RU2688332C1 - Измельчительная машина с основанным на радиолокации измерением износа - Google Patents

Измельчительная машина с основанным на радиолокации измерением износа Download PDF

Info

Publication number
RU2688332C1
RU2688332C1 RU2018123166A RU2018123166A RU2688332C1 RU 2688332 C1 RU2688332 C1 RU 2688332C1 RU 2018123166 A RU2018123166 A RU 2018123166A RU 2018123166 A RU2018123166 A RU 2018123166A RU 2688332 C1 RU2688332 C1 RU 2688332C1
Authority
RU
Russia
Prior art keywords
wear
antenna
radar
grinding machine
layer
Prior art date
Application number
RU2018123166A
Other languages
English (en)
Inventor
Дэвид ЗУДМАНН
Тимо БИШОФ
Райк Винкель
Маттиас РАБЕЛЬ
Original Assignee
Тиссенкрупп Аг
Тиссенкрупп Индастриал Солюшнз Аг
индурад ГмбХ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Тиссенкрупп Аг, Тиссенкрупп Индастриал Солюшнз Аг, индурад ГмбХ filed Critical Тиссенкрупп Аг
Application granted granted Critical
Publication of RU2688332C1 publication Critical patent/RU2688332C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers
    • B02C2/005Lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2/00Crushing or disintegrating by gyratory or cone crushers
    • B02C2/02Crushing or disintegrating by gyratory or cone crushers eccentrically moved
    • B02C2/04Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis
    • B02C2/047Crushing or disintegrating by gyratory or cone crushers eccentrically moved with vertical axis and with head adjusting or controlling mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2210/00Codes relating to different types of disintegrating devices
    • B02C2210/01Indication of wear on beaters, knives, rollers, anvils, linings and the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Crushing And Grinding (AREA)
  • Crushing And Pulverization Processes (AREA)

Abstract

Настоящее изобретение относится к измельчительной машине, такой как дробилка, мельница или тому подобное, у которой измельчаемый материал проводится через зазор, который выполнен между по меньшей мере одним слоем износа, нанесенным на компонент измельчительной машины, и ответной поверхностью и с прогрессирующим износом по меньшей мере одного слоя износа меняется в своей протяженности, которая отличается тем, что для определения износа, возникающего на слое износа, и/или для определения имеющей место в каждом случае протяженности зазора между слоем износа и ответной поверхностью согласована направленная на соответствующую ответную поверхность радиолокационная антенна, причем радиолокационная антенна включает в себя антенную область и изнашиваемую часть, которая согласована, по меньшей мере, с предусмотренной для допустимого износа областью слоя износа и с износом слоя износа в каждом случае укорачивается. 2 н. и 15 з.п. ф-лы, 4 ил.

