RU2608125C1 - Способ получения композитного каталитического материала в виде слоистых полых сфер - Google Patents

Способ получения композитного каталитического материала в виде слоистых полых сфер Download PDF

Info

Publication number
RU2608125C1
RU2608125C1 RU2015140716A RU2015140716A RU2608125C1 RU 2608125 C1 RU2608125 C1 RU 2608125C1 RU 2015140716 A RU2015140716 A RU 2015140716A RU 2015140716 A RU2015140716 A RU 2015140716A RU 2608125 C1 RU2608125 C1 RU 2608125C1
Authority
RU
Russia
Prior art keywords
film
denotes
forming solution
component
sphere
Prior art date
Application number
RU2015140716A
Other languages
English (en)
Inventor
Евгений Александрович Паукштис
Владимир Васильевич Козик
Антон Сергеевич Бричков
Анастасия Нафисовна Шамсутдинова
Татьяна Викторовна Ларина
Валентина Викторовна Жаркова
Людмила Александровна Бобкова
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ)
Priority to RU2015140716A priority Critical patent/RU2608125C1/ru
Application granted granted Critical
Publication of RU2608125C1 publication Critical patent/RU2608125C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0217Pretreatment of the substrate before coating

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Изобретение относится к области химической технологии, а именно к производству новых форм зерен каталитических материалов в виде слоистых полых сфер или других полых структур для процессов превращения углеводородов, в том числе парциального окисления алифатических углеводородов. Способ получения композитного каталитического материала в виде слоистых полых сфер включает нанесение на органический полимерный носитель пленкообразующего раствора и последующую термическую обработку. В качестве органического полимерного носителя используют ионообменные смолы, позволяющие создать управляемые по составу слоистые каталитические системы: компонент АВС/компонент D/полость сферы, где компонент ABC представлен общей формулой внешнего слоя сферы Ti(1-b)SibOq, b обозначает количество молей кремния от 0 до 1, (1-b) обозначает количество молей титана, которое зависит от количества вводимого в систему кремния, q обозначает стехиометрическое количество кислорода, входящего в состав внешнего слоя сферы, определяется валентностью и содержанием элементов, отличных от кислорода, компонент D представляет собой внутренний слой сферы с общей формулой М'xOy, где М' обозначает допирующий компонент в объеме полимерного органического носителя, х обозначает концентрацию металла или неметалла, вводимого в объем 1 г ионита, от 0 моль/л до максимально допустимого, y обозначает число, определяемое валентностью и содержанием элементов, отличных от кислорода. Перед погружением в пленкообразующий раствор органический полимерный носитель проходит предварительную обработку, которая заключается во введении в него допирующих ионов с последующей сушкой, после чего органический полимерный носитель погружают в пленкообразующий раствор на 5-60 минут, извлекают из пленкообразующего раствора и проводят ступенчатую термическую обработку при температуре в интервалах 40-100°С, 100-200°С, 200-350°С продолжительностью 30-40 минут каждая, и при температуре в интервале 400-700°С продолжительностью до 60 минут. Заявляемое изобретение позволяет формировать сферические материалы, имеющие внутреннюю полость и обладающие достаточной каталитической активностью в процессе окисления алканов, в том числе нафтенов. 1 з.п. ф-лы, 8 ил., 1 табл., 6 пр.

