RU2687265C1 - Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами - Google Patents

Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами Download PDF

Info

Publication number
RU2687265C1
RU2687265C1 RU2018142597A RU2018142597A RU2687265C1 RU 2687265 C1 RU2687265 C1 RU 2687265C1 RU 2018142597 A RU2018142597 A RU 2018142597A RU 2018142597 A RU2018142597 A RU 2018142597A RU 2687265 C1 RU2687265 C1 RU 2687265C1
Authority
RU
Russia
Prior art keywords
film
temperature
forming solution
minutes
organic polymer
Prior art date
Application number
RU2018142597A
Other languages
English (en)
Inventor
Анастасия Олеговна Рогачева
Антон Сергеевич Бричков
Евгений Александрович Паукштис
Валентин Николаевич Пармон
Владимир Васильевич Козик
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority to RU2018142597A priority Critical patent/RU2687265C1/ru
Application granted granted Critical
Publication of RU2687265C1 publication Critical patent/RU2687265C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

Изобретение относится к области химической технологии, а именно к производству новых форм катализаторов в виде композитов, содержащих каталитически активные частицы (оксиды хрома, никеля или кобальта, покрытые диоксидом титана) в виде слоистых полых сфер, для процессов превращения углеводородов, в том числе глубокого окисления ароматических углеводородов. Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами включает нанесение на органический полимерный носитель пленкообразующего раствора, с предварительной его обработкой, которая заключается во введении в него ионов Niили CrO, или Co, с последующей сушкой. После стадии нанесения на органический полимерный носитель пленкообразующего раствора и его сушки, проводят смешение подготовленного органического полимерного носителя с жидким стеклом или с концентрированным раствором тетраметиламмония силиката, в соотношениях от 1,5 до 3 по массе, после чего композиту придают форму, с последующим ступенчатым нагреванием при температурах 100°C, 200°C, 300°C, 400°C, 500°C, или 120°C, 200°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, или 110°C, 240°C, 320°C, 410°C в течение 30-60 минут при каждой температуре и при температурах 400-600°C продолжительностью 150-300 минут, и финально при температуре от 750 до 850°С в течение 60 минут. Пленкообразующий раствор может иметь следующий состав, моль/л: тетрабутоксититан от 0,05 до 0,5; азотная кислота – 1.0-5*10; дистиллированная вода - от 0,2 до 0,5; н-бутиловый спирт - остальное. Технический результат – способ позволяет формовать катализатор, придавая ему необходимую форму. 1 з.п. ф-лы, 1 табл., 6 ил., 3 пр.