Description

Изобретение относится к измельчительной машине, такой как дробилка, мельница или тому подобное, у которой измельчаемый материал проводится через зазор, который выполнен между, по меньшей мере, одним слоем износа, нанесенным на компонент измельчительной машины, и ответной поверхностью и с прогрессирующим износом, по меньшей мере, одного слоя износа меняется в своей протяженности. Подобные измельчительные машины предусмотрены в частности для измельчения сырых материалов (сырья), так называемых минералов, и в данном случае в частности для применения в горнодобывающей промышленности или в цементной промышленности.
Поскольку примером использования для изобретения может считаться конусная дробилка, подобная конусная дробилка описана в DE 198 53 900 A1. Конусная дробилка состоит из внешнего корпуса дробилки, который с внутренней стороны облицован состоящими из слоя износа дробильными щеками (дробильной оболочкой). В закрытой дробильными щеками камере измельчения конусной дробилки расположена несущая конус дробилки ось, которая приводится приводом в движение шатания (движение типа "пьяной бочки"), причем на нижнем конце конуса дробилки между закрепленным также на его наружной стороне слоем износа и расположенным на корпусе и образующим дробильные щеки слоем износа выполнен зазор, который задает конечный размер зерна измельчаемого конусной дробилкой материала. В рамках этого измельчения, на слоях износа дробильных щек и конуса дробилки происходит непрерывный износ, который через некоторые интервалы времени требует замены соответствующего слоя износа, причем во время срока службы слоев износа при эксплуатации конусной дробилки также дополнительно доходит до изменения величины зазора дробилки.
В вышеуказанном документе DE 198 53 900 A1, для подобной конусной дробилки указан способ установки зазора дробилки, для выполнения которого вовнутрь корпуса вводится датчик, который имеет бороскоп и выполнен в виде соединенного с телекамерой эндоскопа, и при помощи которого область зазора дробилки регистрируется телекамерой и визуализируется на мониторе. На основе сравнения измеренных в каждом случае значений для зазора дробилки с зафиксированными в новом состоянии конусной дробилки значениями может определяться имеющий в каждом случае место износ. С известной конусной дробилкой и относящимся к ней способом связан еще тот недостаток, что состоящий из бороскопа, эндоскопа, телекамеры и монитора измерительный блок имеет сложную конструкцию и в своей эксплуатации сложен в обращении. При этом, в частности, является трудоемким, для выполнения измерения датчик в каждом случае вводить вовнутрь корпуса и там в каждом случае позиционировать таким образом, что могут выполняться повторяемые измерения с сопоставимыми значениями. Одновременно имеет место тот дальнейший недостаток, что поток измельчаемого материала должен прерываться, и дробилка должна быть полностью опорожнена. Таким образом, соответствующие времена подготовки неизбежны для выполнения каждого измерения.
Далее из US 3,944,146 A известно при конусной дробилке использовать ультразвуковую технику для контроля зазора дробилки, а также для определения износа, имеющего место на внутреннем слое износа. Измерительная система включает в себя две ультразвуковые головки, из которых одна расположена в области зазора дробилки в корпусе дробилки за пределами закрепленного на нем слоя износа, а другая в области нижнего основания корпуса дробилки, причем с последней ультразвуковой головкой согласована отражающая поверхность, расположенная на поршне системы гидравлического цилиндра для перемещения конуса дробилки в корпусе дробилки. Обе ультразвуковые головки соединены с ультразвуковым измерительным блоком, а также с осциллографом для отображения пиков сигналов. Расположенная в области зазора дробилки ультразвуковая головка служит для непосредственного определения соответствующей толщины слоя износа в том случае, если испущенный ультразвуковой головкой сигнал отражается на внешней поверхности слоя износа, и время прохождения сопоставляется с имеющим место для нового состояния слоя износа временем прохождения. Если выходящие из этой ультразвуковой головки акустические волны попадают после проникновения через слой износа на противоположную поверхность конуса дробилки, то из этого может выводиться протяженность зазора дробилки. Так как это определение зазора дробилки не возможно во время эксплуатации конусной дробилки из-за проходящего через зазор дробилки материала, согласно US 3,944,146 A предложено для непрерывного контроля зазора дробилки применение второй, расположенной в основании корпуса дробилки ультразвуковой измерительной системы, причем на основе результатов обоих ультразвуковых измерительных устройств протяженность зазора дробилки определяется во время работы конусной дробилки математически и вследствие этого контролируется. С известной конусной дробилкой связан по существу тот недостаток, что применение ультразвуковой техники в измельчительных машинах и в частности в дробилках проблематично, так как ультразвук искажается возникающими при дроблении рабочими шумами и шумами измельчения, если использованные частоты перекрываются обусловленными шумами шумовыми помехами.
Из WO 2014/187824 A1 известна измельчительная машина с измерительной системой, которая основывается на использовании RFID-датчиков (радиочастотной идентификации), которые могут беспроводным образом сообщаться с соответствующим устройством. RFID-датчики расположены на активных мельничных элементах, и при прогрессирующем износе мельничных элементов RFID-метки друг за другом разрушаются, так что соответствующая связь с разрушенными RFID-метками больше не возможна. Таким образом, благодаря соответствующему, компьютерному, цифровому считыванию может обнаруживаться, насколько распространился износ активных мельничных элементов, причем мельничные элементы выполнены в виде мельничных дисков, которые изнашиваются с наружной стороны и уменьшаются в диаметре. Если несколько RFID-меток, начиная от крайнего диаметра, расположены на мельничных дисках, и разрушаются внешние RFID-метки благодаря абразивному износу, то датчиками может обнаруживаться, насколько распространился износ мельничных дисков.
Однако такое применение RFID-меток не может реализовываться при дробилке для открытых горных работ, так как дробильные щеки дробилки не предоставляют возможность принимать RFID-метки, так чтобы они могли выполнять свою функцию также без износа. Благодаря сильному механическому воздействию на дробильные щеки длительная работоспособность RFID-меток не может обеспечиваться, даже если абразивный износ активной дробильной поверхности дробильных щек еще не распространился до разрушения RFID-меток. Следовательно, ставится задача разработать измерение износа для дробилки, которая может использоваться в открытых горных работах, и при помощи которой могут измельчаться твердые, крупнодисперсные сырые материалы, и создать условия для измерения износа в частности во время эксплуатации дробилки.