Description

Изобретение относится к области химической технологии, а именно к производству новых форм зерен каталитических материалов в виде слоистых полых сфер или других полых структур для процессов превращения углеродов, в том числе глубокого и парциального окисления предельных и непредельных алифатических углеводородов.
Известен способ приготовления катализатора дожига на стекловолокнистом носителе (патент РФ 2538206, МПК B01J 37/02, опубл. 10.01.2015). Этот способ включает в себя несколько стадий: приготовление пленкообразующего раствора путем созревания при температуре 20-22°С в течение 4-5 суток раствора на основе н-бутанола, тетрабутоксититана, тетраэтоксисилана, гексагидрата хлорида кобальта(II), дистиллированной воды и соляной кислоты; пропитка стекловолокнистого носителя пленкообразующим спиртовым раствором; ступенчатая термическая обработка пропитанного стекловолокнистого носителя при 60°С в течение 30-40 минут и при 700°С в течение 1 часа.
Отмечается проявление при низких температурах каталитической активности катализаторов на стекловолокнистом носителе в реакции глубокого окисления углеводородов. При высоких температурах достигается высокая конверсия исходного сырья, при этом побочные продукты образуются в следовых количествах.
Недостатком описанного изобретения является то, что существуют ограничения качественных составов пленкообразующих растворов, а именно введение гексагидрата хлорида кобальта в качестве допирующего компонента, что ограничивает области применения конечного продукта.
В качестве прототипа выбраны оксидные катализаторы в виде полых сфер, применяемые для парциального окисления олефинов (патент РФ 2491122, МПК B01J 35/08, опубликован 27.08.2013). Способ их приготовления заключается в том, что путем растворения солей металлов и последующего осаждения активных компонентов, сушки, прокаливания и механической обработки получают высокодисперсный порошок, а затем этот порошок в виде пленки наносят на инертный органический носитель. Носитель служит матрицей, придающей каталитически активной массе требуемую форму, и может быть удален путем его целенаправленного удаления растворителем или, что более предпочтительно, термическим путем, например воздействием высокой температуры в окислительной среде. В результате образуются полые частицы катализатора заданной формы. При этом покрытый слоем катализатора носитель предпочтительно прокаливать при температурах в пределах от 450 до 600°С в среде кислорода, или кислородсодержащей газовой среде, обеспечивая таким путем спекание каталитически активной массы для возможности ее применения в промышленных реакторах и полное, без остатка, удаление носителя. В качестве носителя используют органические материалы, например полимеры на основе полистирола, такие как АСА (сополимер акрилонитрила, стирола и акрилата), полистирол (ПС, УПС (ударопрочный полистирол)), САН (сополимер стирола и акрилонитрила). На выбор таких полимеров не накладывается никаких ограничений. Полимерные материалы в целом существенно дешевле керамических носителей и поэтому позволяют снизить общую стоимость приготовления катализатора. Предлагаемые в этом изобретении катализаторы обладают существенно повышенной активностью в реакции парциального окисления олефинов.
Недостаток описанного способа приготовления оксидных катализаторов заданной формы, в том числе сфер, заключается в многостадийности получения предшественника твердого активного компонента, а также невозможности получения каталитического слоя с толщиной менее 5 мкм.
Основной задачей заявляемого изобретения является разработка способа формирования сферических материалов, имеющих внутреннюю полость и обладающих каталитической активностью в процессе окисления алканов, в том числе нафтенов.
При решении поставленной задачи разработан и предложен способ получения нового композитного каталитического материала в виде сфер слоистой структуры золь-гель методом. На органический полимерный носитель наносят пленкообразующий раствор с последующей термической обработкой. В качестве органического полимерного носителя, погружаемого в пленкообразующий раствор, используют ионообменные смолы, позволяющие создать управляемые по составу слоистые каталитические системы: компонент АВС/компонент D/полость сферы.
Здесь компонент ABC представлен общей формулой внешнего слоя сферы Ti(1-b)SibOq,
b обозначает количество молей кремния от 0 до 1,
(1-b) обозначает количество молей титана, которое зависит от количества вводимого в систему кремния,
q обозначает стехиометрическое количество кислорода, входящего в состав внешнего слоя сферы, определяется валентностью и содержанием элементов, отличных от кислорода.