Description

Изобретение относится к области химической технологии, а именно к производству новых форм катализаторов в виде композитов, содержащих каталитически активные частицы (оксиды никеля, хрома или кобальта, покрытые диоксидом титана) в виде слоистых полых сфер, для процессов превращения углеводородов, в том числе глубокого окисления ароматических углеводородов. Композит может иметь, например, форму пирамиды, форму цилиндра, многогранную форму или заполнить свободную форму. Известно, что каталитически активными компонентами блочных катализаторов дожигания углеводородов в настоящее время служат в основном металлы платиновой группы, однако их использование ограничено высокой стоимостью и склонностью к дезактивации при высоких температурах. Альтернативой могут служить оксиды переходных металлов, обладающие повышенной каталитической активностью. Свойства катализаторов в наибольшей степени зависят от геометрической формы катализатора и от размера частиц активного компонента. Поэтому придание формы катализаторам, содержащим в качестве активных компонентов оксиды переходных металлов, является важным при их создании.
Известен способ получения блочного носителя сотовой структуры для катализаторов [1]. Способ синтеза носителя заключается в формовании экструзией пастообразной массы из каолина, талька, жидкого стекла и γ-оксида алюминия, поры которого заполнены парафином состава C16 и выше и взятого в количестве 10–30 % от массы носителя, отверждении в водном растворе хлорида магния, с последующей сушкой и прокаливанием. Предлагаемые в этом изобретении катализаторы используют в качестве катализаторов дожига органических и неорганических соединений, присутствующих в газовых выбросах технологических процессов или в выхлопных газах двигателей внутреннего сгорания. Катализаторы активны в процессе очистки продуктов сгорания углеводородов от окиси углерода и углеводородов при Т = 500°C.
Недостатком известного способа заключается в том, что степень дожига углеводородов при температуре Т = 500°C, не превышает 60 %.
Известен способ приготовления ионитного формованного катализатора [2]. Изобретение относится к получению ионитных формованных катализаторов, используемых для органического синтеза. Описывается способ приготовления ионитного формованного катализатора путем смешения сополимера на основе стирола и дивинилбензола и термопластичного материала, формования полученной смеси методом экструзии с последующим сульфированием, промывкой и сушкой, в котором в качестве сополимера на основе стирола и дивинилбензола используют двойной макропористый сополимер стирола с дивинилбензолом в смеси с тройным гелевым сополимером стирола, дивинилбензола и полярного мономера в массовом отношении от 1:4 до 4:1. Сополимеры предпочтительнее использовать с размером частиц 30-160 мкм.
Недостаток известного способа заключается в формовании катализатора при помощи формообразующего вещества методом экструзии, что требует использование дорогостоящего оборудования.
Известен способ приготовления катализатора на основе ионообменных смол [3], представляющего собой сульфированную смесь сополимера стирола с дивинилбензолом и термопластичного полимерного материала полиэтилена или полипропилена. В указанном способе производят смешение компонентов с водой, нагревание смеси до температуры плавления термопластичного полимерного материала, формование методом экструзии при повышенной температуре материального цилиндра экструдера и формующей головки и обработку сформованного катализатора хлорсульфоновой кислотой. С целью получения катализатора с повышенной активностью и улучшенными физико-механическими свойствами, формование проводят при температуре формующей головки 135-165°С для полиэтилена высокого давления, 150-180°С для полиэтилена низкого давления и 190-225°С для полипропилена, а температуру материального цилиндра устанавливают на 20–10°С ниже, чем температура формующей головки.
Недостатком известного способа является обработка катализаторов хлорсульфоновой кислотой, что может способствовать блокировки поверхности катализатора из-за оставшихся в порах ионов хлора, в результате чего активность катализатора может снижаться.