Исходя из этого, в основе изобретения лежит задача оснастить измельчительную машину указанного вначале типа таким образом, что при помощи имеющей более простую конструкцию измерительной системы может без существенных времен подготовки выполняться точное определение износа и зазора, а также указать способ оценки для определения создавшегося износа и имеющегося в каждом случае зазора.
Решение этой задачи проистекает, включая предпочтительные варианты осуществления и усовершенствования изобретения, из содержания формулы изобретения, которая следует за этим описанием.
Изобретение предусматривает в своей основной идее то, что для определения износа, возникающего на слое износа, и/или для определения имеющей место в каждом случае протяженности зазора между слоем износа и ответной поверхностью расположена радиолокационная антенна, причем радиолокационная антенна включает в себя антенную область и изнашиваемую часть, которая согласована, по меньшей мере, с предусмотренной для допустимого износа областью слоя износа и с износом слоя износа в каждом случае укорачивается.
Таким образом, изобретение делает при определении износа возможным использование радиолокационной техники, для которой имеются в распоряжении надежные, точные и эффективные измерительные приборы. Особенность изобретения заключается в использовании неподвижно заделанной в состоящий из материала износа слой износа радиолокационной антенны, длина которой укорачивается при непрерывном износе слоя износа, так что в любое время и в любом рабочем состоянии, привлекая возникающее при каждом изменении материала отражение радиолокационных лучей (эпсилон R значение - диэлектрическая проницаемость), возможно непосредственное определение остаточной толщины слоя износа, а через определение расстояния между находящимся в каждом случае на внешней поверхности износа слоя износа концом радиолокационной антенны и противоположной ответной поверхностью измельчительной машины возможно определение зазора между слоем износа и ответной поверхностью. Дополнительно на основе измеренных значений можно также определять имеющий место на ответной поверхности износ, если на эту ответную поверхность нанесен слой износа. При этом радиолокационная антенна состоит из антенной области с по существу известным исполнением и наращенной на ней изнашиваемой части, длина которой имеет, по меньшей мере, настолько большое значение, как протяженность или толщина того участка слоя износа, который допустимым образом предусмотрен для износа перед необходимой заменой слоя износа. Это означает, что изнашиваемая часть соответствующей изобретению радиолокационной антенны может также иметь большую длину, чем толщина допущенной области износа слоя износа, то есть может также распространяться по всей толщине нанесенного на соответствующий компонент измельчительной машины слоя износа. Под понятием назначаемого радиолокационной антенне лепестка измерительной диаграммы направленности следует в общих чертах понимать область распространения выходящих из радиолокационной антенны радиолокационных волн.
В этом отношении с изобретением связано то преимущество, что отдельные времена подготовки для выполнения измерений не требуются, так как отдельные компоненты радиолокационной измерительной техники прочно встроены в измельчительную машину. Таким образом, изобретение делает по сравнению с известной из US 3,944,146 A ультразвуковой измерительной техникой возможными существенно более быстрые, а также выполняемые во время непрерывной эксплуатации измерения, причем может быть выше вероятность того, что область измерения в момент времени измерения свободна от измельчаемого материала. Кроме того, использование радиолокационной антенны позволяет по сравнению с использованием ультразвука более фокусированный измерительный пучок, а также более чистый характер распространения.
Изобретение можно при этом использовать не только для привлеченной в качестве примера конусной дробилки, но и для других типов конструкции дробилки, таких как в частности щековая дробилка или вальцовая дробилка, а также для дальнейших измельчительных устройств, таких как мельницы и тому подобное, если при измельчительных машинах доходит до регистрации состояния износа облицовки корпуса или до определения ширины зазора, имеющегося между облицовкой корпуса и измельчительным инструментом.
Если должно быть обеспечено, что возникают обусловленные включением дополнительной изнашиваемой части, примыкающей к антенной области, и искажающие результат измерения отражения или потери в радиолокационных волнах, то согласно примеру осуществления изобретения предусмотрено, что изнашиваемая часть радиолокационной антенны имеет по сравнению с коническим внешним видом антенной области незначительно расширяющуюся по направлению к ответной поверхности конусность и выполнена таким образом, что при прохождении радиолокационных волн через изнашиваемую часть направленное действие антенны сохраняется, и предотвращаются более высокие типы волн (моды), то есть другие типы волн, чем основные типы волн. При этом изнашиваемая часть предпочтительно выполнена из сравнительно износостойкого материала, как и слой износа, имеющего однако подходящие для радиолокации диэлектрические свойства. В качестве предпочтительного материала здесь можно назвать имеющую соответствующие свойства керамику.
Согласно примерам осуществления изобретения антенная область радиолокационной антенны выполнена в виде рупорной антенны, причем предпочтительно используется рупорная антенна, которая заполнена материалом, имеющим подходящие диэлектрические свойства, например подходящей керамикой. Подобные рупорные антенны в целом известны в радиолокационной технике. Помимо этого использование заполненной рупорной антенны является предпочтительным по сравнению с распространенной в радиолокационной технике открытой рупорной антенной, которая при использовании в измельчительной машине легко засорилась бы дробильным материалом самой разной консистенции.
В частности может быть предусмотрено, что отдельные компоненты антенной области и изнашиваемой части в каждом случае друг с другом склеены, спаяны или сцементированы.
Альтернативно может быть предусмотрено, что отдельные компоненты антенной области и изнашиваемой части расположены подвижно друг относительно друга. Этот вариант осуществления учитывает при необходимости то обстоятельство, что компоненты радиолокационной антенны могли бы во время эксплуатации измельчительной машины нагреваться, причем следовало бы учитывать различные коэффициенты расширения материалов. Конкретно могло бы быть предусмотрено, например, расположение со скольжением компонентов на промежуточных перемычках или же расположение в рамках делающей возможным послойное скольжение и состоящей из различных материалов соединительной системы.