Компонент D представляет собой внутренний слой сферы с общей формулой М'xOy,
где М' обозначает допирующий компонент в объеме полимерного органического носителя,
x обозначает концентрацию металла или неметалла, вводимого в объем 1 г ионита, от 0 моль/л до максимально допустимого,
y обозначает число, определяемое валентностью и содержанием элементов, отличных от кислорода.
Перед погружением в пленкообразующий раствор органический полимерный носитель проходит предварительную обработку, которая заключается во введении в него допирующих ионов с последующей сушкой, после чего органический полимерный носитель погружают в пленкообразующий раствор на 5-60 минут, извлекают из пленкообразующего раствора и проводят ступенчатую термическую обработку: сушку и прокаливание при ступенчатом нарастании температуры в интервалах 40-100°С, 100-200°С, 200-350°С продолжительностью 30-40 минут каждая, и при температуре в интервале 400-700°С продолжительностью до 60 минут включительно.
При конкретном воплощении способа упомянутый допирующий компонент М' может быть представлен d-металлом, который вводят в объем полимерного органического носителя методом сорбции в ионосодержащем растворе.
При конкретном воплощении способа пленкообразующий раствор может иметь, например, следующий состав, моль/л:
тетрабутоксититан - от 0,02 до 0,2;
тетраэтоксисилан - от 0 до 0,2;
соляная кислота - от 1⋅10-3 до 6⋅10-2
дистиллированная вода - от 0,4 до 0,77;
н-бутиловый спирт - остальное.
В пленкообразующий раствор, как и в аналогах, может быть внесена растворимая соль d-металла.
Таким образом, заявляемое изобретение отличается от прототипа, в основном, по двум параметрам, прежде всего в том, что органический полимерный носитель вносится в пленкообразующий раствор, а не покрывается порошком катализатора. Формирование твердой оболочки происходит при ступенчатой термической обработке покрытого пленкообразующим раствором органического полимерного носителя и сопровождается удалением этого носителя. Пленкообразующий раствор готовится путем созревания в течение 3-4 суток свежеприготовленного раствора на основе н-бутанола, тетрабутоксититана, тетраэтоксисилана, дистиллированной воды и соляной кислоты, в который может быть добавлена соль d-металла. На стадии термической обработки органический полимерный носитель выступает в качестве предшественника формы для пленкообразующего раствора и задает сферическую форму катализатора.
Второе отличие состоит в том, что в качестве органического полимерного носителя (матрицы) используются ионообменные смолы, а в объем органического полимерного носителя вводятся допирующие компоненты в виде ионов металлов или неметаллов, что позволяет при термическом удалении матрицы создать внутри сферы слой оксида. При этом содержание допирующего компонента может варьироваться от 0 до 70% от массы готового катализатора (верхний предел зависит от полной объемной сорбционной емкости ионообменной смолы). Возможно введение любых d-металлов, соли которых растворимы в воде либо в спирте, или смеси солей d-металлов для получения, например, NiO-Co3O4, RuO2-ZrO2, ZnO-NbO, Cr3O4-Fe3O4-NiO. В результате образуются управляемые по составу слоистые каталитические системы: компонент АВС/компонент D/полость сферы. Допирующие ионы d-металлов способствуют стабилизации внутреннего слоя полой сферы.
Пространственная структура сферических образцов исследована методом микротомографии на цифровом рентгеновском 3D микротомографе.
Каталитические свойства изучены в модельной реакции окисления н-гептана. Использована проточная установка с кварцевым трубчатым реактором (внутренний диаметр 4 мм). В реактор загружали 0,2 г или 0,5 г катализатора, диаметр сфер катализаторов составлял 0,2-0,5 мм. Через катализатор пропускали смесь, содержащую 0,6-0,8% гептана в воздухе. Отношение н-гептана к кислороду в токе газов составляло 1/25. Объемная скорость подачи смеси была 4,5 л/ч. Температуру реакции варьировали в интервале 110°С-600°С. Анализ продуктов и определение конверсии парафина осуществляли на ИК-Фурье спектрометре фирмы Shimadzu FTIR-8300.
Сущность изобретения поясняется следующими примерами.
Пример 1
Для приготовления 100 мл стабильного пленкообразующего раствора взяли 95,58 мл н-бутилового спирта, добавили к нему 0,9 мл дистиллированной воды и 0,02 мл соляной кислоты (ρ=1,19 г/мл), после тщательно перемешали и добавили 3,5 мл тетрабутоксититана. После приготовления раствор выдерживали при температуре 20-22°С в течение 3 суток для приобретения пленкообразующих свойств. Перед нанесением пленкообразующего раствора в объем 30 г катионита, на основе полиакриловой кислоты и сшивающего агента дивинилбензола, методом сорбции из водного раствора хлорида кобальта (при pH~4,5), вводили 0,06 моль/л катионов кобальта (Co2+) и высушивали до воздушно-сухого состояния. Затем на подготовленный носитель, методом погружения, наносили пленкообразующий раствор. После нанесения объект прошел две стадии термической обработки при 100°С в течение 35 минут и при 400°С в течение 1 часа. При этом получился катализатор (Co0,02Oz)-(Ti1O2) сферической формы сложного состава (Ti1O2)/(Со0,02Oz)/полость сферы.
