RU2686373C2 - Однопозиционный корреляционный относительно-дальномерный способ определения координат местоположения источников радиоизлучения - Google Patents

Однопозиционный корреляционный относительно-дальномерный способ определения координат местоположения источников радиоизлучения Download PDF

Info

Publication number
RU2686373C2
RU2686373C2 RU2017104551A RU2017104551A RU2686373C2 RU 2686373 C2 RU2686373 C2 RU 2686373C2 RU 2017104551 A RU2017104551 A RU 2017104551A RU 2017104551 A RU2017104551 A RU 2017104551A RU 2686373 C2 RU2686373 C2 RU 2686373C2
Authority
RU
Russia
Prior art keywords
coordinates
rcp
radio
equations
location
Prior art date
Application number
RU2017104551A
Other languages
English (en)
Other versions
RU2017104551A (ru
Inventor
Юрий Иванович Логинов
Светлана Юрьевна Портнаго
Original Assignee
Общество с ограниченной ответственностью "Квадрокс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Квадрокс" filed Critical Общество с ограниченной ответственностью "Квадрокс"
Priority to RU2017104551A priority Critical patent/RU2686373C2/ru
Publication of RU2017104551A publication Critical patent/RU2017104551A/ru
Application granted granted Critical
Publication of RU2686373C2 publication Critical patent/RU2686373C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/72Diversity systems specially adapted for direction-finding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements
    • G01S7/06Cathode-ray tube displays or other two dimensional or three-dimensional displays
    • G01S7/10Providing two-dimensional and co-ordinated display of distance and direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

Изобретение относится к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи, сведения о которых отсутствуют в базе данных (например, государственной радиочастотной службы). Технический результат - определение КМПИРИ одним постом радиоконтроля (РКП). Способ основан на измерении параметров искомого ИРИ на одном радиоконтрольном посту (РКП) и вычислении тех же параметров в точке, местоположение которой полагается известным, при этом измеряют азимут на него, применяя РКП с логопериодической поворотной антенной системой, задают координаты местоположения двух виртуальных постов (ВП) в секторе измеренного на ИРИ азимута на расстоянии нескольких угловых минут относительно РКП, вычисляют напряженность поля в месте расположения РКП, ВП1 и ВП2, создаваемую каждым из q базовых радиоэлектронных средств (q БРЭС), известных по базе данных заданного диапазона частот применяемого РКП и находящихся в секторе измеренного азимута, устанавливают корреляционную зависимость (КЗН) между вычисленными напряженностями полей на ВП и РКП, составляют для ВП1 и ВП2, по вычисленным напряженностям, q уравнений линий положения в виде q окружностей равных отношений (ОРО) напряженностей полей (окружности Аполлония), создаваемых независимо каждым из q БРЭС, составляют уравнения базовых линий между центрами q ОРО1 (ЦОРО1) и q ОРО2 (ЦОРО2), а также q уравнений радикальных осей ОРО1 и ОРО2, и переопределяют координаты q БРЭС, как координаты точек пересечения q радикальных осей ОРО с соответствующими q базовыми линиями ОРО, получают калибровочные характеристики (КХ) пар РКП/ВП1 и РКП/ВП2 по широте (КХШ) и долготе (КХД) как зависимости разности истинных и вычисленных координат q БРЭС от вычисленных. Измеряют на РКП напряженность поля искомого ИРИ и вычисляют по ней, используя КЗН, величину напряженности поля на ВП1 и ВП2, составляют для пар ВП1/РКП и ВП2/РКП два уравнения ОРО (окружностей Аполлония), уравнение радикальной оси и базовой линии ОРО этих напряженностей. Вычисляют пробные координаты искомого ИРИ как координаты точки пересечения радикальной оси ОРО с их базовой линией, корректируют их по КХ, а потом усредняют и фиксируют как окончательные. Повышения точности определения КМПИРИ достигается за счет задания координат дополнительных (n-2) ВП. 1 з.п. ф-лы, 5 ил.