Согласно примеру осуществления изобретения предусмотрено, что радиолокационная антенна размещена в защитной трубе, которая заделана в слой износа и изнашивается со съемом слоя износа.
Согласно примеру осуществления изобретения предусмотрено, что радиолокационная антенна при помощи присоединенного к ней волновода присоединена к радиолокационному датчику, причем может быть предусмотрено, что радиолокационный датчик расположен за пределами камеры измельчения измельчительной машины.
Если измельчительные машины имеют толстостенные корпусы, или лишь соответствующая радиолокационная антенна должна располагаться в такой толстостенной области корпуса, может быть предусмотрено, что между выполненным на радиолокационной антенне фланцем и радиолокационным датчиком расположен удлинитель волновода. В качестве дополнительного удлинителя волновода может применяться в частности известный из уровня техники полый проводник (волновод).
Если между удлинителем волновода и антенной областью радиолокационной антенны имеется переход радиолокационных волн между двумя различными средами, для создания соответствующего плавного перехода радиолокационных волн может быть предусмотрено то, что расположена переходная область, которая состоит из подходящего для просветления переходного материала.
Согласно примеру осуществления изобретения предусмотрено, что радиолокационная антенна полностью заделана в слой износа. Однако альтернативно может быть также предусмотрено, что согласование радиолокационной антенны со слоем износа таково, что радиолокационная антенна расположена на свободном конце слоя износа, непосредственно прилегая к нему, то есть, например, на нижнем конце слоя износа.
Наконец, согласно примеру осуществления изобретения может быть предусмотрено, что в слое износа и/или части корпуса расположены каналовидные выемки для приема радиолокационной антенны и/или удлинителя волновода, так что соответствующие компоненты измельчительной машины подготовлены при изготовлении в заводских условиях для вставки соответствующей изобретению радиолокационной антенны. При необходимости заделанная в слой износа радиолокационная антенна может в частности во время отливки слоя износа интегрироваться или встраиваться в него. При этом следует также учитывать размещение равным образом радиолокационного датчика в соответствующей выемке.
Если выполненная в соответствии с разъясненными выше признаками измельчительная машина предоставляет соответствующие данные измерений для времени прохождения радиолокационных волн, которые введены в интегрированную в конструкцию измельчительной машины радиолокационную антенну, то для оценки этих данных измерений предусмотрено в отношении определения износа, имеющего место на слое износа, то, что в блоке оценки разность времени прохождения радиолокационных волн, подаваемых в состоящую из антенной области и изнашиваемой части радиолокационную антенну, между их входом в антенную область и их выходом из изнашиваемой части определяется и сопоставляется с заданной в новом состоянии измельчительной машины длиной остающейся неизменной антенной области и подвергающейся износу изнашиваемой части, и из этого определяется имеющий место в каждом случае в момент времени измерения износ слоя износа.
В усовершенствовании изобретения можно определять соответствующую протяженность (ширину) зазора, если дополнительно время прохождения радиолокационных волн между их выходом из изнашиваемой части радиолокационной антенны вплоть до попадания на ответную поверхность определяется и задается в качестве меры протяженности существующего между слоем износа и ответной поверхностью зазора.
При наличии значений для износа, имеющего место на слое износа, а также для протяженности зазора можно также определять износ, который имеет место в области ответной поверхности, то есть, например, на выполненном на конусе дробилки слое износа, благодаря тому, что имеющий место на слое износа в момент времени измерения износ, включая имеющую место в момент времени измерения протяженность зазора, сопоставляется с заданными в новом состоянии измельчительной машины размерами для слоя износа и зазора, и из этого определяется износ, имеющий место на образующем ответную поверхность слое износа конуса дробилки.
На чертеже изображены примеры осуществления изобретения, которые описаны ниже. На чертеже показаны:
фиг. 1 - на изображении в перспективе выполненная в виде конусной дробилки измельчительная машина;
фиг. 2 - фрагмент области корпуса конусной дробилки с интегрированной в нее радиолокационной антенной на увеличенном изображении;
фиг. 3 - предмет с фиг. 2 в модифицированном варианте осуществления; и
фиг. 4 - радиолокационная антенна согласно фиг. 2 или 3 на увеличенном детальном изображении.
Поскольку изобретение разъясняется далее более подробно на основе выполненной в виде конусной дробилки измельчительной машины, фиг. 1 соответствует соответствующему изображению в указанном документе DE 198 53 900 A1. Конусная дробилка 10 состоит из корпуса 11, внутренняя сторона которого покрыта обозначенным как дробильные щеки слоем 12 износа. Во внутреннем пространстве корпуса 11 расположен образующий ответную поверхность 35 для слоя 12 износа конус 13 дробилки, который опирается на нижнюю часть 14 корпуса и приводится в движение приводом 15. Конус 13 дробилки оснащен на своей наружной стороне слоем 20 износа, внешняя сторона которого образует ответную поверхность 35. Если выполненные в каждом случае с противоположной конусностью слой 12 износа и конус 13 дробилки со слоем 20 износа образуют дробильный зазор в своем самом узком месте, этот дробильный зазор находится на высоте области 16 фланца, которая образована из относящейся к верхней части корпуса верхней части 17 фланца и относящейся к нижней части 14 корпуса нижней части 18 фланца.
Поскольку фиг. 2 показывает фрагмент на увеличенном изображении, этот фрагмент относится к плоскости области 16 фланца, и таким образом на фиг. 2 можно увидеть верхнюю часть 17 фланца и нижнюю часть 18 фланца. Далее можно увидеть, что размещенный на внутренней стороне корпуса 11 слой 12 износа нанесен на корпус 11 с промежуточным слоем частичной заливочной массы 21; то же самое относится к размещению слоя 20 износа на конусе 13 дробилки. В самом узком месте между слоем 20 износа конуса 13 дробилки и слоем 12 износа корпуса 11 определен в качестве дробильного зазора зазор 22.