На фиг. 1 показана зависимость концентрации гептана и продуктов окисления от температуры для каталитического материала (Co0,02Oz)-(Ti1O2). На образце (Co0,02Oz)-(Ti1O2) окисление начинается при 175°С. Конверсия гептана на данном образце (навеска 0,5 г) достигает 95,88% при температуре 550°С. Полосы поглощения, использованные для идентификации продуктов, указаны в таблице 1.
Figure 00000001
Пример 2
Пример 2 отличается от Примера 1 добавлением в состав пленкообразующего раствора 0,96 мл тетраэтоксисилана. Перед нанесением пленкообразующего раствора в объем 30 г катионита, на основе полиакриловой кислоты и сшивающего агента дивинилбензола, методом сорбции из водного раствора хлорида кобальта (при pH~4,5), вводили 0,06 моль/л катиона кобальта (Co2+) и высушивали до воздушно-сухого состояния. Затем на подготовленный носитель, методом погружения, наносили пленкообразующий раствор. После нанесения объект прошел две стадии термической обработки при 80°С в течение 35 минут и при 400°С в течение 1 часа. При этом получился катализатор (Co0,02Oz)-(Ti0,7Si0,3O2) сферической формы сложного состава (Ti0,7Si0,3O2)/(Со0,02Oz)/полость сферы.
На фиг. 2 представлены примеры сечения описываемых сферических образцов, полученные методом компьютерной микротомографии, A и B - представители разных проб. Для образца (Co0,02Oz)-(Ti0,7Si0,3O2) визуально различаются две структуры: темный цвет относится к заполненной воздухом полости сферы, более светлый - к сложному оксидному каркасу.
На фиг. 3 представлена зависимость концентрации гептана и продуктов окисления от температуры на образце (Co0,02Oz)-(Ti0,7Si0,3O2). (Полосы поглощения указаны в таблице 1). Для образца (Co0,02Oz)-(Ti0,7Si0,3O2) реакция окисления начинается при температуре 250°С. Процесс преимущественно идет в сторону глубокого окисления. Обращает на себя внимание повышение селективности образования олефинов на этом образце с ростом температуры только выше 500°С. В области температуры выше 500°С обнаруживаются продукты крекинга, в частности метан. При температуре выше 550°С начинается глубокое деструктивное окисление гептана. Максимальная конверсия гептана для образца (Co0,02Oz)-(Ti0,7Si0,3O2) составляет 80% при температуре 600°С.
Пример 3
Для приготовления 100 мл стабильного пленкообразующего раствора взяли 95,58 мл н-бутилового спирта, добавили к нему 0,9 мл дистиллированной воды и 0,02 мл соляной кислоты (ρ=1,19 г/мл), после тщательного перемешивания добавили 3,5 мл тетрабутоксититана и 0,96 мл тетраэтоксисилана. После приготовления раствор выдерживали при температуре 20-22°С в течение 4 суток для приобретения пленкообразующих свойств. Перед нанесением пленкообразующего раствора в объем 30 г катионита, на основе полиакриловой кислоты и сшивающего агента дивинилбензола, методом сорбции из водного раствора хлорида никеля (при pH~4,5), вводили 0,06 моль/л катиона никеля (Ni2+), после катионит сушили до воздушно-сухого состояния. Затем на подготовленный носитель, методом погружения, наносили пленкообразующий раствор. После процедуры нанесения пленкообразующего раствора объект прошел две стадии термической обработки при 80°С в течение 40 минут и при 420°С в течение 1 часа. При этом получается катализатор (Ni0,02Oz)-(Ti0,7Si0,3O2) сферической формы сложного состава (Ti0,7Si0,3O2)/(Ni0,02Oz)/полость сферы.
На фиг. 4 представлены сечения сферических катализаторов (Ni0,02Oz)-(Ti0,7Si0,3O2), полученные методом компьютерной микротомографии, A и B - представители разных проб. Фиг. 4 демонстрирует, что для образца (Ni0,02Oz)-(Ti0,7Si0,3O2) внутренняя часть большей части сфер заполнена, хотя и встречаются отдельные частицы, имеющие внутреннюю полость.
На фиг. 5 показана зависимость концентрации гептана и продуктов окисления от температуры на образце (Ni0,02Oz)-(Ti0,7Si0,3О2). (Полосы поглощения, использованные для идентификации продуктов, указаны в таблице 1). При температурах 350-450°С на образце (Ni0,02Oz)-(Ti0,7Si0,3O2) преимущественно наблюдается парциальное окисление, селективность по продуктам парциального окисления достигает 63%. Деструктивное окисление гептана начинается при 450°С. В области температуры выше 500°С обнаруживаются продукты крекинга, в частности метан. Глубокое деструктивное окисление начинается при температуре выше 550°С. В случае образца (Ni0,02Oz)-(Ti0,7Si0,3O2) конверсия гептана не превышает 50%.
