорк, США) или 15 мл пакет для криоконсервирования Miltenyi (Miltenyi Biotec Inc. г. Оберн, штат Калифорния, США).These cells, which have undergone suspension and culture, can then be cryopreserved and stored for future use. In order to prepare a suspension of overgrown cells for cryopreservation, cell clusters were dissociated with Accutase ® , as described above for passaging the suspension, except that the cells did not pass 40 microns through the cell filter. It was determined the number of cells in 100 ml of cell suspension, created from a solution in each disposable 1-liter flask. The cell suspensions were then combined and centrifuged for 5 minutes at 80-200 OCS. The medium from the centrifuge tube was then removed as completely as possible, without disturbing the cell pellet. Cold (<4 ° C) CryoStor®10 (Stem Cell Technologies, Inc., Vancouver, British Columbia, Canada) was then added dropwise so as to reach a final concentration of 150 million cells per ml, and the cell solution was kept on ice a bath during transfer to a 1.8 ml Corning® cryopreservation bottle (Corning Incorporated, Corning, New York, USA) or a 15 ml Miltenyi cryoconservation bag (Miltenyi Biotec Inc. Auburn, California, USA) .

Суспензия разросшихся клеток затем была заморожена в ампуле при высокой плотности в морозильнике с контролируемой скоростью следующим образом. Камеру предварительно охлаждали до 4°C и температуру поддерживали до тех пор, пока пробирка с образцом не достигала температуры 6°C. Затем температуру в камере понижали со скоростью 2°C/мин, пока пробирка с образцом не достигала температуры -7°C. После того, как пробирка с образцом достигла температуры -7°C, камеру охлаждали на 20°C/мин до температуры -45°C. После чего температуру в камере поднимали на 10°C/мин до тех пор, пока температура в камере не достигала -25°C, а затем дополнительно охлаждали камеру на 0,8°C/мин до тех пор, пока пробирка с образцом не достигала температуры -45°C. Температуру в камере затем снижали на 35°C/мин до тех пор, пока температура в камере не достигала -160°C. Температура в камере затем удерживалась на уровне -160°C в течение по крайней мере 10 минут, после чего пробирки переносили в хранилище с жидким азотом, в часть с газовой фазой.The suspension of overgrown cells was then frozen in a vial at high density in a freezer at a controlled rate as follows. The chamber was pre-cooled to 4 ° C and the temperature was maintained until the test tube with the sample reached 6 ° C. Then the temperature in the chamber was lowered at a rate of 2 ° C / min until the test tube with the sample reached -7 ° C. After the sample tube reached -7 ° C, the chamber was cooled at 20 ° C / min to -45 ° C. After that, the temperature in the chamber was raised by 10 ° C / min until the temperature in the chamber reached -25 ° C, and then the chamber was further cooled at 0.8 ° C / min until the test tube with the sample reached temperatures of -45 ° C. The temperature in the chamber was then reduced by 35 ° C / min until the temperature in the chamber reached -160 ° C. The temperature in the chamber was then kept at -160 ° C for at least 10 minutes, after which the tubes were transferred to a storage facility with liquid nitrogen, in part with the gas phase.

Для высевания в биореактор с механическим перемешиванием, криоконсервированные клетки высокой плотности удаляли из хранилища с жидким азотом, размораживали и использовали для посева в замкнутом 3-литровом стеклянном биореакторе (DASGIP; г. Юлих, Германия). Четыре или пять пробирок удаляли из хранилища с жидким азотом, части с газовой фазой, и устанавливали непосредственно в ванну с водой температурой 37°C на 105 секунд. Содержимое размороженных пробирок затем переносили с помощью 2 мл стеклянной пипетки в 50 мл коническую пробирку. Затем в пробирку добавляли по каплям 9 мл среды (IH3 или Essential8™ (E8™)), содержащей 0,5% BSA и дополненной 10 мкмоль/л ингибитора Rho-киназы, Y-27632. Затем клетки центрифугировали при 80-200 ОЦС в течение 5 минут. Супернатант из пробирки отсасывали, добавляли 10 мл свежей среды (IH3 или E8™), содержащей 0,5% BSA и дополненной 10 мкмоль/л ингибитора Rho-киназы, Y-27632, и объем, содержащий клетки, пипеткой переносили во флаконы для переноса среды (Cap2V8®, SaniSure, г. Мурпарк, штат Калифорния, США). Содержимое флаконов затем нагнетали непосредственно в биореактор через стерильные сваренные C-Flex трубки с помощью перистальтического насоса. При подготовке к посеву плюрипотентных стволовых клеток в биореактор, подготовили 1,5 л среды (IH3 или E8™ с добавлением 0,5% BSA, содержащей 10 мкмоль/л ингибитора Rho-киназы, Y-27632), подогретого до 37°С, перемешанной при 70 оборотах в минуту, отрегулированной до 6,8-7,1 рН с помощью СО2, с уровнем растворенного кислорода 30% (содержание СО2, воздуха, О2 и N2 регулируется). Сразу после посева в биореактор, из него отбирали пробы для подсчета клеток, и средний объем доводили по мере необходимости для получения конечной концентрации клеток 0,225×106 клеток/мл.For seeding into a bioreactor with mechanical agitation, high density cryopreserved cells were removed from the storage with liquid nitrogen, thawed and used for seeding in a closed 3-liter glass bioreactor (DASGIP; Jlich, Germany). Four or five tubes were removed from the storage with liquid nitrogen, the part with the gas phase, and placed directly in a 37 ° C water bath for 105 seconds. The contents of the thawed tubes were then transferred using a 2 ml glass pipette into a 50 ml conical tube. Then, 9 ml of medium (IH3 or Essential8 ™ (E8 ™)) containing 0.5% BSA and supplemented with 10 μmol / l of Rho-kinase inhibitor, Y-27632, was added dropwise to the tube. Then the cells were centrifuged at 80-200 OCS for 5 minutes. The supernatant from the tube was aspirated, 10 ml of fresh medium (IH3 or E8 ™) containing 0.5% BSA and supplemented with 10 µmol / l Rho-kinase inhibitor, Y-27632, was added, and the volume containing the cells was pipetted into transfer vials Wednesday (Cap2V8®, SaniSure, Murpark, California, USA). The contents of the vials were then injected directly into the bioreactor through sterile welded C-Flex tubes using a peristaltic pump. In preparation for planting pluripotent stem cells in a bioreactor, 1.5 l of medium was prepared (IH3 or E8 ™ with the addition of 0.5% BSA containing 10 μmol / l of Rho-kinase inhibitor, Y-27632), heated to 37 ° C, mixed at 70 revolutions per minute, adjusted to 6.8-7.1 pH using CO 2 , with a level of dissolved oxygen of 30% (content of CO 2 , air, O 2 and N 2 is regulated). Immediately after seeding into the bioreactor, samples were taken from it to count the cells, and the average volume was adjusted as necessary to obtain a final cell concentration of 0.225 × 10 6 cells / ml.

Клетки, высеянные в биореактор с механическим перемешиванием, сформировали кластеры клеток в непрерывно помешиваемом резервуаре, и эти кластеры выдерживали в среде плюрипотентности (IH3 или E8™, дополненной 0,5% BSA) в реакторе в течение трех суток. Среду меняли ежедневно, частичная замена среды выполнялась через 24 часа после посева, удаляли 1-1,3 литра отработанной среды и добавляли 1,5 л свежей среды. Спустя сорок восемь часов после посева, удаляли 1,5-1,8 л отработанной среды и добавляли 1,5 л свежей среды. Через 72 часа после посева была инициирована дифференцировка плюрипотентных клеток путем удаления > 90% использованной среды и добавления среды для дифференцировки (таблица 7).Cells seeded into a mechanically agitated bioreactor formed clusters of cells in a continuously stirred tank, and these clusters were kept in a pluripotency medium (IH3 or E8 ™, supplemented with 0.5% BSA) in the reactor for three days. The medium was changed daily, a partial replacement of the medium was performed 24 hours after seeding, 1-1.3 liters of the spent medium was removed and 1.5 liters of fresh medium was added. Forty-eight hours after sowing, 1.5-1.8 l of the spent medium was removed and 1.5 l of fresh medium was added. 72 hours after seeding, differentiation of pluripotent cells was initiated by removing> 90% of the medium used and adding differentiation medium (Table 7).

После начала процесс дифференцировки, клетки поддерживали в течение 12 или более суток в закрытой стерильной суспензии в биореакторе с регулируемой температурой (37°), рН 7,4 (для дифференцировки) с установленным уровнем растворенного кислорода (10% DO на стадии 1 и 30% DO на прочих стадиях, содержание СО2, О2, N2 и воздуха регулируется). На протяжении всего процесса дифференцировки при каждой замене среды, лопастное колесо было остановлено на 5-20 минут до удаления среды через погружную трубку для стабилизации кластеров. Среду в биореакторе удаляли или добавляли из/в закрытого флакона или пакета с помощью перистальтического насоса через погруженную пробирку, соединенную с трубками C-Flex® с использованием сварщика трубок Terumo™ для поддержания замкнутой системы. Рабочее колесо и нагреватель были вновь запущены после добавления в сосуд достаточного количества среды, чтобы полностью погрузить колесо.After the start of the process of differentiation, the cells were maintained for 12 or more days in a closed sterile suspension in a bioreactor with controlled temperature (37 °), pH 7.4 (for differentiation) with an established level of dissolved oxygen (10% DO at stage 1 and 30% DO at other stages, the content of CO2, O2, N2 and air is regulated). Throughout the entire differentiation process, with each medium change, the impeller was stopped for 5–20 minutes before the medium was removed through a dip tube to stabilize the clusters. The bioreactor medium was removed or added from / to a closed vial or bag using a peristaltic pump through a submerged tube connected to C-Flex® tubes using a Terumo ™ tube welder to maintain a closed system. The impeller and heater were restarted after adding sufficient medium to the vessel to immerse the wheel completely.

Для того чтобы контролировать процесс биореактора, образцы среды, содержащие кластеры клеток, забирались ежедневно для определения количество клеток и жизнеспособности (NucleoCounter®), как показано на Фиг. 7. Наблюдался общий рост клеток в процессе, высеянное количество 0,225×106 жизнеспособных клеток/мл разрослось до количества в среднем 0,92×106 жизнеспособных клеток/мл на стадии 4 сутки 3. При поддержании определенного уровня кислотности (рН 7,0-6,8) во время посева в биореактор и кластеризации плюрипотентных клеток, средний выход клеток на стадии 4 суток 3 увеличился в среднем на 1,3×106 клеток/мл (фиг.7) ,In order to control the process of the bioreactor, medium samples containing the cell clusters were collected daily to determine cell number and viability (NucleoCounter ®), as shown in FIG. 7. The overall growth of cells was observed in the process, the seeded number of 0.225 × 10 6 viable cells / ml grew to an average number of 0.92 × 10 6 viable cells / ml at stage 4 days 3. While maintaining a certain level of acidity (pH 7.0 -6.8) during seeding into the bioreactor and clustering of iPS cells, the average cell yield at the 4-day stage 3 increased on average by 1.3 × 10 6 cells / ml (Fig.7),

В дополнение к ежедневным подсчетам, образцы среды биореактора были проанализированы NOVA BioProfile® FLEX (Nova Biomedical Corporation, г. Уолтем, штат Массачусетс, США). Было отмечено, что, согласно предварительным установкам реактора, рН среды на стадии 0 был кислым по отношению к гомеостатическому стандартному показателю рН 7,4, общему для большинства питательных сред, и рН среды в реакторе снизился в течение стадии 0 в результате клеточного метаболизма (Фиг. 8). Эти результаты коррелируют с тенденцией увеличения концентрации молочной кислоты и снижения уровня глюкозы до конца 6 суток дифференцировки (Фиг.9 и 10). Вместе, эти данные свидетельствуют о том, что клеток в реакторе быстро растут и поглощают глюкозу в течение стадии 0 и первых двух стадий дифференцировки (1-6 сутки). Тем не менее, с начала стадии 3 и далее, клеточной метаболизм (снижение уровней лактата и повышение уровней глюкозы) в реакторе не коррелирует с пиком численности клеток в стадии 3 с последующим несоответствием плотности клеток на протяжении 4-й стадии.In addition to daily counts, the bioreactor media samples were analyzed by NOVA BioProfile® FLEX (Nova Biomedical Corporation, Waltham, Massachusetts, USA). It was noted that, according to reactor presets, the pH of stage 0 was acidic relative to the homeostatic standard pH 7.4, common to most nutrient media, and the pH of the medium in the reactor decreased during stage 0 as a result of cellular metabolism (FIG. . eight). These results correlate with the tendency to increase the concentration of lactic acid and decrease the level of glucose until the end of 6 days of differentiation (Figures 9 and 10). Together, these data suggest that the cells in the reactor grow rapidly and absorb glucose during stage 0 and the first two stages of differentiation (1-6 days). However, from the beginning of stage 3 onwards, cellular metabolism (decreased lactate levels and increased glucose levels) in the reactor does not correlate with a peak in the number of cells in stage 3, followed by a mismatch in cell density during the 4th stage.

Следовало определить, соответствуют ли специфические для стадии изменения рН и метаболизма изменениям в паттернах экспрессии мРНК. Тестирование образцов клеток из биореактора проводили с использованием четырех массивов Biosystems® Low Density Arrays (Life Technologies Corporation, г. Карлсбад, штат Калифорния, США) обозначенных «плюрипотентность», «дефинитивная энтодерма (DE)», «кишечная трубка» (GT) и «4 стадия (S4)», после чего результаты сравнивали со справочными данными, полученными от образцов недифференцированных клеток линии H1 (WB0106) hES в качестве контроля, чтобы стандартизировать экспрессию всех пробегов и массивов.It was necessary to determine whether the changes in pH and metabolism specific to the stage correspond to changes in mRNA expression patterns. Testing of cell samples from the bioreactor was performed using four Biosystems® Low Density Arrays arrays (Life Technologies Corporation, Carlsbad, California, USA) designated “pluripotency”, “definitive endoderm (DE)”, “intestinal tube” (GT) and "Stage 4 (S4)", after which the results were compared with reference data obtained from samples of undifferentiated H1 cell line (WB0106) hES as a control, in order to standardize the expression of all runs and arrays.

Также для каждой стадии дифференциации была определена экспрессия гена с использованием этих же массивов. Также наблюдался тот факт, что посевной клеточный материал, размороженный в биореакторе, показал недифференцированные паттерны экспрессии генов на стадии 0 сутки 1 и стадии 3, 0 сутки (24 и 72 часа после посева в биореактор: Фиг. 11, 12, 13 и 14). Эти результаты хорошо коррелируют с результатами проточной цитометрии, которые показали высокие уровни экспрессии CD9, SSEA4, TRA-1-60, TRA-и 1-81, а также отсутствие CXCR4/CD184 (Фиг. 15 и таблица 8). Хотя проточная цитометрия и анализы qRT-PCR экспрессии генов показали надежные и стабильные паттерны экспрессии генов плюрипотентности (CD9, NANOG, POU5F1, SOX2, TDGF и ZFP42) в соответствии со стабильным плюрипотентным состоянием, также отмечалось умеренное, но нестабильное увеличение экспрессии генов для GATA4, РКГ, MIXL1 и Т; и ≥ 100-кратное увеличение экспрессии CER1, FGF17, FGF4 и GATA2 в некоторых образцах в процессе стадии 0 до направленной дифференцировки (Фиг. 16 и 17).Also, for each stage of differentiation, gene expression was determined using the same arrays. Also observed was the fact that the seeding cell material thawed in the bioreactor showed undifferentiated patterns of gene expression at the stage 0 day 1 and stage 3, 0 day (24 and 72 hours after seeding in the bioreactor: Fig. 11, 12, 13 and 14) . These results correlate well with flow cytometry, which showed high levels of expression of CD9, SSEA4, TRA-1-60, TRA- and 1-81, as well as the absence of CXCR4 / CD184 (Fig. 15 and Table 8). Although flow cytometry and qRT-PCR gene expression analyzes showed robust and stable patterns of expression of pluripotent genes (CD9, NANOG, POU5F1, SOX2, TDGF, and ZFP42) in accordance with a stable pluripotent state, a moderate but unstable increase in gene expression was also observed for GATA, but the GATA was unchanged. RCU, MIXL1 and T; and ≥ 100-fold increase in expression of CER1, FGF17, FGF4 and GATA2 in some samples during stage 0 prior to directional differentiation (Figs. 16 and 17).

По завершении стадии 0 (72 часа после посева реактора), клетки переносили в среду для дифференцировки (таблица 7), содержащую MCX и GDF8. Двадцать четыре часа после этой замены среды были отмечены значительные изменения в структуре экспрессии генов (Фиг. 18 и 19), такие как ~700x увеличение экспрессии Foxa2 и 1000x увеличение экспрессии CER1, EOMES, FGF17, FGF4, GATA4, GATA6, РКГ, MIXL1 и T. Эти повышенные уровни экспрессии указывали на прохождение клетками мезодермальной стадии. Было также отмечено, что уровни CDX2 были повышены на стадии 1 сутки 1 по сравнению с недифференцированными клетками (470x увеличение экспрессии по сравнению с контролем), однако это было преходящее повышение уровня экспрессии и экспрессия CDX2 упала на 94% между стадией 1, 1 сутки и стадией 1, сутки 3, вернувшись к уровню, сопоставимому с тем, который наблюдался до начала дифференцировки (Фиг. 14, 19 и 21).At the end of stage 0 (72 hours after seeding the reactor), the cells were transferred to differentiation medium (Table 7) containing MCX and GDF8. Twenty-four hours after this replacement of the medium, significant changes in the structure of gene expression were observed (Fig. 18 and 19), such as a ~ 700x increase in Foxa2 expression and a 1000x increase in CER1, EOMES, FGF17, FGF4, GATA4, GATA6, GCG, MIXL1 and T. These elevated levels of expression indicated that the cells had passed the mesodermal stage. It was also noted that CDX2 levels were increased at stage 1 day 1 compared to undifferentiated cells (470x increase in expression compared to control), however, this transient increase in expression level and CDX2 expression fell by 94% between stage 1, day 1 and stage 1, day 3, returning to a level comparable to that which was observed before the start of differentiation (Fig. 14, 19 and 21).

Через 72 часа после воздействия среды дифференцировки DE, клетки экспрессировали профиль в соответствии с спецификациями дефинитивной энтодермы, а пиковые уровни CXCR4 и Foxa2 и SOX17 экспрессировались на уровне > 1000x относительно справочных. В соответствии с параметрами дефинитивной энтодермы было также отмечено, что экспрессия генов CER1, EOMES, FGF17, FGF4, GATA4, GATA6, РКГ MIXL1 и Т снизилась с повышенных уровней, наблюдаемых на стадии 1 1 сутки (Фиг.20 и 21).72 hours after exposure to the DE differentiation environment, the cells expressed a profile according to the specifications of the definitive endoderm, and peak levels of CXCR4 and Foxa2 and SOX17 were expressed at> 1000x relative to reference levels. In accordance with the parameters of the definitive endoderm, it was also noted that the expression of the CER1, EOMES, FGF17, FGF4, GATA4, GATA6, MKG MIXL1 and T GHG genes decreased from elevated levels observed at stage 1 for 1 day (Fig. 20 and 21).

Изменения в экспрессии генов, наблюдаемые Qrt-PCR, коррелируют с результатами, полученными с помощью проточной цитометрии. Наблюдался почти полный переход от CD9-экспрессирующей/CXCR4-отрицательной популяции плюрипотентных клеток при инициировании дифференцировки (Фиг. 15) к гомогенной популяции клеток, экспрессирующих CXCR4 (98,3% клеток CXCR4-положительны, ± 1,9SD) в конце стадии 1(Фиг. 22).Changes in gene expression observed by Qrt-PCR correlate with results obtained by flow cytometry. There was an almost complete transition from the CD9-expressing / CXCR4-negative population of pluripotent cells when differentiation was initiated (Fig. 15) to a homogeneous population of cells expressing CXCR4 (98.3% CXCR4-positive cells, ± 1.9 SD) at the end of stage 1 ( Fig. 22).

После завершения формирования дефинитивной энтодермы (стадия 1) среду заменяли на другую, содержащую FGF7, морфоген, который используется, чтобы вызвать образование примитивный передней кишки (стадия 2). В соответствии с образованием примитивной кишки, уровни экспрессии HNF4α и GATA6 на стадии 2 сутки 1 и 3, увеличиваются, в то время как гены с высоким уровнем экспрессии на 3 сутки стадии 1 (CXCR4, EOMES, FGF17, FGF4, MNX1, PRDM1, SOX17 и ФВ) показали снижение экспрессии в конце стадии 2 (Фиг. 23). Экспрессия генов передней кишки (AFP, Pdx1 и Prox1) повысилась (Фиг. 24).After the formation of the definitive endoderm (stage 1), the medium was replaced with another containing FGF7 morphogen, which is used to cause the formation of a primitive anterior intestine (stage 2). In accordance with the formation of the primitive gut, the levels of expression of HNF4α and GATA6 at stage 2, days 1 and 3, increase, while genes with a high level of expression at day 3 of stage 1 (CXCR4, EOMES, FGF17, FGF4, MNX1, PRDM1, SOX17 and PV) showed a decrease in expression at the end of stage 2 (Fig. 23). Expression of the genes of the foregut (AFP, Pdx1 and Prox1) increased (Fig. 24).

После того как клетки были культивированы в среде во время стадии 2 в течение 72 часа, культура была перенесена в среду стадии 3 (таблица 7). В данной среде маркеры экспрессии клеток соответствуют энтодерме поджелудочной линии, сто определено по экспрессии PDX1 и FOXA2 (90,9% ± 11,9 СО PDX1-положительной и 99,2% ± 0,6 СО FOXA2-положительной), показано на Фиг. 25. Эти результаты были подтверждены данными из образцов, подвергнутых анализу экспрессии гена с помощью Qrt-PCR . Экспрессия генов PDX1 увеличилась 5-кратно за 24 часа с конца стадии 2 сутки 3 (38 000-кратно относительно H1) до конца стадии 3 сутки 1 (200 000-кратно относительно H1) и снова двукратно через 48 часов на стадии 3 сутки 3 (435 000-кратно относительно H1). Эти данные указывали на формирование панкреатических клеток (Фиг. 26). Это наблюдение было дополнительно подтверждено повышенным уровнем генов, обычно экспрессирующих в поджелудочной железе (ARX, GAST, GCG, INS, Isl1, NEUROD1, Ngn3, Nkx2.2, Nkx6.1, Pax4, PAX6, Ptf1a и SST ), как показано на Фиг. 26. Кроме того, наблюдалась очень низкая или отсутствующая экспрессия OCT4/POU5F1 (2-10% относительно контроля или 32-37 образцов Cts по данным Qrt-PCR) и высоким уровнем экспрессии других маркеров энтодертмальных линий AFP, ALB, и CDX2, что указывает на спецификации и переход клеточной популяции в биореакторе из клеток кишечной трубки в панкреатические клеткиAfter the cells were cultured in medium during stage 2 for 72 hours, the culture was transferred to stage 3 medium (Table 7). In this medium, cell expression markers correspond to the endoderm of the pancreatic line, one hundred times determined from the expression of PDX1 and FOXA2 (90.9% ± 11.9 CO of PDX1 positive and 99.2% ± 0.6 CO of FOXA2 positive), shown in FIG. 25. These results were confirmed by data from samples analyzed for gene expression using Qrt-PCR. The expression of the PDX1 genes increased 5-fold in 24 hours from the end of stage 2 day 3 (38,000-fold relative to H1) to the end of stage 3 day 1 (200,000-fold relative to H1) and again twice in 48 hours at stage 3 day 3 ( 435 000 times H1). These data indicated the formation of pancreatic cells (Fig. 26). This observation was further confirmed by an increased level of genes usually expressing in the pancreas (ARX, GAST, GCG, INS, Isl1, NEUROD1, Ngn3, Nkx2.2, Nkx6.1, Pax4, PAX6, Ptf1a and SST), as shown in FIG. . 26. In addition, very low or absent OCT4 / POU5F1 expression was observed (2-10% relative to control or 32-37 Cts samples according to Qrt-PCR) and a high expression level of other markers of endodermal AFP, ALB, and CDX2 lines, which indicates on the specification and transition of the cell population in the bioreactor from the cells of the intestinal tube to the pancreatic cells

Как показано на Фиг. 27, в конце процесса дифференцировки на стадии 4 сутки 3 у клеток сохраняются высокие уровни экспрессии PDX1 и FOXA2 и далее проявляется паттерн экспрессии, соответствующий сочетанию панкреатических эндокринных клеток (28,1% ± 12,5 СО хромогранин-положительных) и клеток-предшественников панкреатических клеток (58,3% ± 9,7 СО NKX6.1-положительных). Характерные для данной стадии паттерны экспрессии маркеров указывают на эффективную постадийную дифференцировку от популяции плюрипотентных клеток в клетки-предшественники панкреатических клеток. Результаты, полученные с помощью проточной цитометрии, были дополнительно подтверждены данными Qrt-PCR. Все гены, обычно экспрессирующиеся в поджелудочной железе (ARX, GAST, GCG, IAPP, INS, ISL1, MAFB, NEUROD1, NGN3, NKX2.2, NKX6.1, PAX4, PAX6, PTF1A и SST), показали повышенный уровень экспрессии. (Фиг. 28).As shown in FIG. 27, at the end of the differentiation process at stage 4, day 3, cells maintain high levels of expression of PDX1 and FOXA2, and further, an expression pattern appears corresponding to a combination of pancreatic endocrine cells (28.1% ± 12.5 CO of chromogranin-positive) and precursor cells of pancreatic cells (58.3% ± 9.7 WITH NKX6.1-positive). Patterns of marker expression characteristic for this stage indicate an effective stepwise differentiation from the population of pluripotent cells into progenitor cells of pancreatic cells. The results obtained using flow cytometry were further confirmed by Qrt-PCR data. All genes commonly expressed in the pancreas (ARX, GAST, GCG, IAPP, INS, ISL1, MAFB, NEUROD1, NGN3, NKX2.2, NKX6.1, PAX4, PAX6, PTF1A and SST) showed an increased level of expression. (Fig. 28).