В изображенном на фиг. 2 примере осуществления описываемая еще в дальнейшем в отношении своей конструкции радиолокационная антенна 23 расположена непосредственно под слоем 12 износа, причем в нижней части 18 фланца и прилегающей части корпуса 11 выполнено отверстие 24, через которое радиолокационная антенна 23 может проталкиваться до изображенного положения. Для этого может быть предусмотрено, что в слое износа и/или в соответствующем корпусе уже подготовлены каналовидные выемки, которые служат для приема радиолокационной антенны и/или соединительной трубы. Если радиолокационная антенна 23 подключена к не изображенному дополнительно и известному из радиолокационной техники волноводу, в частности полому проводнику, то волновод проходит через отверстие 24 за пределы корпуса 11 и здесь подключен к установленному в подходящем месте и обозначенному ссылочной позицией 36 радиолокационному датчику.
В изображенном на фиг. 3 примере осуществления соответствующее отверстие 24 для приема и соответственно проведения радиолокационной антенны 23 выполнено в верхней части 17 фланца, что означает, что радиолокационная антенна 23 расположена теперь внутри слоя 12 износа и полностью заделана в него. Из-за большей протяженности согласованной области корпуса или верхней части 17 фланца здесь предусмотрено, что между концом радиолокационной антенны 23 и не изображенным здесь дополнительно волноводом использован дополнительный удлинитель 31 волновода, один, передний конец которого соединен с радиолокационной антенной 23, и на заднем конце которого подключен посредством не изображенного дополнительно соединения соединенный с радиолокационным датчиком волновод.
Конструкция радиолокационной антенны 23 изображена в подробностях на фиг. 4. Согласно фиг. 4 радиолокационная антенна 23 состоит из образующей среднюю часть изображения антенны антенной области 25 и примыкающей к ней слева на изображении изнашиваемой части 26. На внешнем правом конце антенной области 25 расположен соединительный элемент 30 для не изображенного дополнительно и имеющего круглое поперечное сечение волновода в виде полого проводника. Между антенной областью 25 и соединительным элементом 30 расположена дальнейшая переходная область 33. Антенная область 25 радиолокационной антенны 23 состоит из известной в радиолокационной техники и заполненной имеющим подходящие диэлектрические свойства материалом рупорной антенны с конически расширяющимся в направлении изнашиваемой части 26 поперечным сечением области 27 распространения радиолокационных волн. Изнашиваемая часть 26 имеет по сравнению с конусностью области 27 распространения антенной области 25 всего лишь незначительную конусность на своей стенке 28 и равным образом заполнена имеющим подходящие диэлектрические свойства износостойким материалом 29. Для этого может использоваться подходящая керамика. Тем самым должно быть в частности обеспечено, что распространяющиеся из антенной области 25 радиолокационные волны не испытывают при прохождении через изнашиваемую часть 26 искажающего результат измерения, гасящего или заглушающего воздействия или отражений. Переходная область 33 содержит известное в радиолокационной технике просветление, которое обеспечивает плавный переход распространения волн из соединительного элемента 30 в антенную область 25. Конструкция радиолокационной антенны 23 окружена внешней защитной трубой 32, которая может быть выполнена в виде металлической трубы. Эта защитная труба подвергается равным образом, как и изнашиваемая часть 26 радиолокационной антенны 23, при прогрессирующем износе слоя 12 износа соответствующему абразивному износу.
В зависимости от конструкции и соответственно расположения радиолокационной антенны 23 возникает для выполненного, например, в виде импульсного радиолокатора радиолокационного датчика согласовываемое время прохождения радиолокационных волн до возникающего в каждом случае на граничном слое отражения. Так, можно при непосредственном подключении полого проводника к антенной области 25 радиолокационной антенны 23 равным образом определять время прохождения радиолокационных волн от радиолокационного датчика по заполненному воздухом полому проводнику до входа в антенную область 25, как и их время прохождения до выхода из радиолокационной антенны на ее передней концевой поверхности изнашиваемой части 26 в среду воздух. Эта непосредственно измеряемая при импульсном радиолокаторе разность времен прохождения представляет собой меру для остающейся в момент времени измерения длины радиолокационной антенны 23 или изнашиваемой части 26, и посредством сравнения с заданной в новом состоянии измельчительной машины длиной остающейся неизменной даже при износе антенной области 25, а также изнашиваемой части 26 можно определять имеющуюся в каждом случае актуальную толщину материала слоя 12 износа и устанавливать создавшийся за это время износ.
Поскольку выходящие из радиолокационной антенны 23 радиолокационный волны попадают после прохождения существующего в момент времени измерения зазора 22 на находящийся на конусе 13 дробилки слой 20 износа в качестве ответной поверхности 35 и отражаются от него, можно равным образом определять разность между временем прохождения радиолокационных волн до выхода из радиолокационной антенны 23 и временем прохождения до попадания на ответную поверхность 35 на конусе 13 дробилки, и из этой разности времен прохождения можно выводить непосредственно протяженность зазора 22, которая также желательна в качестве контрольной величины.
Сверх этого, изобретение помимо измерения износа на нанесенном предпочтительно на внутреннюю стенку измельчительной машины слое 12 износа делает вследствие этого возможным также определение толщины нанесенного на внешнюю сторону конуса 13 дробилки слоя 20 износа или создавшегося на нем износа. На основе знания износа, создавшегося на слое 12 износа, и имеющейся в момент времени измерения протяженности зазора 22 возможен обратный расчет в отношении износа, создавшегося на слое 20 износа, если имеются в наличии действительные для нового состояния измельчительной машины размеры слоя 12 износа и зазора 22, и на основе создавшихся в момент времени измерения изменений толщины слоя 12 износа и соответственно протяженности зазора 22 также возможен расчет создавшегося на слое 20 износа конуса 13 дробилки изменения.
Если используется радиолокатор с частотной модуляцией, то аналогично разностям времен прохождения при импульсном радиолокаторе справедливы регистрируемые соответствующим образом разности частот, которые делают возможной соответствующую оценку.
Раскрытые в вышеизложенном описании, формуле изобретения, реферате и на чертеже признаки предмета этих документов могут быть как по отдельности, так и в произвольных комбинациях друг с другом существенны для реализации изобретения в его различных вариантах осуществления.