В качестве аналога выбраны оксидные катализаторы в виде полых сфер, применяемые для парциального окисления олефинов [4]. Способ их приготовления заключается в том, что путем растворения солей металлов и последующего осаждения активных компонентов, сушки, прокаливания и механической обработки получают высокодисперсный порошок, а затем этот порошок в виде пленки наносят на инертный органический носитель. Носитель служит матрицей, придающей каталитически активной массе требуемую форму, и может быть удален путем его целенаправленного удаления растворителем или, что более предпочтительно, термическим путем, например, воздействием высокой температуры в окислительной среде. В результате образуются полые частицы катализатора заданной формы. При этом покрытый слоем катализатора носитель предпочтительно прокаливать при температурах в пределах от 450 до 600°С в среде кислорода, или кислородсодержащей газовой среде, обеспечивая таким образом спекание каталитически активной массы для возможности ее применения в промышленных реакторах и полное, без остатка, удаление носителя. В качестве носителя используют органические материалы, например, полимеры на основе полистирола, такие как АСА (сополимер акрилонитрила, стирола и акрилата), полистирол (ПС, УПС (ударопрочный полистирол)), САН (сополимер стирола и акрилонитрила). На выбор таких полимеров не накладывается никаких ограничений. Полимерные материалы в целом существенно дешевле керамических носителей и поэтому позволяют снизить общую стоимость приготовления катализатора. Предлагаемые в этом изобретении катализаторы обладают существенно повышенной активностью в реакции парциального окисления олефинов.
Недостаток описанного способа приготовления оксидных катализаторов заданной формы, в том числе сфер, заключается в многостадийности получения предшественника твердого активного компонента, а также невозможности получения каталитического слоя с толщиной менее 5 мкм.
Известен способ получения композитного каталитического материала в виде слоистых полых сфер [5], выбранный в качестве прототипа. Способ включает нанесение на органический полимерный носитель пленкообразующего раствора и последующую термическую обработку. В качестве органического полимерного носителя используют ионообменные смолы, позволяющие создать управляемые по составу слоистые каталитические системы: компонент АВС/компонент D/полость сферы, где компонент ABC представлен общей формулой внешнего слоя сферы Ti(1-b)SibOq, b обозначает количество молей кремния от 0 до 1, (1-b) обозначает количество молей титана, которое зависит от количества вводимого в систему кремния, q обозначает стехиометрическое количество кислорода, входящего в состав внешнего слоя сферы, определяется валентностью и содержанием элементов, отличных от кислорода, компонент D представляет собой внутренний слой сферы с общей формулой М'xOy, где М' обозначает допирующий компонент в объеме полимерного органического носителя, х обозначает концентрацию металла или неметалла, вводимого в объем 1 г ионита, от 0 моль/л до максимально допустимого, y обозначает число, определяемое валентностью и содержанием элементов, отличных от кислорода.
Несмотря на высокую каталитическую активность полых сферических катализаторов, недостатками прототипа является небольшой диметр частиц, что может приводить к перепадам давления в зернистом слое трубчатых реакторов при прохождении сырья. Последнее оказывает влияние на производительность реакторов, что затрудняет технологию окисления углеводородов.
Решение этой проблемы может служить закрепление частиц сферической формы в объеме кремний оксидной матрицы.
Основной задачей заявляемого изобретения является разработка способа получения катализатора в виде композиционного материала, в объеме которого распределены полые сферические частицы. Фиксирование полых сферических частиц в объеме композита, повышает устойчивость к локальным перегревам и термоударам (быстрым изменениям температуры), а также способствует увеличению геометрической поверхности стенок носителя, что технологически выгодно для каталитических процессов.