Паттерн экспрессии, который наблюдается на Фиг. 27, оставался соответственным во время нескольких пробегов с несколькими изменениями процесса, например, с различным посевным материалом, средой стадии 0, рН среды стадии 0 и использованием пеногасителя. Были протестированы разные источники посевного материала и каждый раз происходила эффективная генерация эндодермальных панкреатических клеток с >90% FOXA2, >75% PDX1, и >50% NKX6.1 (Фиг. 29). Кроме того, не наблюдалось существенного различия в паттернах экспрессии продукта биореактора между клетками, которые были выращены на стадии 0 в разработанной в лаборатории среде под названием «IH3» с добавлением 0,5% BSA или коммерчески доступной среде: Essential8™ с добавлением 0,5% BSA (Фиг. 30). Когда исследовали роль рН в стадии 0 культуры, было отмечено, что клетки, выращенные в стадии 0 при относительно низком рН (6,8) показали увеличение роста в биореактор по отношению к средней перспективе (Фиг.7), но никаких существенных изменений в клеточном профиле на сутки 3 стадии 4 (Фиг. 31). Кроме того, использование пеногасителя C эмульсии (Sigma № по каталогу A8011) в количестве 94 части на миллион явно уменьшило количество пузырей, образующихся при барботировании но не повлияло на профиль клеток с конца стадии 0 до 4-й стадии сутки 3 клеток (таблица 9 и Фиг. 32).The expression pattern that is observed in FIG. 27, remained relevant during several runs with several process variations, for example, with different inoculum, stage 0 medium, pH of stage 0 medium and the use of an antifoam agent. Different sources of inoculum were tested and each time there was an effective generation of endodermal pancreatic cells with> 90% FOXA2,> 75% PDX1, and> 50% NKX6.1 (Fig. 29). In addition, there were no significant differences in the expression patterns of the product of the bioreactor between cells that were grown in stage 0 in a laboratory-developed medium called “IH3” with 0.5% BSA or commercially available medium: Essential8 ™ with 0.5 % BSA (Fig. 30). When investigating the role of pH in stage 0 culture, it was noted that cells grown in stage 0 with a relatively low pH (6.8) showed an increase in growth in the bioreactor relative to the average perspective (Fig.7), but no significant changes in cell profile on day 3 of stage 4 (Fig. 31). In addition, the use of an emulsifier C emulsion (Sigma catalog number A8011) in the amount of 94 parts per million clearly reduced the number of bubbles formed during the bubbling, but did not affect the cell profile from the end of stage 0 to the 4th stage of the day 3 cells (Table 9 and Fig. 32).

В конце каждой дифференцировки в биореакторе клеточный продукт криоконсервировали. Клетки промывали в MCDB131 с 3,63 г/л бикарбоната натрия или MCDB131 с 3,63 г/л бикарбоната натрия, глюкозой (до 8 мм) и 1 × Glutamax, и затем переносили в холодную (<4°C) среду для криоконсервации, состоящую из 57,5% MCDB131 с 2,43 г/л бикарбоната натрия, 30% свободного от ксенобиотиков KSR, 10% DMSO и 2,5% HEPES (конечная концентрация 25 мМоль). Затем клетки замораживали в морозильной камере с контролируемой скоростью (ХПН) с помощью охлаждающего профиля, который поддерживал клеточные кластеры в среде криоконсервации при температуре окружающей среды в течение максимум 15 минут, с последующим снижением температуры до 4°C в течение 45 мин и дальнейшим снижением температуры на 2°C/мин до -7°C (образец). Затем образец быстро охлаждался, снижение температуры в камере шло со скоростью 25°C/мин до -45°C. Затем было предусмотрено увеличение температуры в камере на 10°C/мин до -25°C (камера). Затем образец охлаждали со скоростью 0,2°C/мин до тех пор, пока температура не достигала -40°C. Затем камеру охлаждали до -160°C со скоростью 35°C/мин и выдерживали при этой температуре в течение 15 минут. Образцы были перемещены в контейнер хранилища с жидким азотом, часть с газовой фазой, для хранения после прекращения пробега CRF.At the end of each differentiation, the cell product was cryoconserved in the bioreactor. Cells were washed in MCDB131 with 3.63 g / l sodium bicarbonate or MCDB131 with 3.63 g / l sodium bicarbonate, glucose (up to 8 mm) and 1 × Glutamax, and then transferred to cold (<4 ° C) medium for cryopreservation consisting of 57.5% MCDB131 with 2.43 g / l sodium bicarbonate, 30% xenobiotic-free KSR, 10% DMSO, and 2.5% HEPES (final concentration 25 mM). The cells were then frozen in a controlled-speed freezer (CRF) using a cooling profile that maintained cell clusters in a cryopreservation medium at ambient temperature for a maximum of 15 minutes, followed by a decrease in temperature to 4 ° C for 45 minutes and a further decrease in temperature at 2 ° C / min to -7 ° C (sample). Then the sample was rapidly cooled, the temperature in the chamber went down at a rate of 25 ° C / min to -45 ° C. Then it was planned to increase the temperature in the chamber by 10 ° C / min to -25 ° C (chamber). Then the sample was cooled at a rate of 0.2 ° C / min until the temperature reached -40 ° C. Then the camera was cooled to -160 ° C at a rate of 35 ° C / min and kept at this temperature for 15 minutes. Samples were transferred to a storage container with liquid nitrogen, part with a gas phase, for storage after termination of the CRF run.

Клетки могут быть разморожены удалением из газовой фазы хранилища с жидким азотом и перенесены во флакон на водяную баню температурой 37°C. Пробирку осторожно встряхивали на водяной бане в течение менее 2 минут до того момента, пока во флаконе не оставался небольшой кристалл льда. Содержимое сосуда затем переносили в 50 мл коническую колбу и разбавляли по каплям в течение двух минут с использованием среды MCDB131 с 2,43 г/л бикарбоната натрия и 2% BSA, до конечного объема 20 мл. Общее количество клеток определяли с помощью аппарата NucleoCounter® и клеточную суспензию переносили в на сверхмалые носители в чашку для культивирования на 1 час. Затем клетки выделяли из среды в 50 мл коническую колбу, супернатант удаляли и клетки ресуспендировали в среде 4 стадии носитель для анализа или исследования in vivo.Cells can be thawed by removing from the gas phase storage with liquid nitrogen and transferred to the vial in a water bath at 37 ° C. The tube was gently shaken in a water bath for less than 2 minutes until a small crystal of ice remained in the vial. The contents of the vessel were then transferred to a 50 ml conical flask and diluted dropwise over two minutes using MCDB131 medium with 2.43 g / l sodium bicarbonate and 2% BSA, to a final volume of 20 ml. The total number of cells was determined using a NucleoCounter ® apparatus and the cell suspension was transferred to ultra small carriers in a culture dish for 1 hour. Then the cells were isolated from the medium in a 50 ml conical flask, the supernatant was removed and the cells were resuspended in medium 4 stage media for analysis or in vivo studies.

В качестве альтернативы, после разморозки клетки из флакона переносили в пустую стеклянную центрифужную пробирку 125 мл Corning® (Corning, Incorporated, г. Корнинг, штат Нью-Йорк, США) и по каплям добавляли 10 мл среды MCDB131, содержащей 2,43 г/л бикарбоната натрия и 2% BSA. Конечный объем доводили той же средой до 80 мл. Общее количество клеток определяли с помощью NucleoCounter® и клеточную суспензию перемешивали при 40-65 оборотах в минуту в течение ночи (12-28 часов). Затем клетки характеризовали или использовали для исследования in vivo.Alternatively, after defrosting, the cells from the vial were transferred to an empty 125 ml Corning® glass centrifuge tube (Corning, Incorporated, Corning, New York, USA) and 10 ml of MCDB131 medium containing 2.43 g / l Sodium bicarbonate and 2% BSA. The final volume was adjusted to 80 ml with the same medium. The total number of cells was determined using NucleoCounter ® and the cell suspension was stirred at 40-65 revolutions per minute overnight (12-28 hours). The cells were then characterized or used for the i n vivo assay .

Композиция среды IH3 приведена ниже, а также описана в публикации заявки на патент США № 2013/0236973, раскрытие которой включено путем ссылки в полном объеме, как она относится к подходящей культуральной среде. Количество BSA в среде IH3 может изменяться.The composition of the medium IH3 is given below and is also described in US Patent Application Publication No. 2013/0236973, the disclosure of which is incorporated by reference in its entirety as it relates to a suitable culture medium. The amount of BSA in IH3 may vary.

Состав среды IH3The composition of the medium IH3 Базовая средаBase environment Добавляемые компонентыAdditives DM-F12DM-F12 1 × ITS-X,
0,5% FAF-BSA класса реагентов
1 нг/мл TGF-β1
100 нг/мл bFGF
20 нг/мл IGF-1
0,25 мМ аскорбиновой кислоты.
1 × ITS-X
0.5% FAF-BSA reagent grade
1 ng / ml TGF-β1
100 ng / ml bFGF
20 ng / ml IGF-1
0.25 mM ascorbic acid.

Таблица 7Table 7 НачалоStart
Сутки/ДатаDay / Date
Стадия 1Stage 1 Стадия 2Stage 2 Стадия 3Stage 3 Стадия 4Stage 4
Базовая средаBase environment MCDB131 Адапт.
(3,64 г/л NaCO3)
MCDB131 Adapt.
(3.64 g / l NaCO 3 )
MCDB131 Адапт.
(3,64 г/л NaCO3)
MCDB131 Adapt.
(3.64 g / l NaCO 3 )
MCDB131 Адапт.
(3,64 г/л NaCO3)
MCDB131 Adapt.
(3.64 g / l NaCO 3 )
MCDB131 Адапт.
(3,64 г/л NaCO3)
MCDB131 Adapt.
(3.64 g / l NaCO 3 )
ДобавкиSupplements 2% FAF-BSA
2,5 мМоль глюкозы
1:50 000 ITS-X
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
1:50 000 ITS-X
Glutamax 1: 100
2% FAF-BSA
2,5 мМоль глюкозы
1:50 000 ITS-X
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
1:50 000 ITS-X
Glutamax 1: 100
2% FAF-BSA
2,5 мМоль глюкозы
1:200 ITS-X
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
1: 200 ITS-X
Glutamax 1: 100
2% FAF-BSA
2,5 мМоль глюкозы
1:200 ITS-X
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
1: 200 ITS-X
Glutamax 1: 100
Факторы ростаGrowth factors Только сутки 1 и 2:
GDF8
100 нг/мл
Only day 1 and 2:
GDF8
100 ng / ml
FGF7
50 нг/мл
FGF7
50 ng / ml
FGF7
50 нг/мл
FGF7
50 ng / ml
нетnot
Малые молекулыSmall molecules Только сутки 1:
MCX
[2 мкМоль]
Only day 1:
MCX
[2 μm]
RA [2 мкМоль]
SANT [0,25 мкМоль]
TPPB [100 нМоль]
Только сутки 1
LDN 100
RA [2 μM]
SANT [0.25 μM]
TPPB [100 nM]
Only day 1
LDN 100
SANT [0,25 мкМоль]
TPPB [100 нМоль]
SANT [0.25 μM]
TPPB [100 nM]
СуткиDay 33 33 33 33 ПРИМЕЧАНИЯ:
Все дни относительно 0 ч.
NOTES :
All days relative to 0 h.
Замена средыMedium change
Сутки 1 и 2,Day 1 and 2,
Без замены на сутки 3No replacement for day 3
Замена средыMedium change
Сутки 1 и 3,Day 1 and 3,
Без замены на сутки 2No replacement for day 2
Замена средыMedium change
Сутки 1 и 2,Day 1 and 2,
Без замены на сутки 3No replacement for day 3
В случае роста S4 замена среды на сутки 1 и к концу суток 3 In the case of S4 growth, replace the medium on day 1 and by the end of day 3

Таблица 8Table 8 Репликация BXBX Replication Посевной материалSeed material CD9CD9 CD184CD184 SSEA4SSEA4 TRA-1-60TRA-1-60 TRA-1-81TRA-1-81 1one KCKC 83,383.3 0,10.1 99,999.9 94,594.5 85,885,8 22 HW Hw 95,595.5 0,20.2 100100 9191 8484 33 ISM (розовый)ISM (pink) 95,895,8 0,10.1 100100 76,176.1 36,536.5 4four ISM (розовый)ISM (pink) 93,293.2 00 99,999.9 78,678.6 64,564.5 5five ISM 1ISM 1 97,897,8 0,20.2 9999 74,874.8 66,466.4 66 ISM 2ISM 2 98,698.6 0,20.2 100100 92,292.2 8686 77 ISM 1ISM 1 98,198.1 0,10.1 99,999.9 88,888,8 80,380.3 8eight ISM 1ISM 1 99,199.1 0,10.1 99,999.9 93,893,8 83,383.3 99 ISM 2ISM 2 97,297.2 0,10.1 99,999.9 88,388.3 8181 10ten ISM5ISM5 9898 0,10.1 99,399.3 93,193.1 85,785.7 11eleven ISM6ISM6 72,672.6 0,20.2 99,999.9 94,794.7 88,988.9 1212 ISM6ISM6 85,985.9 0,70.7 99,499.4 71,971.9 54,154.1 CD9CD9 CD184CD184 SSEA4SSEA4 TRA-1-60TRA-1-60 TRA-1-81TRA-1-81 СреднееThe average 93,693.6 0,10.1 99,899.8 87,887,8 76,676.6 Ст. отклонениеArt. deviation 8,38.3 0,10.1 0,30.3 7,67,6 15,515.5

Таблица 9Table 9 Стадия-день-времяStage-day-time Плотность жизнеспособных клеток (млн клеток / мл)The density of viable cells (million cells / ml) CD9CD9 CD184CD184 SSEA4SSEA4 TRA-1-60TRA-1-60 TRA-1-81TRA-1-81 S0D3-24HS0D3-24H 0,6260.626 95,895,8 0,10.1 99,899.8 87,987.9 7474 Плотность жизнеспособных клеток (млн клеток / мл)The density of viable cells (million cells / ml) CD9CD9 CD184CD184 CD99CD99 S1D3-24HS1D3-24H 0,90.9 50,750.7 98,998.9 9999 Плотность жизнеспособных клеток (млн клеток / мл)The density of viable cells (million cells / ml) NKX6.1NKX6.1 ХороматогранинKhoromatogranin NKX2.2NKX2.2 PDX1PDX1 FOXA2FOXA2 S4D1-24HS4D1-24H 0,9430.943 69,369.3 14,214.2 23,623.6 98,898.8 99,799.7 Плотность жизнеспособных клеток (млн клеток / мл)The density of viable cells (million cells / ml) NKX6.1NKX6.1 ХороматогранинKhoromatogranin CDX2CDX2 SOX2SOX2 NKX2.2NKX2.2 PDX1PDX1 FOXA2FOXA2 NEURODNEUROD S4D3-24HS4D3-24H 1,0021,002 66,266.2 35,635.6 0,30.3 15,815.8 38,138.1 9999 9999 45,645.6

Материалы:Materials:

• Клетки человеческой эмбриональной клеточной линии H1 (hES), (клетки WA01, WiCell, Madison WI)• Cells of the human embryonic cell line H1 (hES), (cells WA01, WiCell, Madison WI)

• PBS (№ по каталогу 14190, Invitrogen)• PBS (Cat. No. 14190, Invitrogen)

• Y-27632 (Axxora № по каталогу ALX-270-333, San Diego, CA)• Y-27632 (Axxora Part No. ALX-270-333, San Diego, CA)

• EDTA, (Lonza, № по каталогу 17-7-11E)• EDTA, (Lonza, catalog number 17-7-11E)

• NucleoCounter®-(ChemoMetec A/S, № по каталогу YC-T100, г. Аллерод, Дания)• NucleoCounter®- (ChemoMetec A / S, catalog number YC-T100, Allerod, Denmark)

• Обработанные двумя нетканевыми культурами 6-луночные планшеты (Becton Dickinson, № по каталогу Falcon 351146, Franklin Lakes, NJ)• Processed 6-well plates with two non-woven cultures (Becton Dickinson, Catalog No. Falcon 351146, Franklin Lakes, NJ)

• Accutase®, (Sigma, № по каталогу A-6964, г. Сент-Луис, штат Миссури, США)• Accutase®, (Sigma, catalog number A-6964, St. Louis, Missouri, USA)

• Датчики биореактора для определения уровня pH и количества растворенного кислорода (DO) (FermProbe® рН электрод 225 мм, модель № F-635, датчик растворенного кислорода OxyProbe® 12 мм, номер модели D-145 от Broadley-James Corporation, г. Ирвин штат Калифорния, США)• Bioreactor sensors for determining pH and dissolved oxygen (DO) (FermProbe ® pH electrode 225 mm, model number F-635, OxyProbe ® dissolved oxygen sensor 12 mm, model number D-145 from Broadley-James Corporation, Irwin state of California, USA)

• Устройство иммунозащитной макроинкапсуляции (TheraCyte™, г. Ирвин штат Калифорния, США)• An immuno-protective macroencapsulation device (TheraCyte ™, Irvine, California, USA)

• мМоль ИФА человеческого C-пептида (MERCODIA № по каталогу 10-1141-01)• mM ELISA of human C-peptide (MERCODIA catalog number 10-1141-01)

• GlutaMAX™, MCDB131 и ITS-X Invitrogen• GlutaMAX ™, MCDB131 and Invitrogen ITS-X

• FAF-BSA (Proliant)• FAF-BSA (Proliant)

• Ретиноевая кислота, глюкоза 45% (2,5M), SANT (ингибитор Shh) (Sigma)• Retinoic acid, glucose 45% (2.5M), SANT (Shh inhibitor) (Sigma)

• GDF8 (Peprotech)• GDF8 (Peprotech)

• MCX• MCX

• FGF7 (R & D Systems)• FGF7 (R & D Systems)

• LDN-193189 (антагонист рецептора BMP) (Stemgent)• LDN-193189 (BMP receptor antagonist) (Stemgent)

• TPPB (активатор PKC) (ChemPartner)• TPPB (PKC activator) (ChemPartner)

• Изготовленная на заказ среда MCDB 131• Custom Made Environment MCDB 131

Пример 8Example 8

Созревание и функция полученных в биореакторе и криоконсервированных кластеров панкреатических клеток-предшественниковMaturation and function obtained in the bioreactor and cryopreserved clusters of pancreatic precursor cells

Для генерирования достаточного количество клеток для каждого биореакторы разморозили по одному флакону клеток линии H1 hES (WB0106) 31 пассирования из главного банка клеток. Клетки были выращены прикрепленными в среде mTeSR®1 в течение нескольких пассажей на Matrigel™ с использованием EDTA-пассирования до получения достаточного количества клеток, чтобы засеять пять покрытых Matrigel™ двухслойных емкостей для клеток CellSTACKs® (CS2). Клетки были выращены прикрепленными и после формирования в CS2 конфлюэнтного слоя на 70%, к портам среды прикрепили систему трубок с крышками C-Flex®, к которым подсоединяли ведущие к насосу трубки для замыкания системы. После того как система была замкнута с помощью трубок C-Flex®, к ней приваривались с помощью аппарата Terumo пакеты или бутыли, куда перистальтическим насосом переносились объемы жидкости (среда, PBS-/-, Accutase® или суспендированные клетки).To generate a sufficient number of cells for each, bioreactors thawed one vial of H1 hES (WB0106) cell line 31 passages from the main cell bank. The cells were grown adherent in mTeSR ® 1 for several passages on Matrigel ™ using EDTA passaging until a sufficient number of cells were obtained to sow five Matrigel ™ coated double layer cells for CellSTACKs® (CS2). The cells were grown attached and, after forming a confluent layer in CS2 by 70%, a system of tubes with C-Flex® caps was attached to the medium ports, to which tubes leading to the pump were connected to close the system. After the system was closed using C-Flex® tubes, bags or bottles were welded to it using the Terumo machine, where fluid volumes (medium, PBS - / - , Accutase ®, or suspended cells) were transferred with a peristaltic pump.

Для отделения клеток от CS2, клетки промывали один раз фосфатно-солевым буфером Дульбекко без кальция или магния (PBS-/-), затем обрабатывали с раствором Accutase® половинной эффективности, разбавленным PBS-/ и инкубировали в течение 4-5 минут. Раствор Accutase® затем удаляли, и через 3 минуты после нанесения раствора фермента добавляли CS2 для стимулирования клеточного отделения. Емкость со средой mTeSR®1, содержащей 10 мкмоль/л ингибитора Rho-киназы, Y-27632, закачивали в CS2 для промывания и инактивации остаточной Accutase®, затем смыв собирали. Добавляли второй промывочный объем, собирали смыв и объединяли с первым. 1,6-2,0 × 109 клеток извлекали из CS2s в конечном объеме 2 литра. 2,0-2,5 × 108 клеток на слое переносили в четыре CS2 или восемь однослойных емкостей Cell Stacks™ и инкубировали при 37°C в течение 2 часов в увлажненном инкубаторе с 5% CO2 в объеме 200 мл на слой.For separation of CS2 cells, the cells were washed once with PBS Dulbecco without calcium or magnesium (PBS - / -), then treated with a solution of half Accutase ® efficiency diluted PBS - / and incubated for 4-5 minutes. Accutase ® solution was then removed, and after 3 minutes after application of the enzyme solution was added CS2 to stimulate cellular compartment. A container with mTeSR ® 1 medium containing 10 μmol / l of Rho-kinase inhibitor, Y-27632, was pumped into CS2 to wash and inactivate residual Accutase ® , then the wash was collected. A second wash volume was added, the wash was collected and combined with the first. 1.6-2.0 × 10 9 cells were recovered from CS2s in a final volume of 2 liters. 2.0-2.5 × 10 8 cells per layer were transferred to four CS2 or eight Cell Stacks ™ single-layer containers and incubated at 37 ° C for 2 hours in a humidified incubator with 5% CO 2 in a volume of 200 ml per layer.

Используя замкнутый контур трубок C-Flex® с прикрепленной трубкой для насоса, прикрепленной между портами среды CellSTACK®, клеточную суспензию измельчали в течение 5 минут при 75 оборотах в минуту с помощью перистальтического насоса для гомогенизации агрегатов. CellSTACKs® затем инкубировали в течение ночи при 37°C в течение 18 часов в увлажненном инкубаторе с 5% CO2. 2 л клеток и сред из CellStack™ затем объединяли и переносили, по 1 литр каждого, в два 3 л DASGIP биореактора вместе с 1,5 л свежей среды mTeSR® на каждый биореактор. Клетки поддерживали в течение двух дополнительных суток в среде mTeSR® до начала дифференцировки, с полной заменой среды через 24 часа после посева биореактора. После этого была инициирована и направлена дифференцировка, как описано в таблице 10. Клетки поддерживали всего в течение 14 или 15 суток (2 суток mTeSR® + 12 или 13 суток в процессе дифференцировки) в закрытой стерильной суспензии в биореакторе регулируемой температуры (37°C), рН (изменяемым или регулируемым СО2 до 6,8 или 7,2 для плюрипотентных клеток и 7,4 для дифференцировки) и уровнем растворенного кислорода (30% DO, уровни СО2/воздуха регулируются). Лопастное колесо было остановлено на 5-20 минут до удаления среды через погружную трубку для стабилизации кластеров. Среду удаляли или добавляли с помощью перистальтического насоса через погруженную пробирку, соединенную с трубками C-Flex® (Cole-Parmer North America, г. Вернон Хилс, штат Иллинойс, США) с использованием сварщика трубок Terumo™ для поддержания замкнутой системы. Рабочее колесо и нагреватель были вновь запущены после добавления достаточного количества среды, чтобы полностью погрузить колесо.Using a closed loop C-Flex® tube with an attached tube for a pump attached between the ports of the CellSTACK® medium, the cell suspension was ground for 5 minutes at 75 revolutions per minute using a peristaltic pump to homogenize the aggregates. CellSTACKs® were then incubated overnight at 37 ° C for 18 hours in a humidified 5% CO 2 incubator. 2 liters of cells and media from CellStack ™ were then combined and transferred, 1 liter each, into two 3 liters DASGIP bioreactor, together with 1.5 liters of fresh mTeSR® medium per bioreactor. Cells were maintained for two additional days in the mTeSR® medium prior to differentiation, with complete replacement of the medium 24 hours after seeding the bioreactor. After that, differentiation was initiated and directed, as described in Table 10. The cells were maintained for a total of 14 or 15 days (2 days mTeSR® + 12 or 13 days in the differentiation process) in a closed sterile suspension in a controlled temperature bioreactor (37 ° C) , pH (adjustable or regulated CO 2 to 6.8 or 7.2 for pluripotent cells and 7.4 for differentiation) and the level of dissolved oxygen (30% DO, CO 2 / air levels are regulated). The impeller was stopped for 5-20 minutes before removing the medium through the immersion tube to stabilize the clusters. Medium was removed or added using a peristaltic pump through a submerged tube connected to C-Flex® tubes (Cole-Parmer North America, Vernon Hills, Illinois, USA) using a Terumo ™ tube welder to maintain a closed system. The impeller and heater were restarted after adding enough medium to completely immerse the wheel.