Claims (19)

1. Измельчительная машина, как например дробилка (10), мельница или тому подобное, у которой измельчаемый материал проводится через зазор (22), который выполнен между по меньшей мере одним слоем (12) износа, нанесенным на компонент измельчительной машины (10), и ответной поверхностью (35) и с прогрессирующим износом указанного по меньшей мере одного слоя (12) износа меняется в своей протяженности,
отличающаяся тем, что
для определения износа, возникающего на слое (12) износа, и/или для определения имеющей место в каждом случае протяженности зазора (22) между слоем (12) износа и ответной поверхностью (35) согласована направленная на соответствующую ответную поверхность (35) радиолокационная антенна (23), причем радиолокационная антенна (23) включает в себя антенную область (25) и изнашиваемую часть (26), которая согласована, по меньшей мере, с предусмотренной для допустимого износа областью слоя (12) износа и с износом слоя (12) износа в каждом случае укорачивается.
2. Измельчительная машина по п.1, отличающаяся тем, что изнашиваемая часть (26) радиолокационной антенны (23) имеет по сравнению с коническим выполнением антенной области (25) незначительно расширяющуюся по направлению к ответной поверхности конусность, причем при прохождении радиолокационных волн через изнашиваемую часть (26) направленное действие антенны сохраняется и предотвращаются более высокие типы волн.
3. Измельчительная машина по п.2, отличающаяся тем, что изнашиваемая часть (26) выполнена из износостойкого материала, как и слой (12) износа, имеющего для радиолокации диэлектрические свойства.
4. Измельчительная машина по любому из пп.1-3, отличающаяся тем, что антенная область (25) радиолокационной антенны (23) выполнена в виде рупорной антенны.
5. Измельчительная машина по п.4, отличающаяся тем, что рупорная антенна является рупорной антенной, которая заполнена материалом, имеющим диэлектрические свойства.
6. Измельчительная машина по любому из пп.1-5, отличающаяся тем, что отдельные компоненты антенной области (25) и/или изнашиваемой части (26) радиолокационной антенны (23) в каждом случае друг с другом склеены, спаяны или сцементированы.
7. Измельчительная машина по любому из пп.1-5, отличающаяся тем, что отдельные компоненты антенной области (25) и/или изнашиваемой части (26) радиолокационной антенны (23) расположены подвижно относительно друг друга.
8. Измельчительная машина по любому из пп.1-7, отличающаяся тем, что радиолокационная антенна (23) размещена в защитной трубе (32), которая заделана в слой (12) износа и изнашивается со съемом слоя (12) износа.
9. Измельчительная машина по любому из пп.1-8, отличающаяся тем, что радиолокационная антенна (23) при помощи присоединенного к ней волновода присоединена к радиолокационному датчику.
10. Измельчительная машина по п.9, отличающаяся тем, что радиолокационный датчик расположен за пределами камеры измельчения измельчительной машины.
11. Измельчительная машина по любому из пп.1-10, отличающаяся тем, что при корпусах (11) между выполненным на радиолокационной антенне фланцем и радиолокационным датчиком подключен удлинитель (31) волновода.
12. Измельчительная машина по п.11, отличающаяся тем, что для создания плавного перехода радиолокационных волн между двумя различными материалами, на переходе от волновода к антенной области (25) радиолокационной антенны расположена переходная область (33), которая состоит из переходного материала и используется для просветления.
13. Измельчительная машина по любому из пп.1-12, отличающаяся тем, что радиолокационная антенна (23) полностью заделана в слой (12) износа.
14. Измельчительная машина по любому из пп.1-13, отличающаяся тем, что в слое (12) износа и/или части корпуса расположены каналовидные выемки для приема радиолокационной антенны (23), и/или удлинителя (31) волновода, и/или радиолокационного датчика.
15. Способ эксплуатации измельчительной машины по любому из пп.1-13, при котором в блоке оценки разность времени прохождения радиолокационных волн, подаваемых в состоящую из антенной области (25) и изнашиваемой части (26) радиолокационную антенну (23), между их входом в антенную область (25) и их выходом из изнашиваемой части (26) определяется и сопоставляется с заданной в новом состоянии измельчительной машины длиной остающейся неизменной антенной области (25) и подвергающейся износу изнашиваемой части (26), и из этого определяется имеющий место в каждом случае в момент времени измерения износ слоя (12) износа.
16. Способ по п.15, при котором дополнительно время прохождения радиолокационных волн между их выходом из изнашиваемой части (26) радиолокационной антенны (23) вплоть до попадания на ответную поверхность (35) определяется и задается в качестве меры протяженности существующего между слоем (12) износа и ответной поверхностью (35) зазора (22).
17. Способ по п.16, при котором имеющий место на слое (12) износа в момент времени измерения износ, включая имеющую место в момент времени измерения протяженность зазора (22), сопоставляется с заданными в новом состоянии измельчительной машины размерами для слоя (12) износа и зазора (22), и из этого определяется износ, имеющий место на образующем ответную поверхность (35) слое (20) износа конуса (13) дробилки.
RU2018123166A 2015-12-21 2016-12-15 Измельчительная машина с основанным на радиолокации измерением износа RU2688332C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015122372.4 2015-12-21
DE102015122372.4A DE102015122372A1 (de) 2015-12-21 2015-12-21 Zerkleinerungsmaschine mit radargestützter Verschleißmessung
PCT/DE2016/100589 WO2017108025A1 (de) 2015-12-21 2016-12-15 Zerkleinerungsmaschine mit radargestützter verschleissmessung