Пример 4
Для приготовления 100 мл стабильного пленкообразующего раствора взяли 95,58 мл н-бутилового спирта, добавили к нему 0,9 мл дистиллированной воды и 0,02 мл соляной кислоты (ρ=1,19 г/мл), после тщательного перемешивания добавили 3,5 мл тетрабутоксититана и 0,96 мл тетраэтоксисилана. После приготовления раствор выдерживали при температуре 20-22°С в течение 3 суток для приобретения пленкообразующих свойств. Перед нанесением пленкообразующего раствора в объем 30 г катионита на основе полистирола и сшивающего агента дивинилбензола, методом сорбции из водного раствора хлорида никеля (при pH~4,5), введено 0,06 моль/л катионов никеля (Ni2+), после катионит сушили до воздушно-сухого состояния. Затем на подготовленный носитель, методом погружения, наносили пленкообразующий раствор. После нанесения объект прошел две стадии термической обработки при 60°С в течение 30-40 минут и при 700°С в течение 1 часа. При этом получился материал сферической формы сложного состава (Ni0,02Oz)-(Ti0,7Si0,3O2).
На фиг. 6 - зависимость концентрации гептана и продуктов окисления от температуры на образце (Ni0,02Oz)-(Ti0,7Si0,3О2). (Полосы поглощения, использованные для идентификации продуктов, указаны в таблице 1). На образце (C50Ni0,02Oz)-(Ti0,7Si0,3O2) окисление начинается при 300°С и при температуре 300-350°С преимущественно протекает реакция парциального окисления. Глубокое окисление исходного сырья наблюдается при температуре выше 425°С. Конверсия гептана на данном образце не превышает 50%.
Пример 5
Для приготовления 100 мл стабильного пленкообразующего раствора взяли 95,58 мл н-бутилового спирта, добавили к нему 0,9 мл дистиллированной воды и 0,02 мл соляной кислоты (ρ=1,19 г/мл), после тщательного перемешивания добавили 3,5 мл тетрабутоксититана. После приготовления раствор выдерживали при температуре 20-22°С в течение 3 суток для приобретения пленкообразующих свойств. Перед нанесением пленкообразующего раствора в объем 30 г анионита на основе полистирола и сшивающего агента дивинилбензола, методом сорбции из водного раствора бихромата калия (при pH~4,5), вводили 0,03 моль/л анионов хрома (Cr2O7 2-), после анионит высушивали до воздушно-сухого состояния. Затем на подготовленный носитель, методом погружения, наносили пленкообразующий раствор. После нанесения объект прошел две стадии термической обработки при 110°С в течение 30-40 минут и при 400°С в течение 1 часа. При этом получился катализатор (Cr0,02Oz)-(Ti0,7Si0,3O2) сферической формы сложного состава (Ti0,7Si0,3O2)/(Cr0,02Oz)/полость сферы.
На фиг. 7 дана зависимость концентрации гептана и продуктов окисления от температуры на образце (Cr0,02Oz)-(Ti0,7Si0,3O2). (Полосы поглощения, использованные для идентификации продуктов, указаны в таблице 1). На образце (Cr0,02Oz)-(Ti0,7Si0,3O2) окисление начинается при 175°С. Конверсия гептана на данном образце достигает 100% при температуре выше 400°С. Селективность по продуктам глубокого окисления 100%.
Пример 6
Для приготовления 100 мл стабильного пленкообразующего раствора взяли 95,58 мл н-бутилового спирта, добавили к нему 0,9 мл дистиллированной воды и 0,02 мл соляной кислоты (ρ=1,19 г/мл), после тщательного перемешивания добавили 3,5 мл тетрабутоксититана. После приготовления раствор выдерживали при температуре 20-22°С в течение 3 суток для приобретения пленкообразующих свойств. Перед нанесением пленкообразующего раствора в объем 30 г анионита на основе полистирола и сшивающего агента дивинилбензола, методом сорбции из водного раствора молибдата амония (при pH~4,5), вводили 0,03 моль/л анионов молибдена (MoO4 2-) и высушивали до воздушно-сухого состояния. Затем на подготовленный носитель, методом погружения, наносили пленкообразующий раствор. После нанесения объект прошел две стадии термической обработки при 25°С в течение 30-40 минут и при 400°С в течение 1 часа. При этом получился катализатор (Mo0,02Oz)-(Ti0,7Si0,3O2) сферической формы сложного состава (Ti0,7Si0,3O2)/(Мо0,02Oz)/полость сферы.
На фиг. 8 дана зависимость концентрации гептана и продуктов окисления от температуры на образце (Mo0,02Oz)-(Ti0,7Si0,3O2). (Полосы поглощения, использованные для идентификации продуктов, указаны в таблице 1. На образце (Mo0,02Oz)-(Ti0,7Si0,3O2) окисление начинается при 275°С. При температуре 275-400°С преимущественно протекает реакция глубокого окисления. При температуре выше 400°С наблюдается появление продуктов парциального окисления. Конверсия гептана на данном образце достигает 53%.