Два производственных пробега были начаты в 3-литровых реакторах с использованием этих методов. В первом пробеге реактора были протестированы два различных показателя рН в течение первых двух суток в плюрипотентной культуральной среде. Реактор 1 был установлен на показатель pH 7,2 с фиксированной скоростью инфузии газа CO2 5%, так что рН снижался по мере окисления среды реактора с течением времени за счет метаболической активности клеток. Реактор 2 был установлен на показатель рН 7,2 с помощью регулируемого уровня газа CO2. Во втором пробеге реактора был установлен показатель рН 6,8 для реактора 1 и 7,2 для реактора 2 в обоих регулировались уровни газа СО2.Two production runs were started in 3 liter reactors using these methods. In the first run of the reactor, two different pH values were tested during the first two days in a pluripotent culture medium. Reactor 1 was set to a pH of 7.2 with a fixed infusion rate of CO 2 gas of 5%, so that the pH decreased as the medium of the reactor oxidized over time due to metabolic activity of the cells. Reactor 2 was set to a pH of 7.2 with an adjustable level of CO 2 gas. In the second run of the reactor, the pH was set at 6.8 for reactor 1 and 7.2 for reactor 2 in both regulated gas levels of CO 2 .

Для того чтобы контролировать процессы в биореакторе, в конце каждой стадии дифференцировки были взяты образцы кластеров клеток и проанализированы с помощью проточной цитометрии (таблица 11; таблица 12). Наблюдался почти полный переход от CD9-экспрессирующей/CXCR4-отрицательной популяции плюрипотентных клеток при инициировании дифференцировки к гомогенной популяции клеток, экспрессирующих CXCR4 (96,9-98,1% клеток CXCR4-положительны) по завершению формирования дефинитивной энтодермы.In order to control the processes in the bioreactor, at the end of each stage of differentiation, samples of cell clusters were taken and analyzed using flow cytometry (table 11; table 12). There was an almost complete transition from the CD9-expressing / CXCR4-negative population of pluripotent cells when initiating differentiation to a homogeneous population of cells expressing CXCR4 (96.9-98.1% of CXCR4-positive cells) upon completion of the formation of definitive endoderm.

Результаты, полученные с помощью проточной цитометрии коррелирует с результатами парных образцов, проанализированных методом RT-PCR. Образцы тестировались на протяжении всего процесса для оценки характеристик экспрессии генов в процессе дифференцировки от плюрипотентности к превращению в панкреатические. До начала направленной дифференцировки была протестирована мРНК кластеров клеток в биореакторе на массивах Low Density для панели генов, ассоциированных с плюрипотентностью или ранним началом дифференцировки.The results obtained using flow cytometry correlate with the results of paired samples analyzed by RT-PCR. Samples were tested throughout the process to evaluate the characteristics of gene expression during differentiation from pluripotency to pancreatic transformation. Prior to the start of directed differentiation, mRNA of cell clusters in the bioreactor was tested on Low Density arrays for a panel of genes associated with pluripotency or early onset of differentiation.

Было отмечено, что клетки из биореактора сохраняют экспрессию генов, характерную для плюрипотентности (POU5F1, NANOG, Sox2 и ZFP42) и показывают минимальное или отсутствующее индуцирование генов, характерных для дифференцировки (AFP и Foxa2: < 50-кратное увеличение; FOXD3, GATA2, GATA4, GSC, HAND2, MIXL1 и T: <10-кратное увеличение экспрессии) по сравнению с контрольными недифференцированными клетками линии H1 (Фиг. 33). Однако, как только клетки вступили в контакт со средой дифференцировки на стадии 1 сутки 1, паттерны экспрессии резко изменились, уровни экспрессии CDX2, CER1, FGF17, FGF4, Foxa2, GATA4, GATA6, РКГ MIXL1, MNX1 и Brachyury (Т) увеличились в 100-1000 раз относительно уровней недифференцированных клеток линии HES Н1 (фиг.34). К концу стадии 1 сутки 3 (формирование дефинитивной энтодермы), экспрессия CD9, CDX2, FGF4, MIXL1, NANOG, POU5F1 и Brachyury (Т) уменьшилась относительно таковой на стадии 1 сутки 1, а экспрессия характерных окончательных генов энтодермы, таких как CD99, CER1, CXCR4, FGF17, GATA4, GATA6, KIT, OTX или SOX17, достигла максимума (Фиг. 35).It was noted that cells from the bioreactor retain gene expression characteristic of pluripotency (POU5F1, NANOG, Sox2 and ZFP42) and show minimal or absent induction of genes characteristic of differentiation (AFP and Foxa2: <50-fold increase; FOXD3, GATA2, GATA4 , GSC, HAND2, MIXL1 and T: <10-fold increase in expression) compared with control undifferentiated H1 cell line (Fig. 33). However, as soon as the cells came into contact with the differentiation medium at stage 1 day 1, the expression patterns changed dramatically, the expression levels of CDX2, CER1, FGF17, FGF4, Foxa2, GATA4, GATA6, MCHX1, MCHX6, and Brachyury (T) increased to 100 -1000 times relative to the levels of undifferentiated cells of the HES H1 line (Fig.34). By the end of stage 1, day 3 (formation of definitive endoderm), expression of CD9, CDX2, FGF4, MIXL1, NANOG, POU5F1 and Brachyury (T) decreased relative to that of stage 1 day 1, and expression of characteristic final endoderm genes such as CD99, CER1 , CXCR4, FGF17, GATA4, GATA6, KIT, OTX or SOX17, reached a maximum (Fig. 35).

В конце стадии 1 клеточная культуральная среда была заменена: вместо среды, содержащей GDF8 добавили среду, содержащую FGF7. Было отмечено несколько различных паттернов экспрессии генов: увеличение экспрессии определенных генов в течение стадии 2 (AFP, Atoh1, HHEX, OSR1, Pdx1, Prox1, Sox2 и SOX9), снижение экспрессии (Hand1 и SOX17), стабильно высокая постоянная экспрессия (HNF4α), или низкая/отсутствующая экспрессия (CDX2, GAST, Nkx2.2, Nkx6.1 и Ptf1a) (фиг.36а-е). Эти модели показали, что клетки в реакторе приобретают характеристики клеток передней кишки (AFP, Atoh1, HHEX, HNF4α, OSR1, Pdx1, Prox1, Sox2 и SOX9), экспрессия маркеров мезодермы (Hand1 и SOX17) снизилась. Тем не менее, к концу стадии 2 клетки еще не были специализированы более конкретно в вызревшие клетки кишки или панкреатические клетки (CDX2, GAST, Nkx2.2, Nkx6.1 и Ptf1a).At the end of stage 1, the cell culture medium was replaced: instead of the medium containing GDF8, the medium containing FGF7 was added. Several different gene expression patterns were noted: increased expression of certain genes during stage 2 (AFP, Atoh1, HHEX, OSR1, Pdx1, Prox1, Sox2 and SOX9), reduced expression (Hand1 and SOX17), consistently high constant expression (HNF4α), or low / missing expression (CDX2, GAST, Nkx2.2, Nkx6.1 and Ptf1a) (Fig. 36a-e). These models showed that the cells in the reactor acquire the characteristics of the cells of the foregut (AFP, Atoh1, HHEX, HNF4α, OSR1, Pdx1, Prox1, Sox2 and SOX9), the expression of mesoderm markers (Hand1 and SOX17) decreased. However, by the end of stage 2, cells were not yet more specifically specialized in mature intestinal cells or pancreatic cells (CDX2, GAST, Nkx2.2, Nkx6.1 and Ptf1a).

К концу стадии 3 клетки были специализированы в панкреатические, что было определено по экспрессии Pdx1, показавшей > 100000-кратное увеличение мРНК относительно недифференцированного контроля (Фиг. 36) и результатам проточной цитометрии, показавшей 76-98% клеток, экспрессирующих Pdx1 (табл 11). Также наблюдалась индукция других генов поджелудочной железы (GAST, NKX2.2, NKX6.1, PROX1, PTF1a и SOX9) и кишечника, таких как AFP и CDX2; что указывало на постепенное созревание и спецификацию клеток.At the end of stage 3, cells were specialized in pancreatic, as determined by the expression of Pdx1, which showed a> 100,000-fold increase in mRNA relative to the undifferentiated control (Fig. 36) and the results of flow cytometry, which showed 76-98% of cells expressing Pdx1 (Table 11) . Induction of other pancreatic genes (GAST, NKX2.2, NKX6.1, PROX1, PTF1a and SOX9) and intestines, such as AFP and CDX2, was also observed; which indicated gradual maturation and cell specification.

К концу процесса дифференцировки на сутки 3 или 4 стадии 4, клетки показали паттерны экспрессии, соответствующие сочетанию панкреатических эндокринных клеток (47-54% хромагранин-положительных) и панкреатических клеток-предшественников (33-52% NKX6.1-положительных), как показано в таблицах 11 и 12. Эти стадиеспецифические паттерны экспрессии маркеров конкретно указывают на эффективную постадийную дифференцировку из популяции плюрипотентных клеток в панкреатические клетки-предшественники, характеризующихся высоким уровнем экспрессии Pdx1 (>1×106 кратное индуцирование) и других панкреатических генов (> 1000кратное индуцирование ARX, GCG, GAST, INS, ISL, NEUROD1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Ptf1a и SST) и почти полной потерей экспрессии OCT4/POU5F1 по сравнению с недифференцированным эмбриональными стволовыми клетками человека линии H1 (Фиг. 37).By the end of the differentiation process on day 3 or 4 of stage 4, the cells showed expression patterns corresponding to a combination of pancreatic endocrine cells (47-54% chromagranin-positive) and pancreatic progenitor cells (33-52% NKX6.1-positive), as shown in tables 11 and 12. These patterns are stage-specific expression of markers indicate the effective stepwise differentiation of pluripotent cell populations in the pancreatic progenitor cells are characterized by high level expression of Pdx1 (> 1 × 10 June cr full induction) and other pancreatic genes (> 1000 times induction of ARX, GCG, GAST, INS, ISL, NEUROD1, Ngn3, Nkx2.2, Nkx6.1, Pax4, Ptf1a, and SST) and an almost total loss of OCT4 / POU5F1 expression compared to undifferentiated human embryonic stem cells of the H1 human line (Fig. 37).

В конце процесса дифференцировки было получено 0,08-0,45 × 106 клеток/мл (фиг.38: ежедневный подсчет количества клеток). Клетки, полученные в этом процессе, были криоконсервированы или непосредственно имплантированы в животных либо подкожно с помощью устройства TheraCyte™, либо под почечную капсулу. Для криоконсервирирования клеток их переносили в среду криоконсервации, состоящую из 57,5% MCDB131 с 2,43 г/л бикарбоната натрия,30% свободного от ксенобиотиков KSR, 10% DMSO и 2,5% HEPES (конечная концентрация 25 мМоль). После того, как кластеры клеток были суспендированы в среде криоконсервации при комнатной температуре, пробирки для криоконсервации переносили в морозильник с контролируемой скоростью (CRF) в течение 15 минут. Температуру в камере затем снижали до 4°C в течение 45 минут, и далее снижали на 2°C/мин до -7°C (образец). Затем образец быстро охлаждался, снижение температуры в камере шло со скоростью 25°C/мин до -45°C. Затем было предусмотрено увеличение температуры в камере на 10°C/мин до -25°C (камера). Затем образец охлаждали со скоростью 0,2°C/мин до тех пор, пока температура не достигала -40°C. Затем камеру охлаждали до -160°C со скоростью 35°C/мин и выдерживали при этой температуре в течение 15 минут. Образцы были перемещены в контейнер хранилища с жидким азотом, часть с газовой фазой, для хранения после прекращения пробега CRF.At the end of the differentiation process, 0.08-0.45 × 10 6 cells / ml was obtained (FIG. 38: daily count of the number of cells). The cells obtained in this process were cryopreserved or directly implanted in animals either subcutaneously using a TheraCyte ™ device or under a renal capsule. For cryopreservation of cells, they were transferred to cryopreservation medium consisting of 57.5% MCDB131 with 2.43 g / l of sodium bicarbonate, 30% xenobiotic-free KSR, 10% DMSO and 2.5% HEPES (final concentration 25 mM). After the cell clusters were suspended in a cryopreservation medium at room temperature, the cryopreservation tubes were transferred to a freezer at a controlled rate (CRF) for 15 minutes. The temperature in the chamber was then lowered to 4 ° C over 45 minutes, and further lowered by 2 ° C / min to -7 ° C (sample). Then the sample was rapidly cooled, the temperature in the chamber went down at a rate of 25 ° C / min to -45 ° C. Then it was planned to increase the temperature in the chamber by 10 ° C / min to -25 ° C (chamber). Then the sample was cooled at a rate of 0.2 ° C / min until the temperature reached -40 ° C. Then the camera was cooled to -160 ° C at a rate of 35 ° C / min and kept at this temperature for 15 minutes. Samples were transferred to a storage container with liquid nitrogen, part with a gas phase, for storage after termination of the CRF run.

После того как клетки были сохранены в газовой фазе жидкого азота, их размораживали путем извлечения из хранилища и перенесения на водяную баню при 37°C. Пробирку осторожно встряхивали на водяной бане в течение менее 2 минут до того момента, пока во флаконе не оставался небольшой кристалл льда. Содержимое сосуда затем переносили в 50 мл коническую колбу и разбавляли по каплям в течение двух минут с использованием среды MCDB131 с 2,43 г/л бикарбоната натрия и 2% BSA, до конечного объема 20 мл. Общее количество клеток определяли с помощью аппарата NucleoCounter® и клеточную суспензию переносили в на сверхмалые носители в чашку для культивирования на 1 час. Затем клетки выделяли из среды в 50 мл коническую колбу, супернатант удаляли и клетки ресуспендировали в 4 стадии среды. Затем клетки имплантировали в животных либо подкожно с помощью устройства TheraCyte™, или под почечную капсулу, или клетки инкубировали в чашках Петри со сверхнизкой связывающей способностью течение ночи и затем имплантировали животному.After the cells were stored in the gas phase of liquid nitrogen, they were thawed by removing from storage and transferring to a water bath at 37 ° C. The tube was gently shaken in a water bath for less than 2 minutes until a small crystal of ice remained in the vial. The contents of the vessel were then transferred to a 50 ml conical flask and diluted dropwise over two minutes using MCDB131 medium with 2.43 g / l sodium bicarbonate and 2% BSA, to a final volume of 20 ml. The total number of cells was determined using a NucleoCounter ® apparatus and the cell suspension was transferred to ultra small carriers in a culture dish for 1 hour. The cells were then isolated from the medium in a 50 ml conical flask, the supernatant was removed, and the cells were resuspended in 4 stages of medium. The cells were then implanted in animals either subcutaneously using a TheraCyte ™ device, or under a renal capsule, or the cells were incubated in Petri dishes with ultra-low binding capacity overnight and then implanted into an animal.

У животных отслеживали уровень глюкозы и С-пептида в крови каждые четыре недели после имплантации трансплантата. Животные, которым были имплантированы не-криоконсервированные панкреатические клетки-предшественники с помощью устройства TheraCyte™ или путем прямого размещения клеток под почечную капсулу, показали вызревание клеток и экспрессию C-пептида 1 нг/мл через 16 недель, позже поднявшуюся до 2 нг/мл C-пептида через 20 недель после имплантации (Фиг. 39а и 39d). Кроме того, при обработке STZ для абляции функции β-клеток, у животных с имплантатами поддерживали нормогликемию до удаления трансплантатов, тем самым указывая, что трансплантаты оказались способны защитить животных от диабета, вызванного одной большой дозой STZ (Фиг. 39b ).The animals tracked the level of glucose and C-peptide in the blood every four weeks after implantation of the graft. Animals implanted with non-cryopreserved pancreatic progenitor cells using the TheraCyte ™ device or by directly placing the cells under the renal capsule showed cell maturation and C-peptide expression 1 ng / ml after 16 weeks, later rising to 2 ng / ml C peptide 20 weeks after implantation (Fig. 39a and 39d). In addition, when treating STZ for ablation of β-cell function, animals with implants maintained normoglycemia prior to graft removal, thereby indicating that the grafts were able to protect animals from diabetes caused by a single large dose of STZ (Fig. 39b).

Это картина наблюдалась у животных, которым были имплантированы криоконсервированные клетки. Животные, которым под почечную капсулу были имплантированы криоконсервированные панкреатические клетки-предшественники, которые культивировали в течение 1 часа после разморозки (1207B), показали среднее количество С-пептида 0,56 нг/мл и 1,09 нг/мл через 16 и 20 недель соответственно, в то время как клетки, культивированные в течение ночи после разморозки (1207C), показали в среднем 0,81 нг/мл и 1,35 нг/мл С-пептида через 16 и 20 недель соответственно (Фиг. 39d). Животные, которым были имплантированы криоконсервированные панкреатические клетки-предшественники с помощью устройства TheraCyte™, показали более 1 нг/мл C-пептида через 16 недель, и также как не-криоконсервированные контроли, оказались способны к экспрессии терапевтических уровней С-пептида через неделю после обработки STZ (0,98 нг/мл, Фиг. 39с). Эти результаты показывают, что панкреатические криоконсервированные клеток-предшественников может функционировать с эффективностью, сравнимой с эффективностью не-криоконсервированных контролей при испытании на животных моделях.This pattern was observed in animals that were implanted with cryopreserved cells. Animals that were implanted with cryopreserved pancreatic progenitor cells under the renal capsule, which were cultured for 1 hour after thawing (1207B), showed an average amount of C-peptide of 0.56 ng / ml and 1.09 ng / ml after 16 and 20 weeks respectively, while cells cultured overnight after defrosting (120 ° C) showed an average of 0.81 ng / ml and 1.35 ng / ml of the C-peptide at 16 and 20 weeks, respectively (Fig. 39d). Animals that were implanted with cryopreserved pancreatic progenitor cells using the TheraCyte ™ device showed more than 1 ng / ml C-peptide after 16 weeks, and also as non-cryopreserved controls, were able to express therapeutic levels of C-peptide a week after treatment STZ (0.98 ng / ml, Fig. 39c). These results indicate that pancreatic cryopreserved progenitor cells can function with an efficacy comparable to that of non-cryopreserved controls when tested in animal models.

Таблица 10Table 10 Исходные сутки/ДатаOriginal day / date Стадия 0Stage 0 Стадия 1Stage 1 Стадия 2Stage 2 Стадия 3Stage 3 Стадия 4Stage 4 Базовая средаBase environment mTeSR®1mTeSR®1 MCDB131 (3,64 г/л NaCO3)MCDB131 (3.64 g / l NaCO 3 ) MCDB131
(3,64 г/л NaCO3)
MCDB131
(3.64 g / l NaCO 3 )
MCDB131
(3,64 г/л NaCO3)
MCDB131
(3.64 g / l NaCO 3 )
MCDB131
(3,64 г/л NaCO3)
MCDB131
(3.64 g / l NaCO 3 )
ДобавкиSupplements 2% FAF-BSA
2,5 мМоль глюкозы
1:50 000 ITS-X
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
1:50 000 ITS-X
Glutamax 1: 100
2% FAF-BSA
2,5 мМоль глюкозы
1:50 000 ITS-X
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
1:50 000 ITS-X
Glutamax 1: 100
2% FAF-BSA
2,5 мМоль глюкозы
1:200 ITS-X
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
1: 200 ITS-X
Glutamax 1: 100
2% FAF-BSA
2,5 мМоль глюкозы
1:200 ITS-X
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
1: 200 ITS-X
Glutamax 1: 100
Факторы ростаGrowth factors Только сутки 2:
GDF8
100 нг/мл
Only day 2:
GDF8
100 ng / ml
FGF7
50 нг/мл
FGF7
50 ng / ml
FGF7
50 нг/мл
FGF7
50 ng / ml
нетnot
Малые молекулыSmall molecules Y-27632
(только сутки 0)
[1:1000; 10 мкМоль]
Y-27632
(day 0 only)
[1: 1000; 10 μmol]
Только сутки 1:
MCX
[3 мкМоль]
Only day 1:
MCX
[3 μM]
RA [2 мкМоль]
SANT [0,25 мкМоль]
TPPB [100 нМоль]
Только сутки 1
LDN 100
RA [2 μM]
SANT [0.25 μM]
TPPB [100 nM]
Only day 1
LDN 100
SANT [0,25 мкМоль]
TPPB [100 нМоль]
SANT [0.25 μM]
TPPB [100 nM]
СуткиDay 33 33 33 33 33 ПРИМЕЧАНИЯ: NOTES : Замена средыMedium change
Сутки 1 и 2,Day 1 and 2,
Без замены на с3No replacement for c3
Замена средыMedium change
Сутки 1 и 3,Day 1 and 3,
Без замены на сутки 2No replacement for day 2
Замена средыMedium change
Сутки 1 и 2,Day 1 and 2,
Без замены на с3No replacement for c3
Замена среды только в сутки 1Replacing the environment only per day 1
Болюс глюкозы на сутки 3 Glucose bolus on day 3

Примечание:Note:

• Базовая среда в данной таблице 10 опционально может содержать 5 мМоль глюкозы на стадиях 1-5, при условии, что в качестве добавки не используется Glutamax.• The base medium in this table 10 may optionally contain 5 mM glucose in steps 1-5, provided that Glutamax is not used as an additive.

• В приведенной выше таблице 10 также указано, что на стадии 4 может быть добавлено ([100 нМоль]) Cypi.• Table 10 above also indicates that ([100 nM]) Cypi can be added in step 4.

Таблица 11Table 11 ПлюрипотентностьPluripotency Сутки процессаDay process НазваниеTitle CD9CD9 CD184CD184 SSEA4SSEA4 TRA-1-60TRA-1-60 TRA-1-81TRA-1-81 22 Bx1Bx1 78,978.9 0,10.1 100100 54,554.5 51,151.1 Bx2Bx2 66,566.5 0,00.0 100100 63,563.5 72,372.3 НазваниеTitle CD9CD9 CD184CD184 DE (Ст1сут2)DE (St1sut2) 4four BX1Bx1 9,99.9 87,987.9 BX2Bx2 19,719.7 83,183.1 DE (Ст1сут3)DE (St1sut3) 5five BX1Bx1 17,417.4 98,198.1 BX2Bx2 25,425.4 96,996.9 НазваниеTitle Nkx6.1Nkx6.1 Nkx2.2Nkx2.2 PDX1PDX1 PE (Ст3Сут3)PE (St3Sut3) 11eleven BX1Bx1 4,44.4 25,225.2 98,698.6 BX2Bx2 4,84.8 28,928.9 76,276.2 НазваниеTitle Nkx6.1Nkx6.1 СинаптофизинSynaptophysin CDX2CDX2 Sox2Sox2 Nkx2.2Nkx2.2 ХромогранинChromogranin PPC (Ст4сут3)PPC (St4Sut3) 1414 BX1Bx1 33,233.2 67,467.4 2,12.1 13,013.0 69,369.3 51,151.1 BX2Bx2 35,135.1 56,956.9 1,91.9 11,511.5 64,464.4 51,251.2

Таблица 12Table 12 ПлюрипотентностьPluripotency Сутки процессаDay process НазваниеTitle CD9CD9 CD184CD184 SSEA4SSEA4 TRA-1-60TRA-1-60 TRA-1-81TRA-1-81 22 BX1Bx1 99,899.8 0,30.3 100,0100.0 88,688.6 85,885,8 BX2Bx2 99,899.8 0,30.3 100,0100.0 86,886,8 85,985.9 НазваниеTitle CD9CD9 CD184CD184 CD99CD99 DE (Ст1сут3)DE (St1sut3) 5five BX1Bx1 88,388.3 99,299.2 97,097.0 BX2Bx2 78,378.3 99,399.3 96,996.9 НазваниеTitle Nkx6.1Nkx6.1 Nkx2.2Nkx2.2 ХромогранинChromogranin PE (Ст3Сут3)PE (St3Sut3) 11eleven BX1Bx1 6,36.3 23,223.2 8,58.5 BX2Bx2 1,21.2 24,624.6 11,511.5 НазваниеTitle Nkx6.1Nkx6.1 СинаптофизинSynaptophysin CDX2CDX2 Sox2Sox2 Nkx2.2Nkx2.2 ХромогранинChromogranin PPC (Ст4сут3)PPC (St4Sut3) 1414 BX1Bx1 49,049.0 7,37.3 13,113.1 56,156.1 49,249.2 BX2Bx2 52,652.6 3,13.1 19,919.9 54,554.5 47,447.4 PPC (Ст4сут4)PPC (St4Sut4) 1515 BX1Bx1 48,448.4 53,153.1 0,40.4 4,94.9 60,360.3 44,344.3 BX2Bx2 45,745.7 66,566.5 0,20.2 4,54.5 63,763.7 54,354.3

Расчет напряжения сдвига, испытываемого клеточными агрегатами в биореакторе с механическим перемешиваниемCalculation of shear stress experienced by cell aggregates in a bioreactor with mechanical agitation

Было определено напряжение сдвига, которое испытывают клеточные агрегаты в 2,7 литра перемешиваемой DASGIP суспензии в биореакторе при скорости перемешивания 70 оборотов в минуту в 3l DASGIP биореакторе. Для того чтобы рассчитать значения напряжения сдвига, были сделаны следующие заявленные допущения.A shear stress was determined that cell aggregates of 2.7 liters of the stirred DASGIP suspension in the bioreactor were tested at a mixing speed of 70 rpm in a 3l DASGIP bioreactor. In order to calculate the shear stress values, the following stated assumptions were made.

Предположения:Assumptions:

1. Максимальное напряжение сдвига, испытываемое клеточными агрегатами, не является результатом турбулентных вихрей1. The maximum shear stress experienced by cell aggregates is not the result of turbulent eddies.