Publications (1)

Publication Number Publication Date
RU2688332C1 true RU2688332C1 (ru) 2019-05-21

Family

ID=58046422

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018123166A RU2688332C1 (ru) 2015-12-21 2016-12-15 Измельчительная машина с основанным на радиолокации измерением износа

Country Status (11)

Country Link
US (1) US20180369824A1 (ru)
EP (1) EP3393667B1 (ru)
CN (1) CN108472656A (ru)
AU (1) AU2016377856A1 (ru)
CA (1) CA3006647A1 (ru)
CL (1) CL2018001696A1 (ru)
DE (2) DE102015122372A1 (ru)
DK (1) DK3393667T3 (ru)
PE (1) PE20181224A1 (ru)
RU (1) RU2688332C1 (ru)
WO (1) WO2017108025A1 (ru)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017118914B4 (de) 2017-08-18 2023-09-21 Flsmidth A/S System und Verfahren zur Bestimmung des Verschleißes abtragender Elemente an einem Schaufelradgerät
DE102019205277A1 (de) * 2019-04-11 2020-10-15 Thyssenkrupp Ag Zerkleinerungsvorrichtung
CN112345397B (zh) * 2020-10-27 2022-11-25 国家能源集团宁夏煤业有限责任公司 破碎设备工作部耐磨性能的检测装置及检测方法
WO2023104294A1 (en) 2021-12-07 2023-06-15 Indurad Gmbh Roller machine with a radar monitoring unit, radar monitoring unit for a i roller machine and a method hereto
WO2024075091A1 (en) * 2022-10-06 2024-04-11 Flsmidth A/S Apparatus and method for detecting liner wear in crushers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944146A (en) * 1973-11-17 1976-03-16 Klockner-Humboldt-Deutz Aktiengesellschaft Crusher gap setting by ultrasonic measurement
RU2146968C1 (ru) * 1999-07-07 2000-03-27 Дмитрак Юрий Витальевич Мелющее тело устройства для измельчения материалов
DE19853900A1 (de) * 1998-11-23 2000-05-25 Krupp Foerdertechnik Gmbh Verfahren zum Einstellen der Breite des Brechspaltes bei einem Kreiselbrecher
WO2014187824A1 (en) * 2013-05-21 2014-11-27 Flsmidth A/S Methods and apparatus for the continuous monitoring of wear in grinding circuits