Description

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения (ИРИ), сведения о которых отсутствуют в базе данных (например, государственных радиочастотных служб или государственных служб надзора за связью). Изобретение может быть использовано при поиске местоположения несанкционированных средств радиосвязи, как возможных источников помех связи.
Известны способы определения координат ИРИ, в которых используются пассивные пеленгаторы в количестве не менее трех, центр тяжести области пересечения выявленных азимутов которых на фронт прихода волны принимается за оценку местоположения. Основными принципами работы таких пеленгаторов являются амплитудные, фазовые и интерферометрические [1, 2]. К их недостаткам следует отнести высокую степень сложности антенных систем, коммутационных устройств и наличие многоканальных радиоприемников, а также необходимость в быстродействующих системах обработки информации.
Наличие в федеральных округах государственной радиочастотной службы взаимосвязанных через центральный пункт разветвленной сети радиоконтрольных постов, оборудованных средствами приема радиосигналов, измерения и обработки их параметров, позволяет дополнить их функции и задачами определения местоположения тех ИРИ, сведения о которых отсутствуют в базе данных, не прибегая к использованию сложных и дорогостоящих пеленгаторов. Известен способ [3], заключающийся в приеме сигналов источников радиоизлучений в полосе частот ΔF перемещающимся в пространстве измерителем. При перемещении измерителя измеряют уровни сигналов в n (n≥4) точках, последовательно вычисляют n уровней сигнала, по вычисленным отношениям строят n круговых линий положения и определяют координаты источников радиоизлучения как точку пересечения n круговых линий положения. Для повышения достоверности определения местоположения используют статистику. Основным недостатком этого аналога является его нереализуемость, так как так найти точку пересечения n2 круговых линий положения нельзя.
Известен угломерно-корреляционный способ оценивания местоположения наземных источников радиоизлучения [4]. Угломерно-корреляционный способ оценивания координат местоположения наземных источников радиоизлучения (ИРИ), заключающийся в том, что на борту самолета-пеленгатора одновременно измеряют собственные координаты местоположения x(k), угол курса
Figure 00000001
, пеленг ИРИ
Figure 00000002
, отличающийся тем, что бортовая вычислительная система (БВС) осуществляет разбиение участка местности вокруг ИРИ с грубо определенными прямоугольными координатами xц, zц на I×J прямоугольников с координатами центров xi, zi; для каждого прямоугольника и всех точек пеленгации рассчитывают ожидаемые значения пеленгов, затем осуществляют поиск элементарного участка местности возможного местоположения ИРИ, которому соответствует совокупность измеренных значений пеленгов определяют текущее местоположение ИРИ по величине функционала качества, характеризующего степень соответствия текущей измеренной совокупности пеленгов и их ожидаемых расчетных значений, соответствующих элементарным участкам местности, координаты которых известны, при этом в качестве функционала качества используется экстремум взаимно-корреляционной функции реализации
Figure 00000003
и
Figure 00000004
, определяющий совпадение текущего местоположения ИРИ с измеренным элементарным участком местности, координаты которого известны, или взвешенные суммы квадратов разностей текущих измеренных и расчетных значений пеленгов
Figure 00000005
и
Figure 00000006
, при этом критерием совпадения текущей реализации пеленгов и их расчетных значений является минимум функционала качества
Figure 00000007
,
Недостатки этого аналога:
1. Способ рассчитан только на применение на борту самолета-пеленгатора,
2. Требует измерения собственных координат местоположения самолета-пеленгатора,
3. Требует предварительного грубого определения местоположения ИРИ,
4. Требует разбиения участка местности вокруг предполагаемого местоположения ИРИ,
5. Требует измерения пеленгов на каждый участок местности возможного местоположения ИРИ.
Известно также техническое решение [5], которое относится к радиолокации, в частности, к определению местоположения источников радиоизлучений. Техническим результатом является обеспечение возможности определения координат источников радиоизлучений однопозиционной наземной радиолокационной станцией и независимо от условий местности.