2. Максимальное напряжение сдвига, испытываемое клеточными агрегатами, не является результатом трения двух агрегатов друг об друга или агрегата о лопасть.2. The maximum shear stress experienced by cell aggregates is not the result of the friction of the two aggregates against each other or the aggregate against the blade.

3. Напряжение. вызванное столкновением с перегородками (т.е. погруженными трубками и зондами) в этих расчетах не рассматриваются3. Voltage. caused by collisions with partitions (i.e. immersed tubes and probes) are not considered in these calculations.

Для целей расчетов в данном описании использовались перечисленные ниже номенклатура и физические параметры.For the purposes of calculations in this description, the nomenclature and physical parameters listed below were used.

Номенклатура:Nomenclature:

СокращениеReduction Единицы измеренияUnits

Figure 00000005
Figure 00000005
Плотность жидкости Fluid density кг/м3 kg / m 3
Figure 00000006
Figure 00000006
Вязкость жидкости Fluid viscosity Па*сPass
Figure 00000007
Figure 00000007
Кинематическая вязкостьKinematic viscosity м2m 2 / s
Figure 00000008
Figure 00000008
Максимальное напряжение сдвигаMaximum shear stress дин/см2 dyn / cm 2
NN ПеремешиваниеStirring об/секrev / sec PP Потребленная электроэнергияElectricity consumption кг м23 kg m 2 / s 3 PN P n Число мощностиPower number без единиц измеренияwithout units ReRe Число РейнольдсаReynolds number без единиц измеренияwithout units
Figure 00000009
Figure 00000009
Мощность, рассеиваемая на единицу массыPower dissipated per mass unit м23 m 2 / s 3
Di D i Диаметр лопастного колесаBlade wheel diameter MM DD Диаметр емкостиDiameter of tank MM WW Ширина лопастного колесаPaddle Width MM VL V l Объем жидкостиFluid volume м3 m 3 K1-K4 K 1 -K 4 Расчетные значения на основе эмпирических корреляций NAGATACalculated values based on empirical correlations NAGATA

ПараметрыOptions : :

Параметры биореактора Bioreactor parameters Di D i 0,080.08 мm D D 0,130.13 мm W W 0,040.04 мm VL V l 0,00240,0024 m3m3

Параметры средыEnvironment settings Плотность (

Figure 00000010
Density (
Figure 00000010
10001000 кг/м3 kg / m 3 Вязкость (
Figure 00000011
Viscosity (
Figure 00000011
8,50E-048.50E-04 Па*сPass
кинематическая вязкость (
Figure 00000012
kinematic viscosity (
Figure 00000012
8,50E-078.50E-07 м2m 2 / s

Указанные в списке параметры биореактора и среды использовались в указанных ниже уравненияхThe listed parameters of the bioreactor and the medium were used in the equations below.

УравненияEquations ::

Числа Рейнольдса:Reynolds numbers:

Figure 00000013
Figure 00000013

Максимальное напряжение сдвига агрегатов (Cherry and Kwon 1990)Maximum shear stress on aggregates (Cherry and Kwon 1990)

Figure 00000014
Figure 00000014

Мощность, рассеиваемая (ε) на единицу массыPower dissipated (ε) per unit mass

Figure 00000015
Figure 00000015

Потребленная электороэнергия (P)Consumed electricity (P)

Figure 00000016
Figure 00000016

Расчет числа мощности был основан на эмпирической корреляции, полученной Нагатой (1975) для емкостей без преград с механическим перемешиванием.The calculation of the power number was based on the empirical correlation obtained by Nagata (1975) for containers without obstacles with mechanical agitation.

Figure 00000017
Figure 00000017

гдеWhere

Figure 00000018
Figure 00000018

Figure 00000019
Figure 00000019

Figure 00000020
Figure 00000020

Figure 00000021
Figure 00000021

Был рассчитан максимальный сдвиг клеточных агрегатов при скорости перемешивания 70 оборотов в минуту в биореакторе 2,7 л DASGIP, он составил, по меньшей мере, 0,25 паскалей (2,5 дин/см2). Клетки, содержащиеся во внешнем слой кластеров, испытывали самые высокие уровни напряжения сдвига. Данные значения напряжения сдвига сильно зависят от изложенных предположений.The maximum shift of cell aggregates was calculated at a stirring speed of 70 revolutions per minute in a 2.7 L DASGIP bioreactor; it was at least 0.25 pascals (2.5 dyn / cm 2 ). Cells contained in the outer layer of the clusters experienced the highest levels of shear stress. These shear stress values are highly dependent on the assumptions made.

Пример 9Example 9

Дифференцировка эмбриональных стволовых клеток клеточной линии WA01 в клетки дефинитивной энтодермы: роль MCX/GDF8 в суспензионной культуреDifferentiation of embryonic stem cells of the WA01 cell line into definitive endoderm cells: the role of MCX / GDF8 in suspension culture

Кластеры плюрипотентных эмбриональных стволовых клеток человека из линии стволовых клеток H1 (NIH код: WA01) высевали при плотности клеток в пределах от 0,25×106 до 2×106 клеток/мл в колбах Эрленмейера / перемешиваемых колбах, центрифужных пробирках или на непокрытых 6-луночных планшетах низкого связывания или обработанных нетканевой культурой 6-луночных планшетах, посев проводится в среду MCDB-131, содержащую 3,64 г/мл бикарбоната натрия и 5,5 мМоль глюкозы (№ по каталогу A13051 DJ, Invitrogen, CA), дополненной 2% очищенной от жирных кислот BSA (№ по каталогу 68700, Proliant, IA), 1X GlutaMAX™ (№ по каталогу 35050-079 , Invitrogen, Калифорния), дополнительно добавлено 2,5 мМоль глюкозы (№ по каталогу G8769, Sigma) и ITS-х с концентрацией базового раствора 1: 50 000 (№ по каталогу 51500056, Invitrogen, Калифорния). Среда MCDB-131, дополненная таким образом, в настоящем документе будет упоминаться как «базовая среда стадии 1». Кластеры в этой среде в первые сутки дифференцировки были обработаны либо 3 мкМоль MCX (ингибитор GSK3B, 14-проп-2-ен-1-ил-3,5,7,14,17,23,27-гептаазатетрацикло [19.3.1.1~2,6~.1~8,12~]гептакоза-1(25),2(27),3,5,8(26),9,11,21,23-нонен-16-он, заявка на патент США № 12/494,789; включенная в настоящий документ посредством ссылки в полном объеме) и 100 нг/мл GDF-8 (№ по каталогу 120-00, Peprotech), либо только 3 мкМоль MCX, или 20 нг/мл WNT-3A (№ по каталогу 1324-WN-002, R&D Systems, штат Миннесота, США) плюс 100 нг/мл активина А (№ по каталогу 338-AC, R&D Systems, штат Миннесота, США), или 20 нг/мл только WNT-3A. На второй сутки, клетки переносили в свежую базовую среду стадии 1 с добавлением либо 100 нг/мл GDF8, или 100 нг/мл активина A. Образцы собирали для проточной цитометрии, PCR и анализа Вестерн-блот в различные моменты времени, начиная от нулевого времени (непосредственно перед добавление базовой среды плюс добавки) до момента спустя 72 часа после начала дифференцировки.Clusters of pluripotent human embryonic stem cells from the H1 stem cell line (NIH code: WA01) were seeded at a cell density ranging from 0.25 × 10 6 to 2 × 10 6 cells / ml in Erlenmeyer flasks / stirred flasks, centrifuge tubes or on uncovered Low-binding 6-well plates or non-tissue culture-treated 6-well plates are seeded on MCDB-131 medium containing 3.64 g / ml sodium bicarbonate and 5.5 mM glucose (Catalog No. A13051 DJ, Invitrogen, CA), supplemented with 2% fatty acid-purified BSA (Catalog No. 68700, Proliant, I A), 1X GlutaMAX ™ (Catalog No. 35050-079, Invitrogen, Calif.), Additionally added 2.5 mM glucose (Catalog No. G8769, Sigma) and ITS-x with a concentration of 1: 50,000 base solution (Catalog No. 51500056, Invitrogen, California). MCDB-131, as supplemented in this way, will be referred to as the “Stage 1 Baseline Environment” in this document. Clusters in this medium on the first day of differentiation were treated with either 3 μM MCX (GSK3B inhibitor, 14-prop-2-en-1-yl-3,5,7,14,17,23,27-heptaazatetracyclo [19.3.1.1 ~ 2.6 ~ .1 ~ 8.12 ~] heptacosis-1 (25), 2 (27), 3.5.8 (26), 9,11,21,23-nonen-16-one, patent application US No. 12 / 494,789; incorporated herein by reference in full) and 100 ng / ml GDF-8 (Catalog No. 120-00, Peprotech), or only 3 μM MCX, or 20 ng / ml WNT-3A ( Catalog number 1324-WN-002, R & D Systems, Minnesota, USA) plus 100 ng / ml of activin A (Catalog No. 338-AC, R & D Systems, Minnesota, USA), or 20 ng / ml WNT-3A only . On the second day, the cells were transferred to a fresh base medium of stage 1 with the addition of either 100 ng / ml GDF8, or 100 ng / ml activin A. Samples were collected for flow cytometry, PCR and Western blot analysis at various times, starting from zero time (immediately before adding the base medium plus additives) until 72 hours after the start of differentiation.

Эффективность, с которой генерировалась дефинитивная энтодерма, была определена после 3 суток дифференцировки при каждом условии, измерением с использованием проточной цитометрии процента клеток, экспрессирующих маркеры клеточной поверхности CXCR4, CD99 и CD9. Данные (как показано на графиках экспрессии на Фиг. 40a-d и обобщено в таблице 13) показывают, что в суспензионной культуре при добавлении 3 мкМоль MCX в отсутствие веществ семейства TGF-β за первые сутки дифференцировки генерируется дефинитивная энтодерма на уровнях, сравнимых с проявляющимися при обработке клеток 3 мкМоль MCX плюс 100 нг/мл GDF-8 или 20 нг/мл WNT-3A плюс 100 нг/мл активина А за одни сутки .The efficiency with which the definitive endoderm was generated was determined after 3 days of differentiation under each condition, measured using flow cytometry, of the percentage of cells expressing cell surface markers CXCR4, CD99 and CD9. The data (as shown in the expression graphs in Fig. 40a-d and summarized in Table 13) show that in suspension culture, adding 3 μM MCX in the absence of substances of the TGF-β family during the first days of differentiation generates definitive endoderm at levels comparable to those that appear by treating cells with 3 μM MCX plus 100 ng / ml GDF-8 or 20 ng / ml WNT-3A plus 100 ng / ml activin A in one day.

Таблица 13Table 13 ОбработкаTreatment
(Сутки 1 → Сутки 2 и 3)(Day 1 → Day 2 and 3)
CD9CD9
(% посредством анализа FACS)(% through FACS analysis)
CD99CD99
(% посредством анализа FACS)(% through FACS analysis)
CD184CD184
(% от родительских)(% of parent)
MCX + GDF8 → GDF8MCX + GDF8 → GDF8 1,51.5 0,00.0 95,3/95,495.3 / 95.4 только MCX → GDF8only MCX → GDF8 6,46.4 0,00.0 93,6/93,693.6 / 93.6 WNT3a + активин A → активин AWNT3a + activin A → activin A 3,33.3 22,122.1 98,1/97,598.1 / 97.5 только WNT3a → активин AOnly WNT3a → Activin A 31,731.7 6,26.2 87,8/86,187.8 / 86.1

Пример 10Example 10

Дифференцировка эмбриональных стволовых клеток из клеточной линии WA01 в дефинитивную энтодерму: дозозависимый эффект соединений MCX в суспензионной культуре в зависимости от концентрацииDifferentiation of embryonic stem cells from the WA01 cell line to the definitive endoderm: dose-dependent effect of MCX compounds in suspension culture depending on concentration

Кластеры плюрипотентных эмбриональных стволовых клеток человека из линии стволовых клеток H1 (NIH код: WA01) высевали при плотности клеток в пределах от 0,25×106 до 2×106 клеток/мл в колбах Эрленмейера/перемешиваемых колбах, центрифужных пробирках на базовую среду стадии 1, как описано в примере 9.Кластеры обрабатывали базовой средой стадии 1, содержащей 1,5, 2, 3 или 4 мкМоль MCX на первые сутки дифференцировки и свежей базовой средой стадии 1, содержащей 100 нг/мл GDF-8, на 2 сутки. На третьи сутки среду на заменяли. Образцы собирали для проточной цитометрии и PCR-анализа по истечению третьих суток дифференцировки.Clusters of pluripotent embryonic human stem cells from the H1 stem cell line (NIH code: WA01) were seeded at a cell density ranging from 0.25 × 10 6 to 2 × 10 6 cells / ml in Erlenmeyer flasks / stirred flasks, centrifuge tubes on base medium stages 1 as described in example 9. The clusters were treated with a base medium of stage 1 containing 1.5, 2, 3 or 4 μmol MCX on the first day of differentiation and fresh base medium stage 1 containing 100 ng / ml GDF-8 on 2 day. On the third day, Wednesday was replaced. Samples were collected for flow cytometry and PCR analysis after the third day of differentiation.

Эффективность, с которой генерировалась дефинитивная энтодерма, была определена измерением с использованием проточной цитометрии процента клеток, экспрессирующих маркеры клеточной поверхности CXCR4, CD99 и CD9. Данные (как показано на графиках экспрессии на Фиг. 41A-D и обобщено в таблице 14) показывают, что в суспензионных культурах, добавление MCX при концентрациях менее 2 мкМоль приводит в результате к появлению меньшего количества клеток дефинитивной энтодермы (о чем свидетельствует более низкий процент CXCR4-положительных клеток и более высокий процент CD9-положительных клеток). Кроме того, при концентрациях выше 4 мкМоль, MCX проявляет вредное воздействие на клетки, что приводит к снижению жизнеспособности клеток. Тем не менее, за счет увеличения концентрации BSA, эффекты MCX могут быть модулированы таким образом, что концентрация ≥ 4 мкМоль/л может быть применена. С другой стороны, концентрации ≤ 1,5 мкМоль/л может быть применена для создания дефинитивной энтодермы при использовании более низких концентраций BSA.The efficiency with which the definitive endoderm was generated was determined by measurement using flow cytometry of the percentage of cells expressing cell surface markers CXCR4, CD99 and CD9. The data (as shown in the expression graphs in Fig. 41A-D and summarized in Table 14) show that in suspension cultures, the addition of MCX at concentrations of less than 2 μM results in a smaller number of definitive endoderm cells (as indicated by a lower percentage CXCR4 positive cells and a higher percentage of CD9 positive cells). In addition, at concentrations above 4 μM, MCX exerts a deleterious effect on the cells, which leads to a decrease in cell viability. However, by increasing the concentration of BSA, the effects of MCX can be modulated so that a concentration of ≥ 4 µM / L can be applied. On the other hand, concentrations of ≤ 1.5 μMol / L can be used to create definitive endoderm using lower BSA concentrations.

Таблица 14Table 14 ОбработкаTreatment CD9 (% по FACS)CD9 (% by FACS) CD184 (% по FACS)CD184 (% by FACS) 4 мкМоль MCX4 μM MCX 1,01.0 95,295.2 3 мкМоль MCX3 μM MCX 0,20.2 96,096.0 2 мкМоль MCX2 μM MCX 0,20.2 96,596.5 1.5 мкМоль MCX1.5 μM MCX 68,468.4 67,867,8

Пример 11Example 11

Дифференцировка эмбриональных стволовых клеток из клеточной линии WA01 в дефинитивную энтодерму: роль частоты замены среды в суспензионной культуреDifferentiation of embryonic stem cells from the WA01 cell line into the definitive endoderm: the role of the medium replacement rate in suspension culture

Кластеры плюрипотентных эмбриональных стволовых клеток человека из линии стволовых клеток H1 (NIH код: WA01) высевали при плотности клеток в пределах от 0,25×106 до 2×106 клеток/мл в колбах Эрленмейера/перемешиваемых колбах, центрифужных пробирках на базовую среду стадии 1, как описано в примере 9.Кластеры обрабатывали базовой средой стадии 1, содержащей 3 мкМоль MCX на первые сутки дифференцировки и свежей базовой средой стадии 1, содержащей 100 нг/мл GDF-8, на 2 сутки. В контрольных культурах выполняли замену среды на третьи сутки; в отдельном сосуде замену среды на третьи сутки не проводили. Образцы собирали для проточной цитометрии и PCR-анализа по истечению третьих суток дифференцировки.Clusters of pluripotent embryonic human stem cells from the H1 stem cell line (NIH code: WA01) were seeded at a cell density ranging from 0.25 × 10 6 to 2 × 10 6 cells / ml in Erlenmeyer flasks / stirred flasks, centrifuge tubes on base medium stages 1 as described in example 9. The clusters were treated with base medium of stage 1 containing 3 μM MCX on the first day of differentiation and fresh base medium of stage 1 containing 100 ng / ml GDF-8 on day 2. In control cultures, the medium was changed on the third day; in a separate vessel, the medium was not replaced on the third day. Samples were collected for flow cytometry and PCR analysis after the third day of differentiation.

Эффективность, с которой генерировалась дефинитивная энтодерма, была определена при каждом из условий измерением с использованием проточной цитометрии процента клеток, экспрессирующих маркеры клеточной поверхности CXCR4, CD99 и CD9. Результаты показаны на графиках экспрессии На Фиг. 42А и В и приведены в таблице 15.The efficacy with which the definitive endoderm was generated was determined at each of the conditions by measuring, using flow cytometry, the percentage of cells expressing cell surface markers CXCR4, CD99 and CD9. Results are shown in expression graphs. FIG. 42A and B and are shown in Table 15.

Таблица 15Table 15 ОбработкаTreatment CD9 (% по FACS)CD9 (% by FACS) CD99 (% по FACS)CD99 (% by FACS) CD184 (% по FACS)CD184 (% by FACS) Полная замена среды на стадии 1Complete replacement of medium at stage 1 0,20.2 72,472.4 90,2/89,690.2 / 89.6 Замена не проводилась на стадии 1 сутки 3Replacement was not carried out at stage 1 day 3 0,90.9 68,368.3 89,2/89,889.2 / 89.8

Пример 12Example 12

Дифференцировка эмбриональных стволовых клеток из клеточной линии WA01 в дефинитивную энтодерму: Использование GlutaMAX™ в суспензионной культуреDifferentiation of embryonic stem cells from the WA01 cell line to the definitive endoderm: Use of GlutaMAX ™ in suspension culture

Кластеры плюрипотентных эмбриональных стволовых клеток человека из линии стволовых клеток H1 (NIH код: WA01) высевали при плотности клеток в пределах от 0,25×106 до 2×106 клеток/мл в колбах Эрленмейера / перемешиваемых колбах, центрифужных пробирках.Clusters of pluripotent embryonic human stem cells from the H1 stem cell line (NIH code: WA01) were seeded at a cell density ranging from 0.25 × 10 6 to 2 × 10 6 cells / ml in Erlenmeyer flasks / stirred flasks, centrifuge tubes.

Настоящий пример выполняли для определения необходимости добавки Glutamax™ для генерации дефинитивной энтодермы путем суспендирования кластеров в базовой среде стадии 1 (как описано в примере 9) с и без GlutaMAX™, среда была дополнена 3 мкМоль MCX на первые сутки дифференцировки с заменой базовой среды стадии 1, содержащей 100 нг/мл GDF-8, на 2 сутки. На третьи сутки среду на заменяли. Образцы собирали для проточной цитометрии и PCR-анализа по истечению третьих суток дифференцировки.This example was performed to determine if Glutamax ™ was required to generate definitive endoderm by suspending clusters in the base medium of stage 1 (as described in example 9) with and without GlutaMAX ™, the medium was supplemented with 3 μM MCX on the first day of differentiation with the replacement of the base medium of stage 1 containing 100 ng / ml GDF-8 for 2 days. On the third day, Wednesday was replaced. Samples were collected for flow cytometry and PCR analysis after the third day of differentiation.

Эффективность, с которой генерировалась дефинитивная энтодерма, была определена при каждом из условий измерением с использованием проточной цитометрии процента клеток, экспрессирующих маркеры клеточной поверхности CXCR4, CD99 и CD9. Результаты показаны на графиках экспрессии на Фиг. 43А и В и приведены в таблице 16.The efficacy with which the definitive endoderm was generated was determined at each of the conditions by measuring, using flow cytometry, the percentage of cells expressing cell surface markers CXCR4, CD99 and CD9. The results are shown in the expression graphs in FIG. 43A and B and are shown in Table 16.

Таблица 16Table 16 ОбработкаTreatment CD9 (% по FACS)CD9 (% by FACS) CD99 (% по FACS)CD99 (% by FACS) CD184 (% по FACS)CD184 (% by FACS) X GlutaMAX™X GlutaMAX ™ 0,20.2 93,793.7 96,8/96,796.8 / 96.7 0 GlutaMAX™0 GlutaMAX ™ 1,31,3 95,695.6 97,7/97,397.7 / 97.3

Пример 13Example 13

Дифференцировка эмбриональных стволовых клеток из клеточной линии WA01 в дефинитивную энтодерму: роль концентраций бикарбоната натрия в суспензионной культуреDifferentiation of embryonic stem cells from the WA01 cell line to definitive endoderm: the role of sodium bicarbonate concentrations in suspension culture

Кластеры плюрипотентных эмбриональных стволовых клеток человека из линии стволовых клеток H1 (NIH код: WA01) высевали при плотности клеток в пределах от 0,25×106 до 2×106 клеток/мл в колбах Эрленмейера / перемешиваемых колбах, центрифужных пробирках на базовую среду стадии 1, как описано в примере 9, ( среда содержала 3,64 г/л бикарбонат натрия), или на модифицированную базовую среду стадии 1, которая содержала 2,43 г/л бикарбоната натрия. Кластеры обрабатывали базовой средой стадии 1, содержащей MCX и GDF-8, как описано в примере 12. Образцы собирали для проточной цитометрии по истечению третьих суток дифференцировки. На каждые сутки дифференцировки также делались фазоконтрастные изображения.Clusters of pluripotent embryonic human stem cells from the H1 stem cell line (NIH code: WA01) were seeded at a cell density ranging from 0.25 × 106 up to 2 × 106 cells / ml in Erlenmeyer flasks / stirred flasks, centrifuge tubes on base medium stage 1 as described in example 9 (medium contained 3.64 g / l sodium bicarbonate), or on modified base medium stage 1, which contained 2.43 g / l sodium bicarbonate. The clusters were treated with basic medium of stage 1, containing MCX and GDF-8, as described in example 12. Samples were collected for flow cytometry after the third day of differentiation. Phase-contrast images were also made every day of differentiation.

Эффективность, с которой генерировалась дефинитивная энтодерма, была определена измерением с использованием проточной цитометрии процента клеток, экспрессирующих маркеры клеточной поверхности CXCR4, CD99 и CD9. Результаты показаны на графиках экспрессии на Фиг. 44а и В и приведены в таблице 17. В суспензионных культурах, низкий уровень бикарбоната натрия, 2,43 г/л, по всей видимости, приводят к менее эффективной генерации дефинитивной энтодермы (в среднем 87,4% клеток экспрессируют CXCR4), в отличие от более высокого уровня 3,64 г/л (в среднем 97.35% клеток экспрессируют CXCR4). Кроме того, было отмечено, что различия в уровнях бикарбоната коррелировали с различиями в морфологии кластера в конце стадии 1, что было отмечено с помощью фазоконтрастной микроскопии (Фиг.44 C и D). Кроме того, клетки, дифференцированные при высоких уровнях бикарбоната, как наблюдалось, формировали менее плотные клеточные кластеры, чем клетки, дифференцированные при 2,43 г/л бикарбоната.The efficiency with which the definitive endoderm was generated was determined by measurement using flow cytometry of the percentage of cells expressing cell surface markers CXCR4, CD99 and CD9. The results are shown in the expression graphs in FIG. 44a and B and are shown in Table 17. In suspension cultures, a low level of sodium bicarbonate, 2.43 g / l, appears to lead to less effective generation of definitive endoderm (on average, 87.4% of cells express CXCR4), in contrast to from a higher level of 3.64 g / l (on average, 97.35% of cells express CXCR4). In addition, it was noted that differences in bicarbonate levels correlated with differences in cluster morphology at the end of stage 1, which was noted using phase-contrast microscopy (Fig. 44 C and D). In addition, cells differentiated at high bicarbonate levels, as observed, formed less dense cell clusters than cells differentiated at 2.43 g / l bicarbonate.

Таблица 17Table 17 ОбработкаTreatment CD9 (% по FACS)CD9 (% by FACS) CD99 (% по FACS)CD99 (% by FACS) CD184 (% по FACS)CD184 (% by FACS) 3,64 г/л бикарбоната натрия3.64 g / l sodium bicarbonate 5,55.5 92,792.7 97,7/97,097.7 / 97.0 2,43г/л бикарбоната натрия2,43g / l sodium bicarbonate 12,312.3 66,766.7 86,4/88,486.4 / 88.4

Пример 14Example 14

Создание кластеров клеток-предшественников панкреатических клеток из человеческих индуцированных плюрипотентных стволовых клеток в масштабируемом процессе в биореактореCreating clusters of pancreatic progenitor cells from human induced pluripotent stem cells in a scalable process in a bioreactor

Клеточная терапия требует большого количества (> 108) клеток в дозе. Этот пример демонстрирует процесс, способный дифференцировать индуцированные массы плюрипотентных стволовых клеток (IPS клетки) в количествах, на 3-5 порядков больших, чем это позволяют нынешние производственные практики клеточной терапии.Cell therapy requires a large number (> 10 8 ) of cells per dose. This example demonstrates a process capable of differentiating the induced masses of pluripotent stem cells (IPS cells) in quantities that are 3-5 orders of magnitude larger than current production practices of cell therapy allow.