Claims (15)


1. Способ получения композитного каталитического материала в виде слоистых полых сфер, включающий нанесение на органический полимерный носитель пленкообразующего раствора и последующую термическую обработку, отличающийся тем, что в качестве органического полимерного носителя используют ионообменные смолы, позволяющие создать управляемые по составу слоистые каталитические системы: компонент АВС/компонент D/полость сферы, где компонент ABC представлен общей формулой внешнего слоя сферы Ti(1-b)SibOq,
b обозначает количество молей кремния от 0 до 1,
(1-b) обозначает количество молей титана, которое зависит от количества вводимого в систему кремния,
q обозначает стехиометрическое количество кислорода, входящего в состав внешнего слоя сферы, определяется валентностью и содержанием элементов, отличных от кислорода,
компонент D представляет собой внутренний слой сферы с общей формулой М'xOy,
где М' обозначает допирующий компонент в объеме полимерного органического носителя,
х обозначает концентрацию металла или неметалла, вводимого в объем 1 г ионита, от 0 моль/л до максимально допустимого,
y обозначает число, определяемое валентностью и содержанием элементов, отличных от кислорода,
при этом перед погружением в пленкообразующий раствор органический полимерный носитель проходит предварительную обработку, которая заключается во введении в него допирующих ионов с последующей сушкой, после чего органический полимерный носитель погружают в пленкообразующий раствор на 5-60 минут, извлекают из пленкообразующего раствора и проводят ступенчатую термическую обработку при температуре в интервалах 40-100°С, 100-200°С, 200-350°С продолжительностью 30-40 минут каждая, и при температуре в интервале 400-700°С продолжительностью до 60 минут.
2. Способ по п. 1, отличающийся тем, что упомянутый допирующий компонент М' представлен d-металлом, который вводят в объем полимерного органического носителя методом сорбции в ионосодержащем растворе, а пленкообразующий раствор имеет следующий состав, моль/л:
тетрабутоксититан - от 0,02 до 0,2;
тетраэтоксисилан - от 0 до 0,2;
соляная кислота - от 1⋅10-3 до 6⋅10-2;
дистиллированная вода - от 0,4 до 0,77;
н-бутиловый спирт - остальное.
RU2015140716A 2015-09-24 2015-09-24 Способ получения композитного каталитического материала в виде слоистых полых сфер RU2608125C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2015140716A RU2608125C1 (ru) 2015-09-24 2015-09-24 Способ получения композитного каталитического материала в виде слоистых полых сфер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2015140716A RU2608125C1 (ru) 2015-09-24 2015-09-24 Способ получения композитного каталитического материала в виде слоистых полых сфер