Задача решается возможностью формования катализаторов, придавая им форму, например, форму цилиндра, пирамиды, многогранную форму при использовании жидкого стекла или концентрированного раствора тетраметиламмония силиката, при этом диспергированные по всей матрице сферические частицы, представляют собой оксид никеля, хрома или кобальта, покрытый диоксидом титана, распределены в объеме композита, который содержит систему параллельных и/или пересекающихся каналов. Составные части объемного изделия (сферические частицы) имеют внутреннюю полость и являются каталитически активными компонентами всего изделия. Предлагаемый способ включает в себя приготовление водных растворов солей, а именно: нитрата никеля, нитрата кобальта, бихромата аммония с последующим погружением в каждый из них органического полимерного носителя (например, катионита или анионита) на 4-8 часов при перемешивании на магнитной мешалке, с последующей сушкой в сушильном шкафу в атмосфере воздуха при температуре 60-80°C 0,5-2 часа. Затем высушенный органический полимерный носитель с сорбированными ионами Ni2+ или Cr2O7 2-, или Co2+ погружают в пленкообразующий раствор комнатной температуры на 1,5-6 часов. При конкретном воплощении способа пленкообразующий раствор может иметь, например, следующий состав, моль/л:
тетрабутоксититан от 0,05 до 0,5;
азотная кислота – 1.0-5*10-3;
дистиллированная вода - от 0,2 до 0,5;
н-бутиловый спирт - остальное.
Покрытый пленкообразующим раствором полимерный носитель с сорбированными ионами Ni2+ или Cr2O7 2-, или Co2+ сушат в атмосфере воздуха при температуре 60-80°С в течение 0,5-2 часов. Далее высушенный полимерный носитель, содержащий ионы Ni2+ или Cr2O7 2-, или Co2+, покрытый пленкообразующим раствором смешивают с жидким стеклом (плотность 1,33 г/см3) или с концентрированным раствором тетраметиламмония силиката в соотношениях от 1,5 до 3 по массе при комнатной температуре, после чего композиту придают желаемую форму. Удаление органической составляющей полимерного носителя и формирование композита проводят ступенчатым нагреванием образцов при температурах 100°C, 200°C, 300°C, 400°C, 500°C, или 120°C, 200°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, или 110°C, 240°C, 320°C, 410°C в течение 30-60 минут при каждой температуре и при температурах 400-600°C продолжительностью 150-300 минут, и финально при температуре от 750 до 850°С в течение 60 минут в атмосфере воздуха.
Предлагаемое изобретение отличается от прототипа по нескольким признакам:
1 в настоящем изобретении в отличии от прототипа в органический полимерный носитель ионы металлов вводят при перемешивании в течении 4-8 часов.
2 полимерный носитель с сорбированными ионами металла погружают в пленкообразующий раствор на 1,5-6 часов.
3 полимерный носитель с сорбированными ионами металлов, покрытый пленкообразующим раствором закрепляют в объеме кремний оксидной матрицы, что позволяет придавать композитам желаемую форму.
Сущность изобретения поясняется примерами, которые иллюстрируются графиками и рисунками.
На рис. 1 – Сечение компьютерной 3D микротомографии для композита TiO2/NiO-SiO2
На рис.2 – Зависимость концентрации п-ксилола и продуктов окисления от температуры TiO2/NiO- SiO2
На рис. 3 – Сечение компьютерной 3D микротомографии для композита TiO2/Cr2O3-SiO2
На рис. 4 – Зависимость концентрации п-ксилола и продуктов окисления от температуры TiO2/Cr2O3-SiO2
На рис. 5 – Сечение компьютерной 3D микротомографии для композита TiO2/Co3O4-SiO2
На рис. 6 – Зависимость концентрации п-ксилола и продуктов окисления от температуры TiO2/Co3O4-SiO2
Пример 1. Для приготовления 100 мл пленкообразующего раствора на основе диоксида титана возьмем 95,76 мл н-бутилового спирта, добавляют к нему 0,72 мл дистиллированной воды и 0,0157 мл азотной кислоты (ρ=1,42 г/мл), после перемешивания в течение 1 минуты раствор оставляют стоять на 40 минут, для достижения равновесного состояния компонентов в системе. По истечению 40 минут, в раствор бутанол-вода-кислота добавляют 3,5 мл тетрабутоксититана, после чего приготовленный золь оставляют на 24 часа при температуре 20-22°С, для достижения начала периода относительной стабильности пленкообразующего раствора. Перед нанесением пленкообразующего раствора на органический полимерный носитель, проводят его предварительную подготовку. Для этого 30 г макропористого карбоксильного катионита, имеющего акрил-дивенилбензольную матрицу, помещают в 500 мл водного раствора Ni(NO3)2⋅6H2O и перемешивают в течение 6 часов на магнитной мешалке при комнатной температуре, после чего насыщенный ионами никеля (Ni2+) полимерный носитель высушивают в течение 1 часа при температуре 60°С в атмосфере воздуха. Далее подготовленный полимерный носитель методом погружения помещают в пленкообразующий раствор на 2 часа, после чего фильтруют и сушат в сушильном шкафу при температуре 60°С в течение 180 минут. Готовый органический носитель с сорбированными ионами никеля (Ni2+) и покрытый пленкообразующим раствором смешивают с жидким стеклом в соотношении 1:2,5 по массе. Полученной смеси придают