В этом примере была использована клеточная линия IPS - UTC (полученная из клеток ткани пуповины, ранее описанных в заявке на патент США 13/330,931 (публикации заявки на патент США 2013/0157365), раскрытие которой включено путем ссылки в полном объеме, как она относится к получению клеточных линий iPS). Клетки были получены из мышиных эмбриональных фидерных клеток с использованием трансфекции плазмид без оставления следов и криоконсервированных при пассировании 15.In this example, the IPS-UTC cell line was used (obtained from umbilical cord tissue cells previously described in US patent application no. 13 / 330,931 (US patent application publication No. 2013/0157365), the disclosure of which is incorporated by reference in its entirety. to obtain cell lines iPS). Cells were obtained from mouse embryonic feeder cells using plasmid transfection without leaving traces and cryopreserved upon passaging 15.

Из этих криоконсервированных клеток была создана серия клеточных банков путем добавления содержимого пробирки исходного материала в ходе процесса разморозки флакона в рекомбинантный человеческий ламинин (hrLaminin № по каталогу LN-521 от Biolamina, г. Стокгольм, Швеция) в среде Essential8™ (E8) ™ от Life Technologies Corporation (г. Гранд Айленд, штат Нью-Йорк, США) для генерирования внутрилабораторного посевного материала. Размороженный и выращенный материал называется «предварительно-предварительный главный банк клеток» (Pre-Pre МСВ) и служит в качестве посевного материала для будущих банков. Из трех последовательных клеточных банков Pre-Pre МСВ затем генерируется предварительный главный банк клеток (Pre МСВ), главный банк клеток (MCB), и рабочий банк клеток (WCB). Один флакон WCB затем размораживают, выращивают на hrLaminin с использованием пассирования EDTA в течение трех пассажей в E8™. Клетки были впервые высеяны после разморозки в колбу T225 (Corning; г. Корнинг, штат Нью-Йорк, США), а затем пересеяны на несколько колб T225. Несколько колбы T225 затем пассажировали и объединяли, чтобы засеять одну однослойную емкость для клеток Cell Stack™ (CS1). После того, как клетки в CS1 были объединены, клетки промывали один раз PBS-/-, обрабатывали раствором Accutase® половинной эффективности, разбавляли PBS-/- и инкубировали в течение 4-5 минут. Затем Accutase® удаляли, и через 3 минуты после нанесения раствора фермента, CS1 был использован для стимулирования клеточного отделения. E8™ с добавлением 0,5% BSA, содержащий 10 мкмоль/л ингибитора Rho-киназы, Y-27632, был добавлен к CS1 для промывания и инактивации остаточных Accutase®. Смыв собирали и добавляли второй объем для промывания, смыв с которого также собрали и объединили с первым смывом.Of these cryopreserved cells, a series of cell banks was created by adding the contents of the starting material tube during the defrosting process of the vial to the recombinant human laminin (hrLaminin LN-521 catalog number from Biolamina, Stockholm, Sweden) in Essential8 ™ (E8) ™ medium Life Technologies Corporation (Grand Island, New York, USA) for the generation of laboratory seed. The thawed and grown material is called the “pre-pre-main cell bank” (Pre-Pre CEM) and serves as seed for future banks. Of the three consecutive cell banks, the Pre-Pre MCB then generates a provisional master cell bank (Pre MCB), a master cell bank (MCB), and a working cell bank (WCB). One vial of WCB is then thawed, grown on hrLaminin using EDTA passaging for three passages in an E8 ™. Cells were first seeded after defrosting into a T225 flask (Corning; Corning, New York, USA), and then dissected into several T225 flasks. Several T225 flasks were then passaged and pooled to inoculate a single monolayer cell stack cell stack (CS1). After the cells CS1 were combined, the cells were washed once with PBS - / -, treated with a solution of half Accutase ® efficiency, diluted with PBS - / - and incubated for 4-5 minutes. Then Accutase ® was removed and after 3 minutes after application of the enzyme solution, CS1 was used to stimulate cellular compartment. E8 ™ supplemented with 0.5% BSA containing 10 µmol / L Rho kinase inhibitor, Y-27632, was added to CS1 to wash and inactivate residual Accutase ® . The flush was collected and a second flush volume was added, the flush from which was also collected and combined with the first flush.

Клетки переносили в среду, дополненную 0,5% BSA, содержащую 10 мкмоль/л ингибитора Rho-киназы, Y-27632, в 1-литровую центрифужную пробирку одноразового использования (Corning г. Корнинг, штат Нью-Йорк, США) в концентрации 1×106 клеток/мл в 225 мл. Клеткам дали возможность кластеризоваться в статической суспензии в течение 60 минут в увлажненном инкубаторе с 5% CO2, затем перемешивали в течение 5 минут при 55-65 оборотах в минуту и добавляли 225 мл дополнительной среды, дополненной 0,5% BSA, содержащей 10 мкмоль/л ингибитора Rho-киназы, Y-27632. Клеткам дали отстояться в статической культуре в течение 30 дополнительных минут, а затем в центрифужную пробирку добавили 150 мл дополнительной среды с добавлением 0,5% BSA, содержащей 10 мкмоль/л ингибитора Rho-киназы, Y-27632. После этого клетки непрерывно перемешивали при скорости 50-70 оборотов в минуту в увлажненном инкубаторе с 5% CO2. Двадцать четыре часа спустя центрифужную пробирку вынимали из инкубатора и кластерам давали отстояться в течение 5-10 минут. Затем среду отсасывали, пока не осталось 200 мл и добавляли в центрифужную пробирку 400 мл дополнительной свежей культуральной среды. Этот процесс повторяли в конце 2 суток (через 48 часов после переноса).Cells were transferred to medium supplemented with 0.5% BSA containing 10 μmol / l Rho kinase inhibitor, Y-27632, into a 1-liter disposable centrifuge tube (Corning Corning, NY, USA) at a concentration of 1 × 10 6 cells / ml in 225 ml. The cells were allowed to cluster in a static suspension for 60 minutes in a humidified 5% CO2 incubator, then mixed for 5 minutes at 55-65 revolutions per minute and 225 ml of additional medium added, supplemented with 0.5% BSA containing 10 µmol / l inhibitor of Rho-kinase, Y-27632. The cells were allowed to settle in a static culture for 30 additional minutes, and then 150 ml of additional medium was added to the centrifuge tube with the addition of 0.5% BSA containing 10 μmol / l of Rho-kinase inhibitor, Y-27632. After that, the cells were continuously mixed at a speed of 50-70 revolutions per minute in a humidified incubator with 5% CO 2 . Twenty-four hours later, the centrifuge tube was removed from the incubator and the clusters were allowed to settle for 5-10 minutes. Then the medium was aspirated until 200 ml remained and 400 ml of additional fresh culture medium was added to the centrifuge tube. This process was repeated at the end of 2 days (48 hours after transfer).

Через 72 часа после первоначальной обработки Accutase® процесс клеточной диссоциации кластеров и посев (пассирование) в центрифужную пробирку повторяли для поддержания клеток в состоянии суспензии для многократного пассирования (диапазон испытаний: 1-10 пассажей).72 hours after the initial Accutase ® treatment, the process of cell dissociation of clusters and seeding (passaging) in a centrifuge tube was repeated to keep the cells in suspension for repeated passaging (test range: 1-10 passages).

Используя этот процесс, плюрипотентные клетки UTC были преобразованы из прикрепленной на подложке культуры в суспензионную культуру в виде кластеров клеток и затем выращены в суспензии. Эти суспензии пересевали и культивируемые клетки затем криоконсервировали и сохраняли для последующего использования. Для того чтобы подготовить суспензию разросшихся клеток для криоконсервации, клеточные кластеры диссоциировали с Accutase®, как описано выше, за исключением того, что клетки не пропускали через клеточный фильтр 40 мкМоль. Клетки в каждой одноразовой 1-литровой колбе затем подсчитывали, объединяли по мере необходимости и центрифугировали в течение 5 минут при 80-200 ОЦС. Затем супернатант удаляли настолько полно, насколько это возможно, не нарушая клеточный осадок. Холодный (< 4°C) CryoStor®10 затем добавляли по каплям таким образом, чтобы достичь конечной концентрации 150 миллионов клеток на мл, и раствор клеток держали на ледяной бане во время переноса в 1,8 мл флакон для криоконсервирования Corning (Corning; г. Корнинг, штат Нью-Йорк, США) или 15 мл пакет для криоконсервирования Miltenyi (Miltenyi Biotec Inc. г. Оберн, штат Калифорния, США).Using this process, pluripotent UTC cells were transformed from a culture attached to a substrate to a suspension culture as clusters of cells and then grown in suspension. These suspensions were subcultured and the cultured cells were then cryopreserved and stored for later use. In order to prepare a slurry overgrown cells for cryopreservation, cell clusters were dissociated with Accutase ®, as described above, except that the cells were not passed through a cell strainer 40 micromolar. Cells in each disposable 1-liter flask were then counted, pooled as necessary, and centrifuged for 5 minutes at 80-200 OCS. The supernatant was then removed as completely as possible without disturbing the cell pellet. The cold (<4 ° C) CryoStor®10 was then added dropwise in such a way as to reach a final concentration of 150 million cells per ml, and the cell solution was kept in an ice bath while transferring to a 1.8 ml Corning Cryoconservation Vial (Corning; g Corning, New York, USA) or 15 ml package for cryoconservation Miltenyi (Miltenyi Biotec Inc. Auburn, California, USA).

Суспензия разросшихся клеток затем была заморожена в ампуле при высокой плотности в морозильнике с контролируемой скоростью следующим образом. Камеру предварительно охлаждали до 4°C и температуру поддерживали до тех пор, пока пробирка с образцом не достигала температуры 6°C. Затем температуру в камере понижали со скоростью 2°C/мин, пока пробирка с образцом не достигала температуры -7°C. После того, как пробирка с образцом достигла температуры -7°C, камеру охлаждали на 20°C/мин до температуры -45°C. После чего температуру в камере поднимали на 10°C/мин до тех пор, пока температура в камере не достигала -25°C, а затем дополнительно охлаждали камеру на 0,8°C/мин до тех пор, пока пробирка с образцом не достигала температуры -45°C. Температуру в камере затем снижали на 35°C/мин до тех пор, пока температура в камере не достигала -160°C. Температура в камере затем удерживалась на уровне -160°C в течение по крайней мере 10 минут, после чего пробирки переносили в хранилище с жидким азотом, в часть с газовой фазой.The suspension of overgrown cells was then frozen in a vial at high density in a freezer at a controlled rate as follows. The chamber was pre-cooled to 4 ° C and the temperature was maintained until the test tube with the sample reached 6 ° C. Then the temperature in the chamber was lowered at a rate of 2 ° C / min until the test tube with the sample reached -7 ° C. After the sample tube reached -7 ° C, the chamber was cooled at 20 ° C / min to -45 ° C. After that, the temperature in the chamber was raised by 10 ° C / min until the temperature in the chamber reached -25 ° C, and then the chamber was further cooled at 0.8 ° C / min until the test tube with the sample reached temperatures of -45 ° C. The temperature in the chamber was then reduced by 35 ° C / min until the temperature in the chamber reached -160 ° C. The temperature in the chamber was then kept at -160 ° C for at least 10 minutes, after which the tubes were transferred to a storage facility with liquid nitrogen, in part with the gas phase.

Для высевания в биореактор с механическим перемешиванием, криоконсервированные клетки высокой плотности удаляли из хранилища с жидким азотом, размораживали и использовали для посева в замкнутом 0,2-литровом стеклянном биореакторе (DASGIP; г. Юлих, Германия). Пробирки для криоконсервации были извлечены из хранилища с жидким азотом, части с газовой фазой, и помещены непосредственно на водяную баню при 37°C на 105 секунд. Содержимое размороженных пробирок затем переносили с помощью 2 мл стеклянной пипетки в 50 мл коническую пробирку. Затем в пробирку по каплям добавляли 9 мл E8™, содержащей 0,5% BSA с добавлением 10 мкмоль/л ингибитора Rho-киназы, Y-27632. Затем клетки центрифугировали при 80-200 ОЦС в течение 5 минут. После этого супернатант отсасывали из пробирки и добавляли 10 мл свежей E8, содержащей 0,5% BSA и дополненной 10 мкмоль/л ингибитора Rho-киназы, Y-27632. Этот объем, содержащий клетки, пипеткой переносили во флаконы для переноса среды (Cap2V8®, SaniSure, г. Мурпарк, Калифорния, США) и содержимое флаконов затем нагнетали непосредственно в биореактор через стерильные сваренные C-flex трубки с помощью перистальтического насоса. При подготовке к посеву плюрипотентных стволовых клеток в биореактор, подготовили 0,15 л среды E8™ с добавлением 0,5% BSA, содержащего 10 мкмоль/л ингибитора Rho-киназы, Y-27632, подогретой до 37°С, перемешанной при 70 оборотах в минуту, отрегулированной до 6,8-7,1 рН с помощью СО2, с уровнем растворенного кислорода 30% (содержание СО2, воздуха, О2 и N2 регулируется). Сразу после посева в биореактор, из него отбирали пробы для подсчета клеток, и средний объем доводили по мере необходимости для получения конечной концентрации клеток 0,225×106 клеток/мл.For seeding in a bioreactor with mechanical agitation, high density cryopreserved cells were removed from the storage with liquid nitrogen, thawed and used for seeding in a closed 0.2-liter glass bioreactor (DASGIP; Jlich, Germany). Cryopreservation tubes were removed from the storage with liquid nitrogen, portions with a gas phase, and placed directly in a water bath at 37 ° C for 105 seconds. The contents of the thawed tubes were then transferred using a 2 ml glass pipette into a 50 ml conical tube. Then, 9 ml of E8 ™ containing 0.5% BSA with 10 μmol / L of Rho-kinase inhibitor, Y-27632, was added dropwise to the tube. Then the cells were centrifuged at 80-200 OCS for 5 minutes. After that, the supernatant was aspirated from the tube and 10 ml of fresh E8 containing 0.5% BSA and supplemented with 10 µmol / L of Rho-kinase inhibitor, Y-27632, were added. This volume containing cells was pipetted into vials for transferring medium (Cap2V8 ®, SaniSure, of Moorpark, California, USA) and the contents of the vials is then pumped directly to the bioreactor through sterile welded C-flex tubing with a peristaltic pump. In preparation for planting pluripotent stem cells in a bioreactor, 0.15 L of E8 ™ medium was prepared with the addition of 0.5% BSA containing 10 μmol / L of Rho-kinase inhibitor, Y-27632, warmed to 37 ° C, mixed at 70 revolutions per minute, adjusted to 6.8-7.1 pH with CO 2 , with a level of dissolved oxygen of 30% (content of CO 2 , air, O 2 and N 2 is regulated). Immediately after seeding into the bioreactor, samples were taken from it to count the cells, and the average volume was adjusted as necessary to obtain a final cell concentration of 0.225 × 10 6 cells / ml.

Клетки, в биореактор с механическим перемешиванием, сформировали кластеры в биореакторе с механическим перемешиванием, После посева, кластеры клеток поддерживали в реакторе в среде E8™ с добавлением 0,5% BSA в течение трех суток. Среду заменяли ежедневно; через 24 часа после посева удалили 90% от использованной среды и добавили 0,15 литра свежей среды. Через 48 после посева удалили 90% от использованной среды и добавили 0,15 л свежей среды. Через 72 часа после посева была инициирована дифференцировка плюрипотентных клеток путем удаления > 90% использованной среды и добавления среды для дифференцировки (таблица 18).Cells in a mechanically agitated bioreactor formed clusters in a mechanically agitated bioreactor. After seeding, the cell clusters were maintained in the reactor in an E8 ™ medium supplemented with 0.5% BSA for three days. The medium was replaced daily; 24 hours after seeding, 90% of the used medium was removed and 0.15 liters of fresh medium was added. After 48 after sowing, 90% of the used medium was removed and 0.15 L of fresh medium was added. 72 hours after seeding, differentiation of pluripotent cells was initiated by removing> 90% of the medium used and adding differentiation medium (Table 18).

После начала процесс дифференцировки, клетки поддерживали в течение 12 или более суток в закрытой стерильной суспензии в биореакторе с регулируемой температурой (37°C), рН 7,4 (для дифференцировки) с установленным уровнем растворенного кислорода (10% DO на стадии 1 и 30% DO на прочих стадиях, содержание СО2, О2, N2 и воздуха регулируется). На протяжении всего процесса дифференцировки при каждой замене среды, лопастное колесо было остановлено на 5-20 минут до удаления среды через погружную трубку для стабилизации кластеров. Среду в биореакторе удаляли или добавляли из/в закрытого флакона или пакета с помощью перистальтического насоса через погруженную пробирку, соединенную с трубками C-Flex® с использованием сварщика трубок Terumo™ для поддержания замкнутой системы. Рабочее колесо и нагреватель были вновь запущены после добавления в сосуд достаточного количества среды, чтобы полностью погрузить колесо.After the start of the differentiation process, the cells were maintained for 12 or more days in a closed sterile suspension in a bioreactor with controlled temperature (37 ° C), pH 7.4 (for differentiation) with a set level of dissolved oxygen (10% DO at stages 1 and 30 % DO at other stages, the content of CO 2 , O 2 , N 2 and air is regulated). Throughout the entire differentiation process, with each medium change, the impeller was stopped for 5–20 minutes before the medium was removed through a dip tube to stabilize the clusters. The medium in the bioreactor was removed or added from / to a closed vial or sachet by a peristaltic pump through a dip tube connected to tubes C-Flex ® using Welder Terumo ™ tubing to maintain a closed system. The impeller and heater were restarted after adding sufficient medium to the vessel to immerse the wheel completely.

Для того чтобы контролировать процесс биореактора, образцы среды, содержащие кластеры клеток, забирались ежедневно для определения количество клеток и жизнеспособности (NucleoCounter®), как показано на Фиг. 45. В процессе наблюдался общий рост клеток, инокулят 0,225×106 жизнеспособных клеток/мл разросся до 0,65×106 жизнеспособных клеток/мл на стадии 4 сутки 3 (Фиг. 45).In order to control the process of the bioreactor, medium samples containing the cell clusters were collected daily to determine cell number and viability (NucleoCounter ®), as shown in FIG. 45. In the process, total cell growth was observed, inoculating 0.225 × 10 6 viable cells / ml grew to 0.65 × 10 6 viable cells / ml at stage 4, day 3 (Fig. 45).

В дополнение к ежедневным подсчетам, образцы среды биореактора были проанализированы NOVA BioProfile® FLEX (Nova Biomedical Corporation, г. Уолтем, штат Массачусетс, США). Было отмечено, что, относительно установленной кислотности реактора на начало стадии 0 (рН 6,8), рН среды в течение стадии 0 стал более кислым (рН 6,8) (Фиг.46). Изначальные настройки кислотности на стадии 0, казалось, уменьшали метаболическую активность клеток, при относительно низких уровнях молочной кислоты и высоком содержанием глюкозы, которые наблюдались в среде на стадии 0. Как только клетки начали дифференцировку во второй половине стадии 3, клетки поглотили практически всю глюкозу (Фиг.47) в среде и начали генерировать высокий уровень молочной кислоты (Фиг.48). Кроме того, в течение стадий 1 и 2 наблюдалась увеличивает плотность клеток (Фиг.45).In addition to daily counts, bioreactor media samples were analyzed by NOVA BioProfile ® FLEX (Nova Biomedical Corporation, Waltham, Mass., USA). It was noted that, relative to the set acidity of the reactor at the beginning of stage 0 (pH 6.8), the pH of the medium during stage 0 became more acidic (pH 6.8) (Fig.46). The initial acidity settings at stage 0 seemed to reduce the metabolic activity of the cells, with relatively low levels of lactic acid and high glucose levels, which were observed in the medium at stage 0. As soon as the cells began to differentiate in the second half of stage 3, the cells absorbed almost all of the glucose Fig.47) in the medium and began to generate a high level of lactic acid (Fig.48). In addition, during stages 1 and 2, an increase in cell density was observed (Fig.45).

Для того чтобы определить, соответствуют ли стадиеспецифические изменения рН и метаболизма соответствует постадийным изменениям паттернов экспрессии mRNA, измеренным с помощью Qrt-PCR, было сделано следующее. Были использованы четыре массива Applied Biosystems Low Density (Life™, г. Карлсбад, штат Калифорния, США) обозначенные «плюрипотентность», «дефинитивная энтодерма (DE)», «кишечная трубка»(GT) или «4 стадия (S4)». Результаты представлены в виде кратных разниц относительно недифференцированных клеточных образцов UTCiPS, где недифференцированные клетки выступают в качестве контроля для стандартизации экспрессии всех пробегов и массивов.In order to determine whether the stage-specific changes in pH and metabolism correspond to the stepwise changes in mRNA expression patterns measured by Qrt-PCR, the following was made. Four Applied Biosystems Low Density arrays (Life ™, Carlsbad, California, USA) labeled “pluripotency”, “definitive endoderm (DE)”, “intestinal tube” (GT) or “4 stage (S4)” were used. The results are presented as multiple differences with respect to undifferentiated UTCiPS cell samples, where undifferentiated cells act as controls to standardize the expression of all runs and arrays.

С использованием этих массивов была определена экспрессия гена на каждой стадии дифференцировки. Именно тогда стало заметно, что посевной материал размороженных клеток в биореакторе показал недифференцированные паттерны экспрессии генов в стадии 0 сутки 1, 2, и 3 (24, 48 и 72 часа после посева биореактора: Фиг. 49 и 50). Эти результаты хорошо коррелируют с результатами проточной цитометрии, которые показали высокие уровни экспрессии CD9, SSEA4, TRA-1-60, TRA-и 1-81, а также отсутствие CXCR4/CD184 (Фиг.51). Результат проточной цитометрии и данные Qrt-PCR показал надежные и стабильные паттерны экспрессии генов плюрипотентности (CD9, NANOG, POU5F1, SOX2, TDGF и ZFP42) и отсутствие экспрессии генов, которые характерно экспрессируют в ходе дифференцировки (CD99, CDH2, CDX2, CER1, CXCR4, EOMES, FGF17, FGF4, Foxa2, GATA2, GATA4, GATA6, РКГ Hand2, HNF4α KIT, MNX1, MIXL1, PRDM1, PTHR1R, SOX17, SOX7, Т, TMPRSS2 и ФВ), характеризуя стабильное плюрипотентное состояние.Using these arrays, gene expression was determined at each stage of differentiation. It was then that it became noticeable that the seed material of the thawed cells in the bioreactor showed undifferentiated patterns of gene expression in stage 0 days 1, 2, and 3 (24, 48 and 72 hours after seeding the bioreactor: Fig. 49 and 50). These results correlate well with flow cytometry, which showed high levels of expression of CD9, SSEA4, TRA-1-60, TRA- and 1-81, as well as the absence of CXCR4 / CD184 (Figure 51). Flow cytometry results and Qrt-PCR data showed robust and stable expression patterns of pluripotency genes (CD9, NANOG, POU5F1, SOX2, TDGF and ZFP42) and lack of expression of genes that are characteristically expressed during differentiation (CD99, CDH2, CDX2, CER1, CXCR4 , EOMES, FGF17, FGF4, Foxa2, GATA2, GATA4, GATA6, RCG Hand2, HNF4α KIT, MNX1, MIXL1, PRDM1, PTHR1R, SOX17, SOX7, T, TMPRSS2 and FV), characterizing the stable pluripotent state.

По завершении стадии 0 (72 часа после посева реактора), клетки переносили в среду для дифференцировки (таблица 18), содержащую MCX и GDF8. Через двадцать четыре часа после этой замены среды авторы отметили значительные изменения в структуре экспрессии генов (Фиг. 49 и 50, кратность увеличение экспрессии по сравнению с недифференцированным контролем), например, >10-кратное увеличение экспрессии FOXA2, HAND2, PRDM1, PTH1R и SOX17, > 100-кратное увеличение экспрессии CER1, FGF4, GATA4, GATA6, РКГ и MNX1 и > 1000-кратное увеличение экспрессии EOMES, FGF17, MIXL1 и T. Эти повышенные уровни экспрессии указывали на прохождение клетками мезодермальной стадии. Было также отмечено, что уровни CDX2 повысились на стадии 1 сутки 1 по сравнению с недифференцированными клетками (2700x увеличение экспрессии по сравнению с контролем), однако это было преходящее повышение уровня экспрессии и экспрессия CDX2 упала на 97% в течение стадии 1 сутки 3, до уровней, сопоставимых с наблюдаемым до индукции дифференцировки (фиг.49 и 50, кратное увеличение экспрессии по сравнению с недифференцированным контролем).At the end of stage 0 (72 hours after seeding the reactor), the cells were transferred to differentiation medium (Table 18) containing MCX and GDF8. Twenty-four hours after this replacement of the medium, the authors noted significant changes in the structure of gene expression (Fig. 49 and 50, the fold increase in expression compared to undifferentiated control), for example,> 10-fold increase in the expression of FOXA2, HAND2, PRDM1, PTH1R and SOX17 ,> 100-fold increase in expression of CER1, FGF4, GATA4, GATA6, RCG and MNX1 and> 1000-fold increase in expression of EOMES, FGF17, MIXL1 and T. These increased expression levels indicated that the cells passed the mesodermal stage. It was also noted that CDX2 levels increased at stage 1 day 1 compared to undifferentiated cells (2700x increase in expression compared to control), however, this transient increase in expression and CDX2 expression fell by 97% during stage 1 day 3 to levels comparable to that observed prior to the induction of differentiation (Figs. 49 and 50, a fold increase in expression compared to undifferentiated control).