Publications (1)

Publication Number Publication Date
RU2608125C1 true RU2608125C1 (ru) 2017-01-13

Family

ID=58455876

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015140716A RU2608125C1 (ru) 2015-09-24 2015-09-24 Способ получения композитного каталитического материала в виде слоистых полых сфер

Country Status (1)

Country Link
RU (1) RU2608125C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687265C1 (ru) * 2018-12-04 2019-05-13 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами
RU2792611C1 (ru) * 2022-07-12 2023-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" Способ получения композитного каталитического материала в виде полых сфер с использованием микроволн

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100452A1 (en) * 2004-04-13 2005-10-27 University College Cork - National University Of Ireland, Cork A process for preparing mesoporous materials
RU2386477C2 (ru) * 2005-05-25 2010-04-20 Юоп Ллк Слоистая композиция и способы приготовления и применения композиции
US20110223096A1 (en) * 2008-12-03 2011-09-15 Bayer Technology Services Gmbh Catalyst for oxidation reactions in the presence of hydrogen chloride and/or chlorine and method for the production thereof, and the use thereof
RU2538206C1 (ru) * 2013-11-27 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" Способ получения катализатора дожига пропана на стекловолокнистом носителе

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005100452A1 (en) * 2004-04-13 2005-10-27 University College Cork - National University Of Ireland, Cork A process for preparing mesoporous materials
RU2386477C2 (ru) * 2005-05-25 2010-04-20 Юоп Ллк Слоистая композиция и способы приготовления и применения композиции
US20110223096A1 (en) * 2008-12-03 2011-09-15 Bayer Technology Services Gmbh Catalyst for oxidation reactions in the presence of hydrogen chloride and/or chlorine and method for the production thereof, and the use thereof
RU2538206C1 (ru) * 2013-11-27 2015-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский государственный университет" Способ получения катализатора дожига пропана на стекловолокнистом носителе

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687265C1 (ru) * 2018-12-04 2019-05-13 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами
RU2792611C1 (ru) * 2022-07-12 2023-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" Способ получения композитного каталитического материала в виде полых сфер с использованием микроволн

Similar Documents

Publication Publication Date Title
Wada et al. Kinetics and mechanism of the thermal decomposition of sodium percarbonate: Role of the surface product layer
CN102153146B (zh) 一种可控制备羟基氧化铁、三氧化二铁和四氧化三铁的方法
Prince et al. Proposed general sol− gel method to prepare multimetallic layered double hydroxides: synthesis, characterization, and envisaged application
Sepulveda et al. Repeated use of supported H3PW12O40 catalysts in the liquid phase esterification of acetic acid with butanol
Ishikawa et al. Redox treatment of orthorhombic Mo29V11O112 and relationships between crystal structure, microporosity and catalytic performance for selective oxidation of ethane
CN106732818A (zh) 基于二氧化钛的双层中空材料及其制备方法与在硫化氢光催化处理中的应用
Li et al. Layer-by-layer synthesis of hollow spherical CeO 2 templated by carbon spheres
CN107585748A (zh) 一种介孔二氧化硅保护的超薄氮化镍铁复合材料及其制备
RU2608125C1 (ru) Способ получения композитного каталитического материала в виде слоистых полых сфер
CN109641192B (zh) 甲基丙烯酸制造用催化剂及其制造方法、以及甲基丙烯酸和甲基丙烯酸酯的制造方法
Yin et al. Metal nanoparticles confined within an inorganic–organic framework enable superior substrate-selective catalysis
RU2607908C1 (ru) Способ приготовления катализатора гидрокрекинга углеводородного сырья
RU2687265C1 (ru) Способ получения катализатора в виде композиционного материала с распределенными сферическими полыми частицами
Abdullah et al. TiO2/Ag modified penta-bismuth hepta-oxide nitrate and its adsorption performance for azo dye removal
CN108906098A (zh) 一种介孔二氧化钛包覆磷化镍催化剂构成核-壳结构催化剂的制备方法
Zhang et al. Novel paper‐templated fabrication of hierarchically porous Ni–Al layered double hydroxides/Al2O3 for efficient BSA separation
Wang et al. Yeast‐Raised Polyamidoxime Hydrogel Prepared by Ice Crystal Dispersion for Efficient Uranium Extraction from Seawater
TW202110536A (zh) 用於製造乙烯性不飽和羧酸或酯之催化劑及方法
RU2792611C1 (ru) Способ получения композитного каталитического материала в виде полых сфер с использованием микроволн
Rogacheva et al. Catalytically Active Composite Material Based on TiO 2/Cr 2 O 3 Hollow Spherical Particles
CN104549399B (zh) 一种用于1,4‑丁二醇气相脱氢的壳层催化剂及其应用
Kuznetsova et al. Fabrication of MoO3/TiO2‐SiO2 with hollow spherical shape using resin as the template: Effect of decomposition of resins
Zhang et al. Facile synthesis of sponge-loaded Bi 2 WO 6 photocatalyst and degradation of tetracycline hydrochloride under visible light
JP6209268B2 (ja) ビスマス−モリブデン−ニッケル−混合酸化物又はビスマス−モリブデン−コバルト−混合酸化物及びSiO2を含有する複合材料
Guo et al. B-site metal modulation of phosphate adsorption properties and mechanism of LaBO3 (B= Fe, Al and Mn) perovskites