желаемую форму, после чего объект проходит ступенчатую температурную обработку при температурах 100°C, 200°C, 250°C, 300°C, 350°C, в течение 30 минут, при температуре 400°C продолжительностью 180 минут, для удаления органической составляющей катионита, далее проводят нагревание до 800°С и отжиг при этой температуре в течение 60 минут для формирования кремний оксидной матрицы. Скорость нагрева муфельной печи составляет 5°С/мин. При этом получается композит TiO2/NiO-SiO2, где в объеме матрицы SiO2 находятся полые сферические частицы состава TiO2/NiO (рис. 1). На рис. 2 показана зависимость концентрации п-ксилола продуктов окисления от температуры для образца TiO2/NiO-SiO2. На образце TiO2/NiO-SiO2 окисление п-ксилола начинается при 300°С. Конверсия гептана на данном образце достигает 100 % при температуре 480°С. В интервале температур 300-480°С, наряду с выделением диоксида углерода, зафиксировано выделение монооксида углерода. Полосы поглощения, использованные для идентификации продуктов, указаны в таблице 1.
Пример 2. Аналогично примеру 1. Отличается тем, что перед нанесением пленкообразующего раствора на органический полимерный носитель берут 30 г гелевого сильноосновного анионита, имеющего стирол-дивенилбензольную матрицу, помещают в 500 мл насыщенного водного раствора K2Cr2O7. После стадии смешения с жидким стеклом и придания формы, объект проходит ступенчатую температурную обработку при температурах 100°C, 200°C, 300°C, 400°C, 500°C, в течение 30 минут, при температуре 600°C продолжительностью 180 минут, для удаления органической составляющей анионита, после чего проводят нагревание до 800°С и выдерживают при этой температуре в течение 60 минут для формирования кремний оксидной матрицы. При этом получается композит TiO2/Cr2O3-SiO2, где в объеме матрицы SiO2 находятся полые сферические частицы состава TiO2/Cr2O3 (рис. 3). На рис. 4 показана зависимость концентрации п-ксилола продуктов окисления от температуры для образца TiO2/Cr2O3-SiO2. На образце TiO2/Cr2O3-SiO2 окисление п-ксилола начинается при 150°С. Конверсия гептана на данном образце достигает 100 % при температуре 350°С. В диапазоне температур 200-285°С, совместно с диоксидом углерода выделяется монооксида углерода, причем объем выделившегося монооксида углерода в 3 раза меньше, чем для образца TiO2/NiO-SiO2. Полосы поглощения, использованные для идентификации продуктов, указаны в таблице 1.
Пример 3. Аналогично примеру 1. Отличается тем, перед нанесением пленкообразующего раствора на органический полимерный носитель берут 30 г макропористого карбоксильного катионита, имеющего акрил-дивенилбензольную матрицу, помещают в 500 мл водного раствора Co(NO3)2∙6H2O. Готовый органический носитель с сорбированными ионами кобальта (Co2+) и покрытый пленкообразующим раствором смешивают с концентрированным раствором тетраметиламмония силиката. После формования, объект проходит ступенчатую температурную обработку при температурах 110°C, 200°C, 300°C, 400°C в течение 30 минут, при температуре 450°C продолжительностью 180 минут, для удаления органической составляющей катионита, после чего проводят нагревание до 800°С и выдерживают при этой температуре в течение 60 минут для формирования кремний оксидной матрицы. При этом получается композит TiO2/Co3O4-SiO2, где в объеме матрицы SiO2 находятся полые сферические частицы состава TiO2/Co3O4 (рис. 5). На рис. 6 показана зависимость концентрации п-ксилола продуктов окисления от температуры для образца TiO2/Co3O4-SiO2. На образце TiO2/Co3O4-SiO2 окисление п-ксилола начинается при 250°С. При температуре 450°С, конверсия гептана достигает 100 %. Совместно с выделением диоксида углерода зафиксировано выделение монооксида углерода в диапазоне температур 225-300°С, причем объем выделившегося монооксида углерода соизмерим с объемом выделившегося монооксида на образце TiO2/NiO-SiO2. Полосы поглощения, использованные для идентификации продуктов, указаны в таблице 1.
Таблица 1 –Характеристические полосы поглощения, используемые для идентификации продуктов
Структурная формула Волновые числа, см-1
CO2 2358, 670
CO 2178, 2114
Литература
1. Патент РФ № 2021013, МПК B01J37/04, опубл. 15.10.1994 г.
2. Патент РФ № 2201802, МПК B01J37/04, опубл. 10.04.2003 г.
3. Авторское свидетельство № 677191, МПК B01J37/00, опубл. 10.03.1997 г.
4. Патент РФ № 2491122, МПК B01J 35/08, опубл. 27.08.2013 г.
5. Патент РФ № 2608125, МПК B01J37/025, B01J31/08, опубл. 13.01.2017 г.