Через 72 часа после контакта со средой дифференцировки стадии 1, клетки экспрессировали профиль в соответствии с спецификацией к дефинитивной энтодерме, а уровни CXCR4 достигли ~ 400x увеличения по сравнению со справочными данными контроля, экспрессия Foxa2 достигла 136x увеличения по сравнению со справочными данными контроля и экспрессия SOX17 достигла 470 000x увеличения по сравнению со справочными данными контроля. В соответствии с характеристиками дефинитивной энтодермы, было также отмечено, что экспрессия генов CER1, EOMES, FGF4, GSC, MIXL1 и T в конце стадии 1 (сутки 3) снизилась с повышенных уровней, наблюдаемых на стадии 1 сутки 1 (Фиг. 49 и 50, кратность увеличения экспрессии по сравнению с недифференцированным контролем).72 hours after contact with stage 1 differentiation medium, the cells expressed a profile according to the specification for definitive endoderm, and CXCR4 levels reached ~ 400x increase compared with control reference data, Foxa2 expression reached 136x increase compared to reference control data and SOX17 expression reached 470,000x increase compared with reference control data. In accordance with the characteristics of the definitive endoderm, it was also noted that the expression of the CER1, EOMES, FGF4, GSC, MIXL1 and T genes at the end of stage 1 (day 3) decreased from elevated levels observed at stage 1 and day 1 (Fig. 49 and 50 , the multiplicity of increase in expression compared to undifferentiated control).

Эти изменения в экспрессии генов, наблюдаемые при Qrt-PCR, коррелируют с результатами, полученными с помощью проточной цитометрии. Наблюдался почти полный переход от CD9-экспрессирующей/CXCR4-отрицательной популяции плюрипотентных клеток при инициировании дифференцировки (Фиг. 51) к гомогенной популяции клеток, экспрессирующих CXCR4 (98,3% клеток CXCR4-положительны) в конце стадии 1 (Фиг. 52).These changes in gene expression observed with Qrt-PCR correlate with the results obtained using flow cytometry. There was an almost complete transition from the CD9-expressing / CXCR4-negative population of pluripotent cells when differentiation was initiated (Fig. 51) to a homogeneous population of cells expressing CXCR4 (98.3% of CXCR4-positive cells) at the end of stage 1 (Fig. 52).

После завершения формирования дефинитивной энтодермы (стадия 1) среду заменяли другой, содержащей FGF7, морфогена, который используется, чтобы вызвать образование примитивный передней кишки. В соответствии с образованием примитивной кишки уровни экспрессии HNF4α и GATA6 на стадии 2 сутки 1 и 3 были увеличены, в то время как гены с высоким уровнем экспрессии на стадии 1 сутки 3 (CXCR4, EOMES, FGF17, FGF4, MNX1, PRDM1, SOX17 и VWF) показали снижение экспрессии к концу стадии 2 (Фиг. 50 и 53, кратность увеличения экспрессии по сравнению с недифференцированным контролем). Экспрессия генов передней кишки (AFP, HHEX, Pdx1 и Prox1) была увеличена (Фиг. 53, кратное увеличение экспрессии по сравнению с недифференцированным контролем).After the formation of the definitive endoderm (stage 1), the medium was replaced with another containing FGF7 morphogen, which is used to cause the formation of a primitive anterior intestine. In accordance with the formation of the primitive gut, the expression levels of HNF4α and GATA6 at stage 2 days 1 and 3 were increased, while the genes with high expression level at stage 1 day 3 (CXCR4, EOMES, FGF17, FGF4, MNX1, PRDM1, SOX17 and VWF) showed a decrease in expression by the end of stage 2 (Fig. 50 and 53, the multiplicity of the increase in expression compared to the undifferentiated control). The expression of the genes of the anterior gut (AFP, HHEX, Pdx1 and Prox1) was increased (Fig. 53, fold increase in expression compared to the undifferentiated control).

После того как клетки были культивированы в среде во время стадии 2 в течение 72 часа, культура была перенесена в среду стадии 3 (таблица 18). После внесения в эту среду маркеры экспрессии клеток показали результаты, характерные для энтодертмы поджелудочной линии что было определено анализом экспрессии гена методом Qrt-PCR. Экспрессия Pdx1 увеличилась 60кратно, от 12 000x относительно контроля в конце стадии 2, 3 сутки и до 739 000x относительно контроля над в конце стадии 3, 3 сутки. Эти данные показывают, что клетки дифференцируются в панкреатические (Фиг.54). Это наблюдение также было подтверждено увеличенными уровни экспрессии, в сравнении с недифференцированным контролем, определенных генов, обычно выраженных в поджелудочной железе (ARX, GAST, GCG, INS, Isl1, NEUROD1, Ngn3, Nkx2.2, Nkx6.1, Pax4, PAX6, Ptf1a и SST ), что показано на Фиг. 54 и 55. Интересно, что не наблюдалась экспрессия OCT4/POU5F1 (37 образцов Cts проверено способом qRT-PCR), но наблюдались высокие уровни экспрессии прочих маркеров энтодермальных линий AFP, ALB, и CDX2. Это указывает на то, что популяции клеток в биореакторе дифференцировали из популяции плюрипотентных клеток сначала в клетки относительно пластичной кишечной трубки, а потом в панкреатические клетки (Фиг. 54 и 55).After the cells were cultured in medium during stage 2 for 72 hours, the culture was transferred to stage 3 medium (Table 18). After introducing cell expression markers into this medium, they showed results characteristic of pancreatic endoderm, which was determined by Qrt-PCR analysis of gene expression. Pdx1 expression increased 60-fold, from 12,000x relative to control at the end of stage 2, 3 days and to 739,000x relative to control at the end of stage 3, 3 days. These data show that cells differentiate into pancreatic (Fig.54). This observation was also confirmed by increased expression levels, in comparison with undifferentiated control, of certain genes usually expressed in the pancreas (ARX, GAST, GCG, INS, Isl1, NEUROD1, Ngn3, Nkx2.2, Nkx6.1, Pax4, PAX6, Ptf1a and SST), as shown in FIG. 54 and 55. Interestingly, OCT4 / POU5F1 expression was not observed (37 samples of Cts tested using qRT-PCR), but high levels of expression of other markers of endodermal AFP, ALB, and CDX2 lines were observed. This indicates that the cell populations in the bioreactor were differentiated from a population of pluripotent cells, first into cells with respect to the plastic intestinal tube, and then into pancreatic cells (Fig. 54 and 55).

В конце стадии 4 процесса дифференцировки клетки сохраняли высокий уровень экспрессии Pdx1 (95,6% Pdx1-положительны, по FACS, ~ 1000000кратное индуцирование по сравнению с контролем по данным Qrt-PCR) и Foxa2 (99,5% Foxa2-положительны по FACS). Клетки показали паттерны экспрессии, соответствующие таковым у панкреатических клеток-предшественников (39,2% Nkx6.1-положительных по FACS) и популяции панкреатических эндокринных клеток (9,4% PAX6-положительных, 12,4% хромагранин-положительных, 15,2% NKX2.2-положительных; все по FACS). Характерные для данной стадии паттерны экспрессии маркеров указывают на эффективную постадийную дифференцировку от популяции плюрипотентных клеток в клетки-предшественники панкреатических клеток. Эти результаты, наблюдаемые в проточной цитометрии, были подтверждены Qrt-PCR. Было также отмечено, что все гены, обычно экспрессирующиеся в поджелудочной железе (ARX, GAST, GCG, IAPP, INS, ISL1, MAFB, NEUROD1, NGN3, NKX2.2, NKX6.1, PAX4, PAX6, PTF1A и SST), показали повышенный уровень экспрессии на стадии 4 суток 3. (Фиг. 55). Для справки, на Фиг. 56 показана репрезентативная микрофотография (4x) клеточных кластеров в конце каждой стадии.At the end of stage 4 of the differentiation process, the cells maintained a high level of Pdx1 expression (95.6% Pdx1-positive, by FACS, ~ 1000000 times induced compared with the control according to Qrt-PCR) and Foxa2 (99.5% Foxa2-positive by FACS) . Cells showed expression patterns corresponding to those of pancreatic progenitor cells (39.2% of Nkx6.1-positive by FACS) and the population of pancreatic endocrine cells (9.4% of PAX6-positive, 12.4% of chromagranin-positive, 15.2 % NKX2.2 positive; all by FACS). Patterns of marker expression characteristic for this stage indicate an effective stepwise differentiation from the population of pluripotent cells into progenitor cells of pancreatic cells. These results, observed in flow cytometry, were confirmed by Qrt-PCR. It was also noted that all genes commonly expressed in the pancreas (ARX, GAST, GCG, IAPP, INS, ISL1, MAFB, NEUROD1, NGN3, NKX2.2, NKX6.1, PAX4, PAX6, PTF1A and SST) showed increased expression level at the stage of 4 days 3. (Fig. 55). For reference, in FIG. 56 shows a representative micrograph (4x) of cell clusters at the end of each stage.

Таблица 18Table 18 Исходные сутки/ДатаOriginal day / date Стадия 1Stage 1 Стадия 2Stage 2 Стадия 3Stage 3 Стадия 4Stage 4 Базовая средаBase environment MCDB131 Адапт.
(3,64 г/л NaCO3)
MCDB131 Adapt.
(3.64 g / l NaCO 3 )
MCDB131 Адапт.
(3,64 г/л NaCO3)
MCDB131 Adapt.
(3.64 g / l NaCO 3 )
MCDB131 Адапт.
(3,64 г/л NaCO3)
MCDB131 Adapt.
(3.64 g / l NaCO 3 )
MCDB131 Адапт.
(3,64 г/л NaCO3)
MCDB131 Adapt.
(3.64 g / l NaCO 3 )
ДобавкиSupplements 2% FAF-BSA
2,5 мМоль глюкозы
1:50 000 ITS-X
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
1:50 000 ITS-X
Glutamax 1: 100
2% FAF-BSA
2,5 мМоль глюкозы
1:50 000 ITS-X
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
1:50 000 ITS-X
Glutamax 1: 100
2% FAF-BSA
2,5 мМоль глюкозы
1:200 ITS-X
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
1: 200 ITS-X
Glutamax 1: 100
2% FAF-BSA
2,5 мМоль глюкозы
1:200 ITS-X
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
1: 200 ITS-X
Glutamax 1: 100
Факторы ростаGrowth factors Только сутки 1 и 2:
GDF8
100 нг/мл
Only day 1 and 2:
GDF8
100 ng / ml
FGF7
50 нг/мл
FGF7
50 ng / ml
FGF7
50 нг/мл
FGF7
50 ng / ml
нетnot
Малые молекулыSmall molecules Только сутки 1:
MCX
[2 мкМоль]
Only day 1:
MCX
[2 μm]
RA [2 мкМоль]
SANT [0,25 мкМоль]
TPPB [100 нМоль]
Только сутки 1
LDN 100
RA [2 μM]
SANT [0.25 μM]
TPPB [100 nM]
Only day 1
LDN 100
SANT [0,25 мкМоль]
TPPB [100 нМоль]
SANT [0.25 μM]
TPPB [100 nM]
СуткиDay 33 33 33 33 ПРИМЕЧАНИЯ:
Все дни относительно 0 ч.
NOTES :
All days relative to 0 h.
Замена средыMedium change
Сутки 1 и 2,Day 1 and 2,
Без замены на сутки 3No replacement for day 3
Замена средыMedium change
Сутки 1 и 3,Day 1 and 3,
Без замены на сутки 2No replacement for day 2
Замена средыMedium change
Сутки 1 и 2,Day 1 and 2,
Без замены на сутки 3No replacement for day 3
В случае роста S4 замена среды на сутки 1 и к концу суток 3 In the case of S4 growth, replace the medium on day 1 and by the end of day 3

Таблица 18aTable 18a Репликация BXBX Replication Посевной материалSeed material CD9CD9 CD184CD184 SSEA4SSEA4 TRA-1-60TRA-1-60 TRA-1-81TRA-1-81 1one KCKC 83,383.3 0,10.1 99,999.9 94,594.5 85,885,8 22 HW Hw 95,595.5 0,20.2 100100 9191 8484 33 ISM (розовый)ISM (pink) 95,895,8 0,10.1 100100 76,176.1 36,536.5 4four ISM (розовый)ISM (pink) 93,293.2 00 99,999.9 78,678.6 64,564.5 5five ISM 1ISM 1 97,897,8 0,20.2 9999 74,874.8 66,466.4 66 ISM 2ISM 2 98,698.6 0,20.2 100100 92,292.2 8686 77 ISM 1ISM 1 98,198.1 0,10.1 99,999.9 88,888,8 80,380.3 8eight ISM 1ISM 1 99,199.1 0,10.1 99,999.9 93,893,8 83,383.3 99 ISM 2ISM 2 97,297.2 0,10.1 99,999.9 88,388.3 8181 10ten ISM5ISM5 9898 0,10.1 99,399.3 93,193.1 85,785.7 11eleven ISM6ISM6 72,672.6 0,20.2 99,999.9 94,794.7 88,988.9 1212 ISM6ISM6 85,985.9 0,70.7 99,499.4 71,971.9 54,154.1 CD9CD9 CD184CD184 SSEA4SSEA4 TRA-1-60TRA-1-60 TRA-1-81TRA-1-81 СреднееThe average 93,693.6 0,10.1 99,899.8 87,887,8 76,676.6 Ст. отклонениеArt. deviation 8,38.3 0,10.1 0,30.3 7,67,6 15,515.5

Таблица 18bTable 18b Стадия-день-времяStage-day-time Плотность жизнеспособных клеток (млн клеток / мл)The density of viable cells (million cells / ml) CD9CD9 CD184CD184 SSEA4SSEA4 TRA-1-60TRA-1-60 TRA-1-81TRA-1-81 S0D3-24HS0D3-24H 0,6260.626 95,895,8 0,10.1 99,899.8 87,987.9 7474 Плотность жизнеспособных клеток (млн клеток / мл)The density of viable cells (million cells / ml) CD9CD9 CD184CD184 CD99CD99 S1D3-24HS1D3-24H 0,90.9 50,750.7 98,998.9 9999 Плотность жизнеспособных клеток Viable cell density
(млн клеток / мл)(million cells / ml)
NKX6.1NKX6.1 ХороматогранинKhoromatogranin NKX2.2NKX2.2 PDX1PDX1 FOXA2FOXA2
S4D1-24HS4D1-24H 0,9430.943 69,369.3 14,214.2 23,623.6 98,898.8 99,799.7 Плотность жизнеспособных клеток Viable cell density
(млн клеток / мл)(million cells / ml)
NKX6.1NKX6.1 ХороматогранинKhoromatogranin CDX2CDX2 SOX2SOX2 NKX2.2NKX2.2 PD PDX1PD PDX1 FOX FOXA2FOX FOXA2 NEU NEURODNEU NEUROD
S4D3-24HS4D3-24H 1,0021,002 66,266.2 35,635.6 0,30.3 15,815.8 38,138.1 9 999 99 9 999 99 45. 45,645. 45,6

Материалы:Materials:

• Клетки человеческой эмбриональной клеточной линии H1 (hES), (клетки WA01, WiCell, Madison WI)• Cells of the human embryonic cell line H1 (hES), (cells WA01, WiCell, Madison WI)

• PBS (№ по каталогу 14190, Invitrogen)• PBS (Cat. No. 14190, Invitrogen)

• Y-27632 (Axxora № по каталогу ALX-270-333, San Diego, CA)• Y-27632 (Axxora Part No. ALX-270-333, San Diego, CA)

• EDTA, (Lonza, № по каталогу 17-7-11E)• EDTA, (Lonza, catalog number 17-7-11E)

• NucleoCounter®-(ChemoMetec A/S, № по каталогу YC-T100, г. Аллерод, Дания)• NucleoCounter ® - (ChemoMetec A / S, catalog number YC-T100, Allerod, Denmark)

• Обработанные двумя нетканевыми культурами 6-луночные планшеты (Becton Dickinson, № по каталогу Falcon 351146, Franklin Lakes, NJ)• Processed 6-well plates with two non-woven cultures (Becton Dickinson, Catalog No. Falcon 351146, Franklin Lakes, NJ)

• Accutase®, (Sigma-Aldrich, № по каталогу A-6964, г. Сент-Луис, штат Миссури, США)• Accutase ® , (Sigma-Aldrich, Part No. A-6964, St. Louis, Missouri, USA)

• Датчики биореактора для определения уровня pH и количества растворенного кислорода (DO) (FermProbe® рН электрод 225 мм, модель № F-635, датчик растворенного кислорода OxyProbe® 12 мм, номер модели D-145 от Broadley-James Corporation, г. Ирвин штат Калифорния, США)• Bioreactor sensors for determining pH and dissolved oxygen (DO) (FermProbe ® pH electrode 225 mm, model number F-635, OxyProbe ® dissolved oxygen sensor 12 mm, model number D-145 from Broadley-James Corporation, Irwin state of California, USA)

• Устройство иммунозащитной макроинкапсуляции (TheraCyte™, г. Ирвин штат Калифорния, США)• An immuno-protective macroencapsulation device (TheraCyte ™, Irvine, California, USA)

• ИФА человеческого C-пептида (MERCODIA № по каталогу 10-1141-01)• ELISA of human C-peptide (MERCODIA; Cat. No. 10-1141-01)

• GlutaMAX™, MCDB131 и ITS-X Invitrogen • GlutaMAX ™, MCDB131 and Invitrogen ITS-X

• FAF-BSA (Proliant)• FAF-BSA (Proliant)

• Ретиноевая кислота, глюкоза 45% (2,5M), SANT (ингибитор Shh) (Sigma)• Retinoic acid, glucose 45% (2.5M), SANT (Shh inhibitor) (Sigma)

• GDF8 (Peprotech)• GDF8 (Peprotech)

• MCX• MCX

• FGF7 (R & D Systems)• FGF7 (R & D Systems)

• LDN-193189 (антагонист рецептора BMP) (Stemgent)• LDN-193189 (BMP receptor antagonist) (Stemgent)

• TPPB (активатор PKC) (ChemPartner)• TPPB (PKC activator) (ChemPartner)

Пример 15Example 15

Дифференцировка эмбриональных стволовых клеток из клеточной линии WA01 в дефинитивную энтодерму: роль MCX/GDF8 в качестве регулятора клеточного цикла в суспензионной культуреDifferentiation of embryonic stem cells from the WA01 cell line into definitive endoderm: the role of MCX / GDF8 as a regulator of the cell cycle in suspension culture

Кластеры плюрипотентных эмбриональных стволовых клеток человека из линии стволовых клеток H1 (NIH код: WA01) высевали по 0,5×106 клеток/мл в колбах Эрленмейера с перемешиванием в среду MCDB-131, содержащую 3,64 г/мл бикарбоната натрия и 5,5 мМоль глюкозы (№ по каталогу A13051 DJ, Invitrogen, CA), которая была дополнена 2% 2% BSA без жирных кислот (№ по каталогу 68700, Proliant, И. А.), 1X GlutaMAX™ (№ по каталогу 35050-079, Invitrogen, Калифорния), дополнительно 2,5 мМоль глюкозы (№ по каталогу G8769, Sigma) и ITS-х в исходной концентрации 1: 50 000 ( № по каталогу 51500056, Invitrogen, CA). Среда MCDB-131, дополненная таким образом, будут упоминаться как базовая среда стадии 1 или «Чистая» среда для целей данного примера. Ингибитор GSK3B, 14-проп-2-ен-1-ил-3,5,7,14,17,23,27-гептаазатетрацикло [19.3.1.1~2,6~.1~8,12~]гептакоза-1(25),2(27),3,5,8(26),9,11,21,23-нонен-16-он, заявка на патент США № 12/494,789; включенная в настоящий документ посредством ссылки в полном объеме, называется MCX.Clusters of pluripotent embryonic human stem cells from the H1 stem cell line (NIH code: WA01) were seeded at 0.5 × 10 6 cells / ml in Erlenmeyer flasks with stirring on MCDB-131 medium containing 3.64 g / ml sodium bicarbonate and 5 , 5 mM glucose (Catalog No. A13051 DJ, Invitrogen, CA), which was supplemented with 2% 2% BSA without fatty acids (Catalog No. 68700, Proliant, I. A.), 1X GlutaMAX ™ (Catalog No. 35050- 079, Invitrogen, California), an additional 2.5 mM glucose (catalog number G8769, Sigma) and ITS-x at an initial concentration of 1: 50,000 (catalog number 51500056, Invitrogen, CA). The MCDB-131 medium, supplemented in this way, will be referred to as the base medium of stage 1 or the “Clean” medium for the purposes of this example. GSK3B inhibitor, 14-prop-2-en-1-yl-3,5,7,14,17,23,27-heptaazatetracyclo [19.3.1.1 ~ 2.6 ~ .1 ~ 8.12 ~] heptacosis-1 (25), 2 (27), 3,5,8 (26), 9,11,21,23-nonen-16-one, US patent application No. 12 / 494,789; incorporated herein by reference in full, called MCX.

Кластеры обрабатывали в первые сутки дифференцировки с одним из шести условий: (1) чистая, (2) 3 мкМоль MCX плюс 100 нг/мл GDF-8 (№ по каталогу 120-00, Peprotech), (3) 3 мкМоль только MCX, (4) 100 нг/мл только GDF-8, (5) 20 нг/мл WNT-3A (№ по каталогу 1324-WN-002, R&D Systems, штат Миннесота, США) плюс 100 нг/мл активина А (№ по каталогу 338-AC, R&D Systems, штат Миннесота, США) или (6) 20 нг/мл только WNT-3A.Clusters were treated on the first day of differentiation with one of six conditions: (1) pure, (2) 3 μmol MCX plus 100 ng / ml GDF-8 (Catalog No. 120-00, Peprotech), (3) 3 μmol only MCX, (4) 100 ng / ml GDF-8 only, (5) 20 ng / ml WNT-3A (catalog number 1324-WN-002, R & D Systems, Minnesota, USA) plus 100 ng / ml activin A (no. 338-AC, R & D Systems, Minnesota, USA) or (6) 20 ng / ml of WNT-3A only.

Среда в каждом из условий была заменена через 24 и 48 ч после начала дифференцировки. В это время, у клеток по условиям 1, 2, 3 и 4 среда была заменена на свежую базовую среду стадии 1 с добавлением 100 нг/мл GDF8, а у клеток по условиям 5 и 6 среда была заменена на свежую базовую среду стадии 1 с добавлением 100 нг/мл активина A.The medium in each of the conditions was replaced 24 and 48 hours after the start of differentiation. At this time, in cells according to conditions 1, 2, 3 and 4, the medium was replaced with fresh basic medium of stage 1 with the addition of 100 ng / ml GDF8, and in cells according to conditions 5 and 6 the medium was replaced with fresh basic medium of stage 1 by adding 100 ng / ml activin A.

За час до начала дифференцировки и на 5, 23, 29, 47 или 71 час после начала дифференцировки (упоминается как «время 0»), образцы суспензии были перенесены на обработанные двумя нетканевыми культурами шестилуночные планшеты и инкубированы с EdU (Click-iT® EdU Kit, Life Technologies Corporation, г. Карлсбад, штат Калифорния, США) в течение одного часа. Инкубированные с EdU клетки затем оценивали с помощью проточной цитометрии на 0, 6, 24, 30, 48, или 72 ч после начала дифференцировки для измерения процента клеток на стадиях G0/G1, S, или G2/M клеточного цикла (фиг.81-87).One hour before the start of the differentiation and 5, 23, 29, 47 or 71 hours after the start of differentiation (referred to as "time 0") slurry samples were transferred to the treated two non-woven cultures six-well plates and incubated with EdU (Click-iT ® EdU Kit, Life Technologies Corporation, Carlsbad, California, USA) for one hour. Incubated with EdU cells were then assessed using flow cytometry at 0, 6, 24, 30, 48, or 72 h after the start of differentiation to measure the percentage of cells at stages G0 / G1, S, or G2 / M of the cell cycle (Fig.81- 87).

По данному протоколу наблюдались существенные различия в процентном отношении клеток на стадиях G0/G1, S, или G2/M клеточного цикла (Фиг. 82-87), и было отмечено, что клетки, обработанные MCX и MCX + GDF8, показали почти 40% уменьшение включений EdU по сравнению с другими четырьмя условиями обработки (Фиг. 81). Это уменьшение включений EDU сопровождалось увеличением на 38% количества G0/G1 клеток в образце, обработанном MCX + GDF8 и увеличением на 54% количества G0/G1 клеток в образце, обработанном только MCX. Эти изменения включений EDU и увеличение перехода к G0/G1 через 6 часов после начала дифференцировки не наблюдалось в клетках, обработанных GDF8, WNT3A, WNT-3A+ активин А или чистой средой. Скорее, клетки, обработанные GDF8, WNT-3A, WNT-3A + активин А или чистой средой, продемонстрировали минимальное снижение процента клеток с включениями EDU (в среднем 48,1%, SD ± 1,2) и в средне 13% -ное снижение количество клеток в G0/G1 через шесть часов после начала дифференцировки (стандартное отклонение, ± 5%), как показано на Фиг.81 и 82.According to this protocol, there were significant differences in the percentage of cells in the G0 / G1, S, or G2 / M stages of the cell cycle (Fig. 82-87), and it was noted that cells treated with MCX and MCX + GDF8 showed almost 40% the reduction of EdU inclusions compared with the other four processing conditions (Fig. 81). This decrease in EDU inclusions was accompanied by a 38% increase in the number of G0 / G1 cells in a sample treated with MCX + GDF8 and an increase of 54% in the number of G0 / G1 cells in a sample treated with MCX only. These changes in EDU inclusions and an increase in the transition to G0 / G1 6 hours after the start of differentiation was not observed in cells treated with GDF8, WNT3A, WNT-3A + activin A or pure medium. Rather, cells treated with GDF8, WNT-3A, WNT-3A + activin A or pure medium showed a minimal decrease in the percentage of cells with EDU inclusions (mean 48.1%, SD ± 1.2) and an average of 13% decrease in the number of cells in G0 / G1 six hours after the start of differentiation (standard deviation, ± 5%), as shown in Fig.81 and 82.