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676660A1 (fr) * 1991-05-23 1992-11-27 Drac Isere Concassage Sa Dispositif de mesure d'usure des pieces broyantes notamment pour broyeurs a cone.
FI20021327A (fi) * 2002-07-05 2004-01-06 Metso Minerals Tampere Oy Menetelmä ja laitteisto murskaimen asetuksen mittaamiseksi ja säätämiseksi
KR101087961B1 (ko) * 2009-11-09 2011-12-01 (주)대동산업기계 콘 크러셔의 마모도 감시장치
CN104792369A (zh) * 2015-04-30 2015-07-22 中铁工程装备集团有限公司 一种盾构滚刀转速和磨损的无线检测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944146A (en) * 1973-11-17 1976-03-16 Klockner-Humboldt-Deutz Aktiengesellschaft Crusher gap setting by ultrasonic measurement
DE19853900A1 (de) * 1998-11-23 2000-05-25 Krupp Foerdertechnik Gmbh Verfahren zum Einstellen der Breite des Brechspaltes bei einem Kreiselbrecher
RU2146968C1 (ru) * 1999-07-07 2000-03-27 Дмитрак Юрий Витальевич Мелющее тело устройства для измельчения материалов
WO2014187824A1 (en) * 2013-05-21 2014-11-27 Flsmidth A/S Methods and apparatus for the continuous monitoring of wear in grinding circuits

Also Published As

Publication number Publication date
DE102015122372A1 (de) 2017-06-22
PE20181224A1 (es) 2018-07-30
CL2018001696A1 (es) 2018-09-07
CA3006647A1 (en) 2017-06-29
EP3393667A1 (de) 2018-10-31
AU2016377856A1 (en) 2018-07-05
DE112016005852A5 (de) 2018-10-25
EP3393667B1 (de) 2020-03-04
US20180369824A1 (en) 2018-12-27
DK3393667T3 (da) 2020-06-02
CN108472656A (zh) 2018-08-31
WO2017108025A1 (de) 2017-06-29

Similar Documents

Publication Publication Date Title
RU2688332C1 (ru) Измельчительная машина с основанным на радиолокации измерением износа
KR101659050B1 (ko) 메타물질을 이용한 공기접합 초음파 탐촉자
Wolf et al. Detection of crack propagation in concrete with embedded ultrasonic sensors
US20060243839A9 (en) Method and apparatus for measuring and adjusting the setting of a crusher
CA2991120C (en) Wear indication devices, and related assemblies and methods
CL2010001433A1 (es) Sistema para monitorizar en tiempo real el desgaste del espesor de los nervios de una parrilla de un molino sag, producido por la acción abrasiva de la pulpa del mineral y de los elementos de la molienda durante la operación; y método de calibración del sistema.
CA2491713A1 (en) Method and apparatus for measuring and adjusting the setting of a crusher
Licznerski et al. Ultrasonic system for accurate distance measurement in the air
AU2020259803B2 (en) Wear sensing liner
CN105115453B (zh) 基于数字b超成像技术的机械密封端面磨损量在线测量装置及方法
CN104122328B (zh) 一种高压支柱瓷绝缘子超声相控阵检测用参考试块
Eisenmann et al. Ground penetrating radar applied to rebar corrosion inspection
US20140224031A1 (en) Method and arrangement for monitoring gearwheels during operation
DE19933995A1 (de) Füllstandsmessung für Kugelmühlen
Zhou et al. Dynamic characterisation of the wheel/rail contact using ultrasonic reflectometry
Szelążek Ultrasonic evaluation of residual hoop stress in forged and cast railroads wheels—differences
Anggraini et al. Predictive maintenance on ball mill liner using 3D scanner and its analysis in the mining industry of Papua Indonesia
KR101626550B1 (ko) 결정입경 측정장치 및 결정입경 측정방법
Kemnitz et al. Measurements of the acoustic field on austenitic welds: a way to higher reliability in ultrasonic tests
Stenström et al. Condition monitoring of cracks and wear in mining mills using water squirter ultrasonics
Praher et al. Non-invasive ultrasound based reflection measurements at polymer plastication units: measurement of melt temperature, melting behaviour and screw wear
Yu et al. In-situ health monitoring on steel bridges with dual mode piezoelectric sensors
EP3100041A1 (en) Device and method for the non-destructive testing of a test object by means of ultrasound in accordance with the reference body method
Yu et al. Survey of ultrasonic properties of aircraft Engine Titanium forgings
WO2024082068A1 (en) Low frequency pulse ultrasonic system and method for non-intrusive evaluation of multi-layered industrial structures

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201216