Claims (6)

1. Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами, включающий нанесение на органический полимерный носитель пленкообразующего раствора, с предварительной его обработкой, которая заключается во введении в него ионов Ni2+ или Cr2O7 2-, или Co2+, с последующей сушкой, отличающийся тем, что после стадии нанесения на органический полимерный носитель пленкообразующего раствора и его сушки, проводят смешение подготовленного органического полимерного носителя с жидким стеклом или с концентрированным раствором тетраметиламмония силиката, в соотношениях от 1,5 до 3 по массе, после чего композиту придают форму, с последующим ступенчатым нагреванием при температурах 100°C, 200°C, 300°C, 400°C, 500°C, или 120°C, 200°C, 250°C, 300°C, 350°C, 400°C, 450°C, 500°C, 550°C, или 110°C, 240°C, 320°C, 410°C в течение 30-60 минут при каждой температуре и при температурах 400-600°C продолжительностью 150-300 минут, и финально при температуре от 750 до 850°С в течение 60 минут.
2. Способ по п.1, отличающийся тем, что до нанесения пленкообразующего раствора на органический полимерный носитель, сорбцию ионов Ni2+ или Cr2O7 2- или Co2+ проводят при перемешивании в течение 4-8 часов, после чего осуществляется их сушка в сушильном шкафу при температуре 60-80°C в течение 0,5-2 часов с последующим погружением образцов в пленкообразующий раствор, комнатной температуры на 1,5-6 при следующем соотношении компонентов пленкообразующего раствора, моль/л:
тетрабутоксититан от 0,05 до 0,5;
азотная кислота – 1.0-5*10-3;
дистиллированная вода - от 0,2 до 0,5;
н-бутиловый спирт - остальное.
RU2018142597A 2018-12-04 2018-12-04 Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами RU2687265C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018142597A RU2687265C1 (ru) 2018-12-04 2018-12-04 Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018142597A RU2687265C1 (ru) 2018-12-04 2018-12-04 Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами

Publications (1)

Publication Number Publication Date
RU2687265C1 true RU2687265C1 (ru) 2019-05-13

Family

ID=66578642

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018142597A RU2687265C1 (ru) 2018-12-04 2018-12-04 Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами

Country Status (1)

Country Link
RU (1) RU2687265C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111450825A (zh) * 2020-04-27 2020-07-28 山西恒投环保节能科技有限公司 一种小球状SOx、NOx脱除催化剂组合物及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100452A1 (en) * 2004-04-13 2005-10-27 University College Cork - National University Of Ireland, Cork A process for preparing mesoporous materials
RU2608125C1 (ru) * 2015-09-24 2017-01-13 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Способ получения композитного каталитического материала в виде слоистых полых сфер
RU2610762C1 (ru) * 2016-02-11 2017-02-15 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100452A1 (en) * 2004-04-13 2005-10-27 University College Cork - National University Of Ireland, Cork A process for preparing mesoporous materials
RU2608125C1 (ru) * 2015-09-24 2017-01-13 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Способ получения композитного каталитического материала в виде слоистых полых сфер
RU2610762C1 (ru) * 2016-02-11 2017-02-15 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Способ получения нанодисперсных оксидных материалов в виде сферических агрегатов

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
А. О. Рогачева и др. Синтез и физико-химические свойства сферических катализаторов на основе TiO 2 -SiO 2 /M x O y , где М - Co, Cr. Сборник научных трудов XIV Международной конференции студентов, аспирантов и молодых ученых "Перспективы развития фундаментальных наук", том 2. Химия, Томск, 25-28 апреля 2017. *
В. В. Козик и др. Стабилизация тонких пленок TiO 2 - Co 3 O 4 на стекловолокнистом материале введением в матрицу оксида кремния. Доклады Академии наук, 2016, том 470, номер 5, с. 545-549. *
В. В. Козик и др. Стабилизация тонких пленок TiO 2 - Co 3 O 4 на стекловолокнистом материале введением в матрицу оксида кремния. Доклады Академии наук, 2016, том 470, номер 5, с. 545-549. А. О. Рогачева и др. Синтез и физико-химические свойства сферических катализаторов на основе TiO 2 -SiO 2 /M x O y , где М - Co, Cr. Сборник научных трудов XIV Международной конференции студентов, аспирантов и молодых ученых "Перспективы развития фундаментальных наук", том 2. Химия, Томск, 25-28 апреля 2017. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111450825A (zh) * 2020-04-27 2020-07-28 山西恒投环保节能科技有限公司 一种小球状SOx、NOx脱除催化剂组合物及其制备方法
CN111450825B (zh) * 2020-04-27 2023-05-09 山西恒投环保节能科技有限公司 一种小球状SOx、NOx脱除催化剂组合物及其制备方法

Similar Documents

Publication Publication Date Title
US20140158613A1 (en) Highly porous ceramic material and method of using and forming same
Yamada et al. Mesoporous microcapsules with decorated inner surface: fabrication and photocatalytic activity
CN105195132B (zh) 二异丁烯选择性脱氢芳构化制对二甲苯催化剂及其制备方法、对二甲苯的制备方法
CA2955307C (en) Cobalt-containing fischer-tropsch catalysts, methods of making, and methods of conducting fischer-tropsch synthesis
RU2687265C1 (ru) Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами
Rooke et al. Hierarchically nanostructured porous group Vb metal oxides from alkoxide precursors and their role in the catalytic remediation of VOCs
CN102351200A (zh) 大孔/介孔中空二氧化硅微球及其制备方法
Rosseau et al. Review on additive manufacturing of catalysts and sorbents and the potential for process intensification
Fan et al. Conformally anchoring nanocatalyst onto quartz fibers enables versatile microreactor platforms for continuous-flow catalysis
Kong et al. Double-walled hierarchical porous silica nanotubes loaded Au nanoparticles in the interlayer as a high-performance catalyst
Brussino et al. Alumina-supported nickel onto cordierite monoliths for ethane oxidehydrogenation: coating strategies and their effect on the catalytic behavior
RU2630956C1 (ru) Способ получения оксидно-никелевого катализатора
WO2023241737A1 (zh) 一种利用超声双雾化法制备蜂窝催化剂及其催化氧化降解VOCs的用途
RU2608125C1 (ru) Способ получения композитного каталитического материала в виде слоистых полых сфер
RU2792611C1 (ru) Способ получения композитного каталитического материала в виде полых сфер с использованием микроволн
JP2019043825A (ja) 無機質粒子
CN104549399B (zh) 一种用于1,4‑丁二醇气相脱氢的壳层催化剂及其应用
CN111686709A (zh) 一种具有特定孔结构的丙烷脱氢制丙烯负载催化剂及其制备方法
Akay et al. Preparation of nanostructured microporous metal foams through flow induced electroless deposition
US20050049353A1 (en) Nanoporous organic polymer composite and preparation method thereof and its application for catalyst
KR101551078B1 (ko) 촉매 플레이트를 구비하는 열교환식 자열개질기 및 그 제조방법
CN102380412A (zh) 负载过渡元素mfi催化剂的制备方法及其mfi催化剂应用
RU2473386C1 (ru) Способ получения катализатора для жидкофазного восстановления органических веществ
JP2016514618A (ja) ビスマス−モリブデン−ニッケル−混合酸化物又はビスマス−モリブデン−コバルト−混合酸化物及びSiO2を含有する複合材料
RU2715184C1 (ru) Способ получения сорбентов