Подобные различия наблюдались позднее в процессе распределения между значениями G0/G1 для клеток, обработанных MCX или MCX + GDF8 по сравнению с другими условиями обработки. Через 30 часов после времени 0 обнаружили, что обработанные MCX или MCX + GDF8 клетки показали на 43-45% меньшее количество клеток в G0/G1, по сравнению с клетками, обработанными WNT-3A + активин А, GDF8, WNT-3A, или чистой средой. Этот разрыв между процентом G0/G1 клеток был не изменился через 48 ч после начала дифференцировки, на стадиях клеточного цикла G0/G1 наблюдалось 71,9-75,5% клеток, обработанных MCX или MCX + GDF8 , при соответственных значениях 48,5% для GDF8, 55,8 % для WNT3A, 57,7% для Wnt-3A + активин А и 49% для чистой среды. В дополнение к наблюдаемым различиям включений EDU и G0/G1 профилей, клетки, обработанные MCX или MCX + GDF8 показали в результате на 15-33% больше клеток в фазе S клеточного цикла через 30 и 48 часов после времени 0, по сравнению с данными по клеткам, обработанным WNT3a + активин, GDF8, WNT-3A или чистой средой(фиг.84 и 85).Similar differences were observed later in the distribution process between the G0 / G1 values for cells treated with MCX or MCX + GDF8 compared to other treatment conditions. 30 hours after time 0, it was found that cells treated with MCX or MCX + GDF8 showed 43-45% fewer cells in G0 / G1, compared with cells treated with WNT-3A + activin A, GDF8, WNT-3A, or clean environment. This gap between the percentage of G0 / G1 cells was unchanged 48 hours after the start of differentiation, 71.9-75.5% of cells treated with MCX or MCX + GDF8 were observed at the stages of the G0 / G1 cell cycle, with 48.5% for GDF8, 55.8% for WNT3A, 57.7% for Wnt-3A + activin A, and 49% for pure media. In addition to the observed differences in EDU inclusions and G0 / G1 profiles, cells treated with MCX or MCX + GDF8 resulted in 15–33% more cells in the S phase of the cell cycle after 30 and 48 hours after time 0, compared with cells treated with WNT3a + activin, GDF8, WNT-3A or pure medium (Fig.84 and 85).

Данные (экспрессии гена CD99, CD9, CDH1, CDH2, CDX2, CER1, CXCR4, FGF17, FGF4, Foxa2, GATA4, GATA6, РКГ, KIT, MIXL1, MNX1, NANOG, Otx2, POU5F1, SOX17, SOX7 и Т показаны на Фиг. 57-80 и 88a-f) показали, что в суспензионной культуре, добавление MCX с или без вещества семейства TGF-β, GDF8, в первые сутки дифференцировки вызывает генерирование дефинитивной энтодермы, сравнимое с таковой при обработке клеток 20 нг/мл WNT-3A +100 нг/мл активина А на первые сутки по результатам измерения экспрессии генов в конце формирования дефинитивной энтодермы. Тем не менее, в соответствии с различиями в клеточного цикла, наблюдаемыми в процессе формирования дефинитивной энтодермы, были замечены промежуточные различия в экспрессии генов. В образцах, обработанных MCX или MCX + GDF8, гены Т (Brachyury), GATA4 и CDX2 индуцировались на уровне, существенно более высоком, чем у клеток, обработанных Wnt-3A + активин А или трех других протестированных условий в течение первых 24 часов дифференцировки ( Фигуры 88 B, C, и D). С другой стороны, экспрессия генов плюрипотентности (NANOG и POU5F1/OCT4) значительно уменьшилась через 24 часа в образцах, обработанных MCX или MCX + GDF8, по сравнению с исходной клеточной популяцией или другими четырьмя тестируемыми условиями (фиг.88E). Величина индукции экспрессии генов, таких как FGF4, Foxa2 и SOX17, была значительно ниже в образцах MCX или MCX + GDF8, по сравнению с другими четырьмя тестируемыми условиями, в течение 24 часов после начала дифференцировки, однако через 48 часов экспрессия FGF4, Foxa2 и SOX17 у всех образцов была на сопоставимых уровнях. (Фиг. 88c и e).Data (gene expression CD99, CD9, CDH1, CDH2, CDX2, CER1, CXCR4, FGF17, FGF4, Foxa2, GATA4, GATA6, GCG, KIT, MIXL1, MNX1, NANOG, Otx2, POU5F1, SOX17, SOX7 and T are shown on 57-80 and 88a-f) showed that in suspension culture, the addition of MCX with or without the substance of the TGF-β family, GDF8, on the first days of differentiation causes the generation of definitive endoderm, comparable to that of cell treatment with 20 ng / ml WNT- 3A +100 ng / ml of activin A on the first day based on the results of measurement of gene expression at the end of definitive endoderm formation. However, in accordance with the differences in the cell cycle observed during the formation of the definitive endoderm, intermediate differences in gene expression were observed. In samples treated with MCX or MCX + GDF8, T (Brachyury), GATA4 and CDX2 genes were induced at a level significantly higher than that of cells treated with Wnt-3A + activin A or three other tested conditions during the first 24 hours of differentiation ( Figures 88 B, C, and D). On the other hand, expression of pluripotency genes (NANOG and POU5F1 / OCT4) was significantly reduced after 24 hours in samples treated with MCX or MCX + GDF8, compared with the original cell population or other four test conditions (Fig.88E). The magnitude of induction of gene expression, such as FGF4, Foxa2 and SOX17, was significantly lower in MCX or MCX + GDF8 samples, compared to the other four conditions tested, within 24 hours after differentiation began, but after 48 hours, FGF4, Foxa2 and SOX17 expression all samples had comparable levels. (Fig. 88c and e).

Пример 16Example 16

Генерирование эктодермальной и мезодермальной ткани с использованием процесса дифференцировки в масштабируемой суспензии.Generation of ectodermal and mesodermal tissue using a differentiation process in a scalable suspension.

Этот пример демонстрирует процесс, во время которого происходит как рост, так и дифференциация плюрипотентных стволовых клеток (PSC) и тем самым достигается масштабируемый производственный процесс генерирования эктодермальной или мезодермальной ткани.This example demonstrates a process during which both growth and differentiation of pluripotent stem cells (PSC) occurs and thereby achieves a scalable manufacturing process for generating ectodermal or mesodermal tissue.

Две клеточные линии были выращены в суспензии для обеспечения посевного материала для этих исследований: суб-клон H1 (WA01) клеточной линии hES WB0106 и линия индуцированных плюрипотентных стволовых клеток (iPSC), сгенерированная из клеток ткани пуповины (UTC). Как описано в предыдущих примерах, выращенные в суспензии клетки замораживали при высокой плотности в морозильной камере с контролируемой скоростью, затем размораживали для высевания в закрытом 3-литровом стеклянном биореакторе (DASGIP; г. Юлих, Германия) или одноразовом 3-литровом биореакторе (Mobius®, EMD Millipore Corporation, г. Биллерика, штат Массачусетс, США) в конечной концентрации клеток 0,225×106 клеток/мл. Клетки, которые высевали в биореактор с механическим перемешиванием, образовывали кластеры клеток в резервуаре непрерывного перемешивания и выдерживали в среде плюрипотентности (E8™ с добавлением 0,5% BSA) в реакторе в течение трех суток. Через 72 часа после посева была инициирована дифференцировка плюрипотентных клеток путем перенесения клеточных кластеров в пластиковые одноразовые колбы Эрленмейера (125 мл колбы PETG, № по каталогу 4112, Thermo Scientific Рочестер Нью-Йорк) в соответствующую среду для дифференцировки (таблица 19), для формирования мезодермы/сердечной ткани ( 1) или эктодермы/нервной ткани (2).Two cell lines were grown in suspension to provide seed for these studies: sub-clone H1 (WA01) of the hES WB0106 cell line and induced pluripotent stem cell line (iPSC) generated from umbilical cord tissue (UTC) cells. As described in previous examples, cells grown in suspension were frozen at high density in a freezer at a controlled rate, then thawed for seeding in a closed 3-liter glass bioreactor (DASGIP; Jülich, Germany) or a disposable 3-liter bioreactor (Mobius ® , EMD Millipore Corporation, Billerica, Mass., USA) at a final cell concentration of 0.225 × 10 6 cells / ml. Cells that were seeded into a mechanically agitated bioreactor formed clusters of cells in a continuous mixing tank and kept in pluripotency medium (E8 ™ with addition of 0.5% BSA) in the reactor for three days. 72 hours after seeding, differentiation of pluripotent cells was initiated by transferring cell clusters to plastic Erlenmeyer flasks (125 ml PETG flasks, Catalog No. 4112, Thermo Scientific Rochester New York) into the appropriate differentiation medium (Table 19), to form mesoderm cardiac tissue (1) or ectoderm / nervous tissue (2).

После начала процесса дифференцировки клетки поддерживали в течение десяти (10) суток при 100 оборотах в минуту в увлажненной инкубаторе с 5% СО2 на движущейся платформе (MAXQ 416hp, Thermo Scientific, Рочестер Нью-Йорк). На сутки 1, сутки 3, сутки 5 и сутки 7 после начала дифференцировки, среды в колбе заменяли на свежие среде, как показано в таблице 19. До начала дифференцировки образцы были подвергнуты анализу qRT-PCR для получения эталонных величин, а затем процедуру повторяли на 3, 5, 7 и 10 сутки после начала дифференцировки.After the start of the differentiation process, the cells were maintained for ten (10) days at 100 revolutions per minute in a humidified 5% CO2 incubator on a moving platform (MAXQ 416hp, Thermo Scientific, Rochester New York). On day 1, day 3, day 5 and day 7 after the start of differentiation, the medium in the flask was replaced with fresh medium, as shown in Table 19. Before the differentiation began, the samples were subjected to qRT-PCR analysis to obtain reference values, and then the procedure was repeated on 3, 5, 7 and 10 days after the start of differentiation.

Для проверки того, возможно ли определить наличие эктодермальных или мезодермальных специфических изменений в паттернах экспрессии мРНК с помощью QRT-PCR, были использованы три массива Applied Biosystems Low Density (Life™, Карлсбад, Калифорния), обозначенные «Плюрипотентность», «Дефинитивная энтодерма (DE)» и «стадия 6 (S6)», и результаты сравнивали с данными образцов соответствующих недифференцированных плюрипотентных стволовых клеток в качестве контроля для стандартизации экспрессии.To check whether it is possible to determine the presence of ectodermal or mesodermal specific changes in mRNA expression patterns using QRT-PCR, three Applied Biosystems Low Density arrays (Life ™, Carlsbad, Calif.), Labeled "Pluripotency", "The definitive endoderm (DE ) ”And“ Stage 6 (S6) ”, and the results were compared with data from samples of the corresponding undifferentiated pluripotent stem cells as a control for standardization of expression.

С помощью этих массивов определяются паттерны экспрессии гена плюрипотентных клеток, культивируемых в эктодермальной (фиг.89) или мезодермальной (фиг.90) среде дифференцировки. Было отмечено, что клетки, дифференцированные в перемешиваемых колбах, обработанные по любому из условий, демонстрируют снижение экспрессии генов плюрипотентности, таких как NANOG, POU5F1/OCT4, TDGF1 и ZFP42, по мере роста культуры с 3 суток по 10 сутки, что было измерено на массиве плюрипотентности. Экспрессия CXCR4 повысилась в образцах клеток HES или плюрипотентных клеток, дифференцированных в эктодерму или мезодерму. Эти результаты коррелируют с данными Qrt-PCR, показывающими высокую экспрессию генов, характерных для дифференцировки. Клетки, обработанные средой для эктодермальной дифференцировки, показали повышенный уровень экспрессии ARX, NeuroD, Nkx6.1, PAX6 (> 100 раз), и ZIC1 (> 1000 раз) по данным Qrt-PCR с 3 по10 сутки после начала дифференцировки (Фиг. 91). Эти данные были подтверждены FACS массива, который показал, что на третьи (3) сутки после начала дифференцирования в клетки эктодерм, клетки IPSC и hES поддерживали высокий уровень экспрессии SOX2 (гена плюрипотентности и нейронных стволовых клеток), но лишились экспрессии POU5F1/OCT4 (генов плюрипотентности), но при этом проявилась экспрессия PAX6 (ген нервной и эндокринной дифференцировки) (Фиг.92).Using these arrays, gene expression patterns of pluripotent cells cultured in ectodermal (Fig.89) or mesodermal (Fig.90) differentiation media are determined. It was noted that cells differentiated in stirred flasks, treated according to any of the conditions, showed a decrease in the expression of pluripotency genes, such as NANOG, POU5F1 / OCT4, TDGF1 and ZFP42, as the culture grew from 3 days to 10 days, which was measured on array of pluripotency. CXCR4 expression increased in HES or iPS cells differentiated into the ectoderm or mesoderm. These results correlate with Qrt-PCR data showing high expression of the genes characteristic of differentiation. Cells treated with ectodermal differentiation medium showed an increased level of expression of ARX, NeuroD, Nkx6.1, PAX6 (> 100 times), and ZIC1 (> 1000 times) according to Qrt-PCR from 3 to 10 days after the start of differentiation (Fig. 91 ). These data were confirmed by the FACS array, which showed that on the third (3) day after the start of differentiation into ectoderm cells, IPSC cells and hES maintained a high expression level of SOX2 (pluripotency gene and neural stem cells), but lost the expression of POU5F1 / OCT4 (genes pluripotency), but the expression of PAX6 (a gene of nervous and endocrine differentiation) was revealed (Fig.92).

Схожая кинетика дифференцировки наблюдалась в клетках, обработанных средой для мезодермальной дифференцировки. В то время как экспрессия плюрипотентных генов снизилась в течение 10-дневной дифференцировки (Фиг. 90), на 3 сутки наблюдалась ранняя индукция генов, характерных для ранней переходной стадии дифференцировки мезодерму (CER1, EOMES, CKIT и VWF), уровень экспрессии данных генов на десятые сутки опустился практически до исходного (Фиг. 93). Было также отмечено, что экспрессия генов, характерных для мезодермы на 3, 5, 7 и 10 сутки после начала дифференцировки показала раннюю высокую экспрессию генов (CDH2, CDX2, GATA6, HNF4α, MNX1, PRDM1 и SOX17 на Фиг. 93). Та же картина индукции экспрессии генов наблюдалась в обоих образцах клеток IPS и HES, указывая на то, что процесс дифференцировки был направленным, а не спонтанным по своей природе.Similar differentiation kinetics were observed in cells treated with medium for mesodermal differentiation. While expression of pluripotent genes decreased during the 10-day differentiation (Fig. 90), on day 3, early induction of genes characteristic of the early transitional stage of differentiation of the mesoderm (CER1, EOMES, CKIT and VWF) was observed, the level of expression of these genes on the tenth day dropped to almost the original (Fig. 93). It was also noted that the expression of genes characteristic of the mesoderm at 3, 5, 7 and 10 days after the beginning of differentiation showed early high expression of the genes (CDH2, CDX2, GATA6, HNF4α, MNX1, PRDM1 and SOX17 in Fig. 93). The same pattern of gene expression induction was observed in both IPS and HES cell samples, indicating that the differentiation process was directional and not spontaneous in nature.

Эти изменения в экспрессии генов, наблюдаемые с помощью, Qrt-PCR коррелируют с результатами, полученными с помощью фазоконтрастной микроскопии и иммунного окрашивания кластеров, подвергнутых криосекции. На 10 сутки в мезодермальной дифференцированной суспензионной культуре, примерно 1 из 10 кластеров начал спонтанно «сокращаться», что позволило предположить, что клетки дифференцировались в миокардиальную ткань (фиг.94, левая панель, 10 сутки, белые полосы). Окрашенное поперечное сечение некоторых кластеров показало слоистую непрерывную картину с окрашенным β-тубулином,что свидетельствует о формировании мышечной ткани (Фиг. 94, справа).These changes in gene expression observed with Qrt-PCR correlate with the results obtained using phase-contrast microscopy and immune staining of clusters subjected to cryosection. On the 10th day in the mesodermal differentiated suspension culture, approximately 1 out of 10 clusters began to “shrink” spontaneously, which suggested that the cells differentiated into myocardial tissue (Fig.94, left panel, 10th day, white stripes). A colored cross section of some clusters showed a continuous layered pattern with β-tubulin stained, which indicates the formation of muscle tissue (Fig. 94, right).

Разительно отличается морфологическая картина, наблюдаемая для кластеров, дифференцированных в эктодермальные клетки (Фиг. 95, слева) по сравнению с кластерами, дифференцированными в мезодермальные клетки (Фиг.94). Кластеры во всем объеме эктодермальной дифференцировки были крупнее и плотнее, чем клетки, дифференцированные в мезодермальные клетки, и у клеток, дифференцированных в эктодермальные клетки, экспрессия β-тубулина менее выражена. Клетки, показывающие экспрессию β-тубулина, показали более дендритную картину при окрашивании (Фиг. 95, правая панель, белые стрелки), характерную для нейронов.The morphological picture observed for clusters differentiated into ectodermal cells (Fig. 95, left) is very different compared with clusters differentiated into mesodermal cells (Fig.94). Clusters in the whole volume of ectodermal differentiation were larger and denser than cells differentiated into mesodermal cells, and in cells differentiated into ectodermal cells, β-tubulin expression was less pronounced. Cells showing β-tubulin expression showed a more dendritic pattern when stained (Fig. 95, right panel, white arrows), characteristic of neurons.

Эти результаты в сочетании с данными Qrt-PCR и FACS, показывают, что клетки депонированные в банк и выращенные в суспензии, могут быть дифференцированы в суспензионной культуре в мезодермальные или эктодермальные клетки направленным и воспроизводимым образом.These results, in combination with Qrt-PCR and FACS data, show that cells deposited in a bank and grown in suspension can be differentiated in suspension culture into mesodermal or ectodermal cells in a directed and reproducible manner.

Таблица 19Table 19 НачалоStart
Сутки/ДатаDay / Date
Нейронное дифференцированиеNeuronal differentiation
Сутки 0-4Day 0-4
Нейронное дифференцированиеNeuronal differentiation
Сутки 5-10Day 5-10
Кардиальное дифференцированиеCardiac differentiation
Сутки 0-6Day 0-6
Кардиальное дифференцированиеCardiac differentiation
Сутки 7-10Day 7-10
Базовая средаBase environment MCDB131
(2,5 г/л NaCO3 final)
MCDB131
(2.5 g / l NaCO 3 final)
MCDB131 Адапт.
(2,5 г/л NaCO3 final)
MCDB131 Adapt.
(2.5 g / l NaCO 3 final)
MCDB131 Адапт.
(2,5 г/л NaCO3 final)
MCDB131 Adapt.
(2.5 g / l NaCO 3 final)
MCDB131 Адапт.
(2,5 г/л NaCO3)
MCDB131 Adapt.
(2.5 g / l NaCO 3 )
ДобавкиSupplements 2% FAF-BSA
2,5 мМоль глюкозы
Glutamax 1:100
1:100 ITS-X
2% FAF-BSA
2.5 mM glucose
Glutamax 1: 100
1: 100 ITS-X
2% FAF-BSA
2,5 мМоль глюкозы
Glutamax 1:100
1:100 ITS-X или
1X B-27
2% FAF-BSA
2.5 mM glucose
Glutamax 1: 100
1: 100 ITS-X or
1X B-27
2% FAF-BSA
2,5 мМоль глюкозы
Glutamax 1:100
2% FAF-BSA
2.5 mM glucose
Glutamax 1: 100
2% FAF-BSA
2,5 мМоль глюкозы
Glutamax 1:100
1X B-27
2% FAF-BSA
2.5 mM glucose
Glutamax 1: 100
1X B-27
Малые молекулыSmall molecules LDN 100LDN 100
ALKVi ALKVi [7,5 мкМоль][7.5 μm]
отсутствуетmissing Только первые 24 часа
MCX [2 мкМоль]
Только сутки 3 и 4:
IWP-4 [8 мкМоль]
Only the first 24 hours
MCX [2 μM]
Only day 3 and 4:
IWP-4 [8 μm]
СуткиDay 33 33 33 33 ПРИМЕЧАНИЯ:
Каждые сутки отсчитываются от времени начала
NOTES :
Every day are counted from the start time
Замена среды:Replacing the environment:
Сутки 0, 1 и 3Day 0, 1 and 3
Замена среды:Replacing the environment:
Сутки 5 и 7Day 5 and 7
Замена среды:Replacing the environment:
Сутки 0, 1, 3 и 5Day 0, 1, 3 and 5
Замена средыMedium change
Сутки 7 Day 7

Таблица 20Table 20 Материалы:Materials: клетки, полученные из ткани пуповины человека (как раскрыто в патенте США № 7,510,873)cells derived from human umbilical cord tissue (as disclosed in US Pat. No. 7,510,873) Индуцируемые плюрипотентные стволовые клеткиInduced pluripotent stem cells ПартенотыParthenots Клетки человеческой эмбриональной клеточной линии H1 (hES), (клетки WA01, WiCell, Madison WI) Cells of the human embryonic cell line H1 (hES), (cells WA01, WiCell, Madison WI) PBS (№ по каталогу 14190, Invitrogen) PBS (Cat. No. 14190, Invitrogen) Y-27632 (Axxora № по каталогу ALX-270-333, San Diego, CA)Y-27632 (Axxora Catalog Number ALX-270-333, San Diego, CA) EDTA, (Lonza, № по каталогу 17-7-11E)EDTA, (Lonza, catalog number 17-7-11E) NucleoCounter®-(ChemoMetec A/S, № по каталогу YC-T100, г. Аллерод, Дания)NucleoCounter®- (ChemoMetec A / S, catalog number YC-T100, Allerod, Denmark) Обработанные двумя нетканевыми культурами 6-луночные планшеты (Becton Dickinson, № по каталогу Falcon 351146, Franklin Lakes, NJ) 6-well plates treated with two non-woven cultures (Becton Dickinson, Catalog No. Falcon 351146, Franklin Lakes, NJ) Accutase®, (Sigma, № по каталогу A-6964, г. Сент-Луис, штат Миссури, США)Accutase ® , (Sigma, catalog No. A-6964, St. Louis, Missouri, USA) Датчики биореактора для определения уровня pH и количества растворенного кислорода (DO) (FermProbe® рН электрод 225 мм, модель № F-635, датчик растворенного кислорода OxyProbe® 12 мм, номер модели D-145 от Broadley-James Corporation, г. Ирвин штат Калифорния, США)Sensors for determining the level of bioreactor pH and amounts of dissolved oxygen (DO) (FermProbe® pH electrode is 225 mm, the model № F-635, dissolved oxygen sensor OxyProbe ® 12 mm, model number D-145 from Broadley-James Corporation, Irvine state California, USA) Устройство иммунозащитной макроинкапсуляции (TheraCyte™, г. Ирвин штат Калифорния, США)Immuno-Macro-Encapsulation Device (TheraCyte ™, Irwin, California, USA) ИФА человеческого C-пептида (MERCODIA № по каталогу 10-1141-01)ELISA of human C-peptide (MERCODIA Part No. 10-1141-01) GlutaMAX™, MCDB131 и ITS-X (Life Technologies Corporation, г. Гранд Айленд, штат Нью-Йорк, США)GlutaMAX ™, MCDB131 and ITS-X (Life Technologies Corporation, Grand Island, NY, USA) FAF-BSA (Proliant)FAF-BSA (Proliant) Ретиноевая кислота, глюкоза 45% (2,5M), SANT (ингибитор Shh) (Sigma)Retinoic acid, glucose 45% (2.5M), SANT (Shh inhibitor) (Sigma) GDF8 (Peprotech)GDF8 (Peprotech) MCX MCX IWP-4 (ингибитор WNT3) StemgentIWP-4 (WNT3 inhibitor) Stemgent Среда MCDB131Wednesday MCDB131 Среда MCDB131 (адаптированная (MCDB131 адапт.)) - модифицирована до повышения уровня NaCO3 до 3,64 г/л.Wednesday MCDB131 (adapted (MCDB131 adapt.)) - modified to increase the level of NaCO 3 to 3.64 g / l.

В то время как изобретение было описано и проиллюстрировано со ссылкой на различные конкретные материалы, процедур и примеров, следует понимать, что изобретение не ограничено конкретными комбинациями материала и процедур, выбранных для этой цели. Многочисленные изменения, касающиеся таких деталей изобретения, будут очевидными для специалистов в данной области техники. Подразумевается, что все описания и примеры представлены только в качестве иллюстрации и находятся в пределах сущности и объема настоящего изобретения, что отражено в нижеприведенной формуле изобретения. Все ссылки, патенты и заявки на патенты, приведенные в этой заявке, полностью включены в этот документ путем отсылки.While the invention has been described and illustrated with reference to various specific materials, procedures, and examples, it should be understood that the invention is not limited to specific combinations of material and procedures selected for this purpose. Numerous changes regarding such details of the invention will be apparent to those skilled in the art. It is understood that all descriptions and examples are presented only as an illustration and are within the essence and scope of the present invention, which is reflected in the following claims. All references, patents and patent applications cited in this application are fully incorporated into this document by reference.

Claims (51)

1. In vitro способ получения трехмерных клеточных кластеров из плюрипотентных стволовых клеток, включающий:1. In vitro method of obtaining three-dimensional cell clusters from pluripotent stem cells, including: a. обработку плюрипотентных стволовых клеток, культивированных в плоской адгезивной культуре вместе с хелатирующим агентом или ферментом, с высвобождением клеточных агрегатов из плоской адгезивной культуры;a. treatment of pluripotent stem cells cultured in a flat adhesive culture together with a chelating agent or enzyme, with the release of cell aggregates from the flat adhesive culture; b. суспендирование клеточных агрегатов из плоской адгезивной культуры в культурную среду в присутствии ингибитора Rho-киназы без диссоциации клеточных агрегатов до единичных клеток;b. suspending cell aggregates from a flat adhesive culture into the culture medium in the presence of an Rho kinase inhibitor without dissociating cell aggregates to single cells; c. перенос суспензии клеточных агрегатов в динамическую суспензионную культуру; и c. transfer of cell aggregate suspension to dynamic suspension culture; and d. увеличение объема суспензии клеточных агрегатов в динамической суспензионной культуре с получением трехмерных клеточных кластеров, при этом трехмерные клеточные кластеры сохраняют плюрипотентность,d. an increase in the volume of cell aggregate suspension in a dynamic suspension culture with obtaining three-dimensional cell clusters, while three-dimensional cell clusters retain pluripotency, причем плюрипотентные стволовые клетки являются индуцированными плюрипотентными стволовыми клетками, клетками, полученными из ткани пуповины человека, партенотами, клетками, полученными из амниотической жидкости, или эмбриональными стволовыми клетками человека линии H1, H7, H9, SA002 или BG01v.moreover, pluripotent stem cells are induced pluripotent stem cells, cells derived from human umbilical cord tissue, parthenotes, cells derived from amniotic fluid, or human embryonic stem cells of the H1, H7, H9, SA002 or BG01v human stem cells. 2. Способ по п. 1, в котором плюрипотентные стволовые клетки обрабатывают ферментом, выбранным из нейтральной протеазы или Accutase®.2. A method according to claim 1, wherein the pluripotent stem cells are treated with an enzyme selected from a neutral protease or Accutase®. 3. Способ по п. 2, в котором ферментом является нейтральная протеаза.3. The method according to p. 2, in which the enzyme is a neutral protease. 4. Способ по п. 3, в котором плюрипотентные стволовые клетки представляют собой H1 hES.4. The method according to claim 3, wherein the pluripotent stem cells are H1 hES. 5. Способы по п. 1, в котором клетки в клеточных кластерах экспрессируют CD9, SSEA4, TRA-1-60 и TRA-1-81 и не экспрессируют CXCR4.5. The methods of claim 1, wherein the cells in the cell clusters express CD9, SSEA4, TRA-1-60 and TRA-1-81 and do not express CXCR4. 6. Способ по п. 1, в котором плюрипотентные стволовые клетки обрабатывают хелатирующим агентом.6. A method according to claim 1, wherein the pluripotent stem cells are treated with a chelating agent. 7. Способ по п. 6, в котором хелатирующим агентом является этилендиаминтетрауксусная кислота (EDTA).7. A method according to claim 6, in which the chelating agent is ethylenediaminetetraacetic acid (EDTA). 8. Способ по п. 1, в котором динамически перемешиваемая суспензионная культура содержит микроносители.8. The method according to claim 1, wherein the dynamically stirred suspension culture contains microcarriers. 9. Способ дифференцировки клеточных кластеров из плюрипотентных стволовых клеток в динамически перемешиваемой суспензионной культуральной системе, включающий:9. The method of differentiation of cell clusters of pluripotent stem cells in a dynamically mixed suspension culture system, including: а. обработку плюрипотентных стволовых клеток, культивированных в плоской адгезивной культуре вместе с хелатирующим агентом или ферментом, с высвобождением клеточных агрегатов из плоской адгезивной культуры;but. treatment of pluripotent stem cells cultured in a flat adhesive culture together with a chelating agent or enzyme, with the release of cell aggregates from the flat adhesive culture; b. суспендирование клеточных агрегатов из плоской адгезивной культуры в присутствии ингибитора Rho-киназы без диссоциации клеточных агрегатов до единичных клеток;b. suspending cell aggregates from a flat adhesive culture in the presence of an Rho kinase inhibitor without dissociating cell aggregates to single cells; с. перенос суспензии клеточных агрегатов в динамически перемешиваемую суспензионную культуру;with. transfer of cell aggregate suspension to a dynamically stirred suspension culture; d. увеличение объема суспензии клеточных агрегатов в динамически перемешиваемой суспензионной культуре с получением плюрипотентных клеточных кластеров, в которых клеточные кластеры экспрессируют CD9, SSEA4, TRA-1-60 и TRA-1-81 и не экспрессируют CXCR4; иd. increasing the volume of cell aggregate suspension in a dynamically stirred suspension culture to produce pluripotent cell clusters in which cell clusters express CD9, SSEA4, TRA-1-60 and TRA-1-81 and do not express CXCR4; and e. дифференциацию плюрипотентных клеточных кластеров в динамической суспензионной культуральной системе с получением популяции клеток-предшественников панкреатических клеток, популяции клеток-предшественников нейронов или популяции клеток-предшественников кардиомиоцитов,e. differentiation of pluripotent cell clusters in a dynamic suspension culture system to produce a population of pancreatic progenitor cells, a population of neuron progenitor cells, or a population of cardiomyocyte progenitor cells, причем плюрипотентные стволовые клетки являются индуцированными плюрипотентными стволовыми клетками, клетками, полученными из ткани пуповины человека, партенотами, клетками, полученными из амниотической жидкости, или эмбриональными стволовыми клетками человека линии H1, H7, H9, SA002 или BG01v.moreover, pluripotent stem cells are induced pluripotent stem cells, cells derived from human umbilical cord tissue, parthenotes, cells derived from amniotic fluid, or human embryonic stem cells of the H1, H7, H9, SA002 or BG01v human stem cells. 10. Способ по п. 9, при котором продуцируется популяция клеток-предшественников панкреатических клеток, которые экспрессируют транскрипционные факторы β-клеток.10. The method of claim 9, wherein a population of pancreatic progenitor cells is produced which express the transcription factors of β-cells. 11. Способ по п. 10, в котором транскрипционные факторы β-клеток представляют собой PDX1 и/или NKX6.1.11. The method according to p. 10, in which the transcription factors of β-cells are PDX1 and / or NKX6.1. 12. Способ по п. 9, который включает дифференцировку плюрипотентных клеточных кластеров в динамически перемешиваемой суспензионной культуральной системе с получением популяции клеток-предшественников поджелудочной железы. 12. The method according to p. 9, which includes the differentiation of pluripotent cell clusters in a dynamically mixed suspension culture system to obtain a population of progenitor cells of the pancreas. 13. Cпособ по п. 9, который включает дифференцировку плюрипотентных клеточных кластеров в динамически перемешиваемой суспензионной культуральной системе с получением популяции клеток-предшественников нейронов.13. The method according to claim 9, which includes the differentiation of pluripotent cell clusters in a dynamically mixed suspension culture system to obtain a population of neuron precursor cells. 14. Способ по п. 9, который включает дифференцировку плюрипотентных клеточных кластеров в динамически перемешиваемой суспензионной культуральной системе с получением популяции клеток-предшественников кардиомиоцитов.14. The method according to p. 9, which includes the differentiation of pluripotent cell clusters in a dynamically mixed suspension culture system to obtain a population of precursor cells of cardiomyocytes. 15. Cпособ по п. 9, в котором плюрипотентные стволовые клетки обрабатывают хелатирующим агентом. 15. The method according to claim 9, wherein the pluripotent stem cells are treated with a chelating agent. 16. Cпособ по п. 15, в котором хелатирующим агентом является EDTA.16. The method according to claim 15, in which the chelating agent is EDTA. 17. Cпособ по п. 9, в котором плюрипотентные стволовые клетки обрабатывают ферментом.17. The method according to claim 9, wherein the pluripotent stem cells are treated with an enzyme. 18. Способ по п. 17, в котором ферментом является нейтральная протеаза или Accutase.18. The method according to p. 17, in which the enzyme is a neutral protease or Accutase. 19. Способ по п. 9, в котором стадия дифференцировки включает культивирование при уровне кислорода от примерно гипоксии до примерно 30% окружающего воздуха, липидов в диапазоне от 0,1 % до примерно 2% или при комбинации этих условий.19. The method according to p. 9, in which the stage of differentiation includes cultivation when the oxygen level is from about hypoxia to about 30% of ambient air, lipids in the range from 0.1% to about 2%, or a combination of these conditions. 20. Способ по п. 12, который включает дифференцировку трехмерных плюрипотентных кластеров стволовых клеток в окончательные клетки эндодермы в культуральной среде, дополненной либо (i) циклическим анилинпиридинотриазином и GDF8, либо (ii) WNT3A и активином A.20. A method according to claim 12, which includes the differentiation of three-dimensional pluripotent stem cell clusters into final endoderm cells in a culture medium supplemented with either (i) cyclic aniline pyridinotriazine and GDF8, or (ii) WNT3A and activin A. 21. Способ по п. 20, в котором циклический анилинпиридинотриазин представляет собой 14-проп-2-ен-1-ил-1-3,5,7,14,17,23,27-гептаазатетрацикло[19.3.1.1~2,6~.1~8,12~]-[гептакоза-1(25),2(27),3,5,8(26),9,11,21,23-нонаен-16-он.21. The method according to claim 20, wherein the cyclic anilinpyridinotriazine is 14-prop-2-en-1-yl-1-3,5,7,14,17,23,27-heptaazatetracyclo [19.3.1.1 ~ 2, 6 ~ .1 ~ 8,12 ~] - [heptacosis-1 (25), 2 (27), 3,5,8 (26), 9,11,21,23-nona-16-one. 22. Способ по п. 9, в котором динамически перемешиваемая суспензионная культуральная система содержит микроносители.22. The method according to p. 9, in which the dynamically stirred suspension culture system contains microcarriers. 23. In vitro cпособ получения плюрипотентных кластеров стволовых клеток, включающий:23. In vitro method for producing pluripotent stem cell clusters, including: а. обработку плюрипотентных стволовых клеток, культивированных в плоской адгезивной культуре, вместе с ферментативным или хелатирующим агентом при комнатной температуре в течение периода времени, достаточного для высвобождения плюрипотентных стволовых клеток в виде клеточных агрегатов;but. treatment of pluripotent stem cells cultured in a flat adhesive culture, together with an enzymatic or chelating agent at room temperature for a period of time sufficient to release the pluripotent stem cells in the form of cell aggregates; b. удаление указанного ферментативного или хелатирующего агента;b. removing the specified enzymatic or chelating agent; с. добавление культуральной среды с добавлением ингибитора Rho-киназы в клеточные агрегаты и суспендирование клеточных агрегатов в культуру без диссоциации клеточных агрегатов в единичные клетки;with. adding the culture medium with the addition of the Rho-kinase inhibitor to the cell aggregates and suspending the cell aggregates into the culture without dissociating the cell aggregates into single cells; d. перенос суспензии клеточных агрегатов в динамическую суспензионную культуральную систему; иd. transfer of cell aggregate suspension to a dynamic suspension culture system; and e. увеличение объема суспензии клеточных агрегатов в динамической суспензионной культуре с получением клеточных кластеров, при этом клетки в клеточных кластерах являются плюрипотентными,e. an increase in the volume of the suspension of cell aggregates in a dynamic suspension culture with the production of cell clusters, while cells in cell clusters are pluripotent, причем плюрипотентные стволовые клетки являются индуцированными плюрипотентными стволовыми клетками, клетками, полученными из ткани пуповины человека, партенотами, клетками, полученными из амниотической жидкости, или эмбриональными стволовыми клетками человека линии H1, H7, H9, SA002 или BG01v.moreover, pluripotent stem cells are induced pluripotent stem cells, cells derived from human umbilical cord tissue, parthenotes, cells derived from amniotic fluid, or human embryonic stem cells of the H1, H7, H9, SA002 or BG01v human stem cells. 24. Способ по п. 23, в котором способ включает применение хелатирующих агентов.24. A method according to claim 23, in which the method includes the use of chelating agents. 25. Cпособ по п. 24, в котором хелатирующим агентом является EDTA.25. The method according to claim 24, in which the chelating agent is EDTA. 26. Способ по п. 25, в котором способ включает применение ферментативных агентов.26. The method according to p. 25, in which the method includes the use of enzymatic agents. 27. Способ по п. 23, в котором ферментативным агентом является нейтральная протеаза или Accutase.27. The method according to p. 23, in which the enzymatic agent is a neutral protease or Accutase. 28. Способ по п. 23, который дополнительно включает дифференциацию плюрипотентных кластеров стволовых клеток в динамической суспензионной культуральной системе с получением популяции клеток-предшественников панкреатических клеток, популяции клеток-предшественников нейронов или популяции клеток-предшественников кардиомиоцитов.28. The method of claim 23, further comprising differentiating pluripotent stem cell clusters in a dynamic suspension culture system to produce a population of pancreatic progenitor cells, a population of neuronal progenitor cells, or a population of cardiomyocyte progenitor cells. 29. Способ по п. 1, в котором ингибитор Rho-киназы является Y-27632.29. The method according to claim 1, wherein the Rho kinase inhibitor is Y-27632. 30. Способ по п. 1, в котором культуральная среда содержит ингибитор Rho-киназы при концентрации от 1 до около 100 мкМ.30. The method according to claim 1, wherein the culture medium contains an inhibitor of Rho-kinase at a concentration of from 1 to about 100 microns. 31. Способ по п. 9, в котором ингибитор Rho-киназы является Y-27632.31. The method of claim 9, wherein the Rho kinase inhibitor is Y-27632. 32. Способ по п. 9, в котором клеточные агрегаты из плоской адгезивной культуры суспендируют в присутствии от 1 до примерно 100 мкМ ингибитора Rho-киназы.32. The method of claim 9, wherein the cell aggregates from the flat adhesive culture are suspended in the presence of from 1 to about 100 μM Rho kinase inhibitor. 33. Способ по п. 23, в котором ингибитор Rho-киназы является Y-27632.33. The method of claim 23, wherein the Rho kinase inhibitor is Y-27632. 34. Способ по п. 23, в котором культуральная среда содержит ингибитор Rho-киназы при концентрации от 1 до около 100 мкМ.34. The method according to p. 23, in which the culture medium contains an inhibitor of Rho-kinase at a concentration of from 1 to about 100 microns.
RU2016121409A 2013-11-01 2014-05-21 Suspending and clustering human pluripotent stem cells for their differentiation into pancreatic endocrine cells RU2689710C2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361962158P 2013-11-01 2013-11-01
US61/962,158 2013-11-01
US13/998,974 US10377989B2 (en) 2012-12-31 2013-12-30 Methods for suspension cultures of human pluripotent stem cells
US13/998,974 2013-12-30
PCT/US2014/038993 WO2015065524A2 (en) 2013-11-01 2014-05-21 Suspension and clustering of human pluripotent stem cells for differentiation into pancreatic endocrine cells

Publications (3)

Publication Number Publication Date
RU2016121409A RU2016121409A (en) 2017-12-04
RU2016121409A3 RU2016121409A3 (en) 2018-03-29
RU2689710C2 true RU2689710C2 (en) 2019-05-29

Family

ID=53004904

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2016121409A RU2689710C2 (en) 2013-11-01 2014-05-21 Suspending and clustering human pluripotent stem cells for their differentiation into pancreatic endocrine cells
RU2016121404A RU2016121404A (en) 2013-11-01 2014-06-17 SUSPENDING AND CLUSTERING OF HUMAN PLURIPOTENT STEM CELLS WITH THE PURPOSE OF THEIR DIFFERENTIATION IN PANCREATIC ENDOCRINE CELLS

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2016121404A RU2016121404A (en) 2013-11-01 2014-06-17 SUSPENDING AND CLUSTERING OF HUMAN PLURIPOTENT STEM CELLS WITH THE PURPOSE OF THEIR DIFFERENTIATION IN PANCREATIC ENDOCRINE CELLS

Country Status (12)

Country Link
EP (2) EP3063268A4 (en)
JP (2) JP2016534731A (en)
KR (4) KR20180128529A (en)
CN (2) CN105793413A (en)
AU (4) AU2014342995C1 (en)
BR (1) BR112016009393A8 (en)
CA (2) CA2928639A1 (en)
MX (2) MX2016005657A (en)
PH (2) PH12016500783A1 (en)
RU (2) RU2689710C2 (en)
SG (2) SG11201603045VA (en)
WO (2) WO2015065524A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180128529A (en) * 2013-11-01 2018-12-03 얀센 바이오테크 인코포레이티드 Suspension and clustering of human pluripotent stem cells for differentiation into pancreatic endocrine cells
AU2017281631B2 (en) * 2016-06-23 2023-06-15 Tithon Biotech, Inc. Cells expressing parathyroid hormone 1 receptor and uses thereof
SG11201903428XA (en) * 2016-11-16 2019-05-30 Cynata Therapeutics Ltd Pluripotent stem cell assay
US10391156B2 (en) 2017-07-12 2019-08-27 Viacyte, Inc. University donor cells and related methods
JP2020527956A (en) * 2017-07-21 2020-09-17 センマ・セラピューティクス・インコーポレーテッド Stem cell-derived pancreatic beta cell reaggregation
JP7000896B2 (en) * 2017-08-23 2022-01-19 王子ホールディングス株式会社 Cell sheet forming member, method for manufacturing cell sheet forming member, and method for manufacturing cell sheet
AU2019205942A1 (en) * 2018-01-05 2020-08-13 Platelet Biogenesis, Inc. Compositions and methods for producing megakaryocytes
CN112041428B (en) * 2018-01-18 2024-05-24 新加坡科技研究局 Method for differentiating human pluripotent stem cell lines in suspension culture
KR102115360B1 (en) * 2018-05-30 2020-05-26 주식회사 바이블리오테카 Adult stem cell culture fluid and a producing method thereof
US10724052B2 (en) 2018-09-07 2020-07-28 Crispr Therapeutics Ag Universal donor cells
CN114401752B (en) 2019-05-31 2023-04-04 W.L.戈尔及同仁股份有限公司 Cell encapsulation device with controlled oxygen diffusion distance
EP3975926A1 (en) 2019-05-31 2022-04-06 W.L. Gore & Associates, Inc. A biocompatible membrane composite
WO2020243665A1 (en) 2019-05-31 2020-12-03 W. L. Gore & Associates, Inc. A biocompatible membrane composite
WO2020243663A1 (en) 2019-05-31 2020-12-03 W. L. Gore & Associates, Inc. A biocompatible membrane composite
MX2022002663A (en) 2019-09-05 2022-04-07 Crispr Therapeutics Ag Universal donor cells.
CN114375300A (en) 2019-09-05 2022-04-19 克里斯珀医疗股份公司 Universal donor cell
CN114729323A (en) * 2019-11-22 2022-07-08 诺和诺德股份有限公司 Rotary aggregation nerve microsphere and application thereof
US11578309B2 (en) 2020-12-31 2023-02-14 Crispr Therapeutics Ag Universal donor cells
US20240191185A1 (en) * 2021-03-25 2024-06-13 Kaneka Corporation Method for producing pluripotent stem cell population

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2351648C2 (en) * 2001-11-09 2009-04-10 Артесел Сайенсиз, Инк. Adipose stromal cell differentiation into endocrine pancreas cells and application thereof
CA2809303A1 (en) * 2010-08-31 2012-03-08 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
EP2559756A1 (en) * 2007-07-01 2013-02-20 Lifescan, Inc. Single pluripotent stem cell culture

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040297B2 (en) * 2006-08-02 2015-05-26 Technion Research & Development Foundation Limited Methods of expanding embryonic stem cells in a suspension culture
EP2088190A4 (en) * 2006-11-09 2011-01-05 Japan Government Method for culture and passage of primate embryonic stem cell, and method for induction of differentiation of the embryonic stem cell
WO2008148105A1 (en) * 2007-05-25 2008-12-04 Medistem Laboratories, Inc. Endometrial stem cells and methods of making and using same
GB0800524D0 (en) * 2008-01-14 2008-02-20 Univ Brighton Cell culture system
US8716018B2 (en) * 2008-03-17 2014-05-06 Agency For Science, Technology And Research Microcarriers for stem cell culture
ES2552240T3 (en) * 2008-06-30 2015-11-26 Janssen Biotech, Inc. Differentiation of pluripotent stem cells
US8895300B2 (en) * 2008-11-04 2014-11-25 Viacyte, Inc. Scalable primate pluripotent stem cell aggregate suspension culture and differentiation thereof
US8008075B2 (en) * 2008-11-04 2011-08-30 Viacyte, Inc. Stem cell aggregate suspension compositions and methods of differentiation thereof
CN102597218B (en) * 2009-08-12 2017-10-27 国立大学法人京都大学 Method for inducing differentiation of pluripotent stem cells into neural precursor cells
WO2011158960A1 (en) * 2010-06-15 2011-12-22 Kyoto University Method for selecting human induced pluripotent stem cells
US9085757B2 (en) * 2010-06-17 2015-07-21 Regents Of The University Of Minnesota Production of insulin producing cells
WO2012117333A1 (en) * 2011-02-28 2012-09-07 Stempeutics Research Malaysia Sdn Bhd Isolation and expansion of adult stem cells, their therapeutic composition and uses thereof
US8951798B2 (en) * 2011-10-13 2015-02-10 Wisconsin Alumni Research Foundation Generation of cardiomyocytes from human pluripotent stem cells
MX2014007744A (en) * 2011-12-22 2015-01-12 Janssen Biotech Inc Differentiation of human embryonic stem cells into single hormonal insulin positive cells.
US10519422B2 (en) * 2012-02-29 2019-12-31 Riken Method of producing human retinal pigment epithelial cells
CA2896750A1 (en) * 2012-12-31 2014-07-03 Janssen Biotech, Inc. Suspension and clustering of human pluripotent cells for differentiation into pancreatic endocrine cells
KR20180128529A (en) * 2013-11-01 2018-12-03 얀센 바이오테크 인코포레이티드 Suspension and clustering of human pluripotent stem cells for differentiation into pancreatic endocrine cells

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2351648C2 (en) * 2001-11-09 2009-04-10 Артесел Сайенсиз, Инк. Adipose stromal cell differentiation into endocrine pancreas cells and application thereof
EP2559756A1 (en) * 2007-07-01 2013-02-20 Lifescan, Inc. Single pluripotent stem cell culture
CA2809303A1 (en) * 2010-08-31 2012-03-08 Janssen Biotech, Inc. Differentiation of human embryonic stem cells

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
БЛАЖЕВИЧ О.В. Культивирование клеток. Курс лекций. - Мн.: БГУ, 2004. - 78 с. EGUIZABAL C. et al. "Complete Meiosis from Human Induced Pluripotent Stem Cells", Stem Cells. 2011; 29: 1186-1195. STACPOOL S.R.L. et al. "Efficient derivation of neural precursor cells, spinal motor neurons and midbrain dopaminergic neurons from human ES cells at 3% oxygen", Nat Protoc. 2012; 6(8): 1229-1240. *
ВЕРХОВСКАЯ Л.З. и др. "Действие алкоксизамещенных глицерина на морфофункциональные свойства перевиваемой культуры клеток", Криобиология. 1990; 1: 30-33. *

Also Published As

Publication number Publication date
JP2016534731A (en) 2016-11-10
KR20180130001A (en) 2018-12-05
PH12016500782A1 (en) 2016-06-13
EP3063269A4 (en) 2017-07-12
CN105793413A (en) 2016-07-20
MX2016005658A (en) 2017-01-05
KR20160079071A (en) 2016-07-05
KR20180128529A (en) 2018-12-03
EP3063268A4 (en) 2017-11-29
PH12016500783A1 (en) 2016-06-13
AU2018208707A1 (en) 2018-08-16
KR20160079072A (en) 2016-07-05
CN105683362A (en) 2016-06-15
SG11201603047PA (en) 2016-05-30
RU2016121409A3 (en) 2018-03-29
AU2014342995B2 (en) 2018-04-26
MX2016005657A (en) 2017-01-05
EP3063268A2 (en) 2016-09-07
RU2016121404A (en) 2017-12-04
RU2016121404A3 (en) 2018-03-29
AU2014343007C1 (en) 2018-08-09
AU2014342995C1 (en) 2018-08-09
WO2015065524A3 (en) 2015-08-13
SG11201603045VA (en) 2016-05-30
AU2014343007B2 (en) 2018-04-26
EP3063269A1 (en) 2016-09-07
RU2016121409A (en) 2017-12-04
WO2015065537A1 (en) 2015-05-07
AU2014342995A1 (en) 2016-05-05
BR112016009393A8 (en) 2020-03-24
JP2017500013A (en) 2017-01-05
AU2014343007A1 (en) 2016-05-05
CA2928741A1 (en) 2015-05-07
WO2015065524A2 (en) 2015-05-07
AU2018208717A1 (en) 2018-08-16
CA2928639A1 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
RU2689710C2 (en) Suspending and clustering human pluripotent stem cells for their differentiation into pancreatic endocrine cells
RU2687379C2 (en) Suspending and clustering of human pluripotent cells with the purpose of their differentiation in pancreatic endocrine cells
JP6800854B2 (en) Suspension culture of pluripotent stem cells
US10370644B2 (en) Method for making human pluripotent suspension cultures and cells derived therefrom