Указанный технический результат достигается также тем, что в радиолокационной станции, содержащей пассивный канал обнаружения, включающий последовательно соединенные антенну и приемник, а также блок вычисления координат, содержащий последовательно соединенные устройство измерения сдвига принимаемых сигналов во времени и устройство вычисления координат.
Суть способа состоит в следующем.
Для определения координат источника радиоизлучения используют два канала: пассивный и активный каналы обнаружения. Вся система размещена на одной позиции.
Антенна пассивного канала обнаружения направлена на источник и принимает его прямое радиоизлучение. Для измерения дальности до источника радиоизлучения с угловыми координатами
Figure 00000008
(угол места) и
Figure 00000009
(азимут) используется объект, отражающий радиоизлучение этого источника При этом с помощью активного канала обнаружения работающего в пассивном режиме, осуществляются операции поиска, обнаружения и измерения угловых координат (угла места -
Figure 00000010
и азимута -
Figure 00000011
) объекта, отражающего излучение, коррелированное с прямым излучением (т.е. осуществляется поиск отражающего объекта). По положению максимума взаимной корреляционной функции излучений, принятых двумя каналами обнаружения, определяют величину временного сдвига Δt этих излучений.
После чего осуществляется зондирование направления с координатами
Figure 00000012
и измеряется дальность Ro до объекта, при необходимости уточняются координаты
Figure 00000013
.
Недостатками этого аналога являются:
1. Способ может применяться только к цифровым (дискретным) видам связи.
2. Необходимы два канала: активный и пассивный, что совершенно недопустимо в военных условиях применения из за демаскирования средства.
3. Необходимость измерения сдвига принимаемых сигналов во времени требует системы жесткой синхронизации.
4. Необходимо осуществлять операции поиска, обнаружения и измерения угловых координат (угла места -
Figure 00000014
и азимута -
Figure 00000015
) объекта, отражающего излучение.
Наиболее близким, по своей технической реализуемости, к заявляемому способу является способ [6], выбранный за прототип.
Способ определения координат местоположения источников радиоизлучения, основанный на измерении параметров радиоизлучений в нескольких точках пространства сканирующими радиоприемными устройствами и преобразованных в систему уравнений окружностей равных отношений, отличающийся тем, что для измерения параметров радиоизлучений используют N, не менее четырех, стационарных радиоконтрольных постов, расположенных не на одной прямой, один из которых принимают за базовый, снабжая его дополнительным специальным программным обеспечением и соединяя с остальными N-1 постами линиями связи, на всех постах осуществляют квазисинхронное сканирование по заданным фиксированным частотам настройки, усредняют полученные значения уровней сигналов на каждой из сканируемых частот, а затем на базовом посту для каждого из сочетаний
Figure 00000016
(сочетаний из N по 4) на основании обратно пропорциональной зависимости отношений расстояний от поста до источника радиоизлучения и соответствующих им разностей уровней сигналов, выраженных в дБ, составляют три уравнения, каждое из которых описывает окружность равных отношений, по параметрам двух любых пар которых и определяют текущее среднее значение широты и долготы местоположения источника радиоизлучения.
Основными недостатками прототипа являются:
1. Необходимость иметь не менее 4-х СРКП, требующих обеспечения радиосвязи между ними, что снижает надежность и эффективность такой системы определения КМПИРИ, а также демаскирует параметры ее функционирования и местоположение перед иностранной радиоразведкой.
2. Нет простого решения по повышению точности определения КМПИРИ путем, например, статистических накоплений.
Целью настоящего изобретения является разработка способа определения координат местоположения ИРИ, не требующего дополнительных аппаратных затрат для его реализации на существующих радиоконтрольных постах Радиочастотной службы Российской Федерации, в котором устранены недостатки прототипа.
Эта цель достигается с помощью признаков, указанных в формуле изобретения, общих с прототипом: способ определения координат местоположения источников радиоизлучения (КМПИРИ), основанный на измерении и вычислении напряженности поля на радиоконтрольных постах в нескольких точках пространства, и отличительных: измеряют напряженность поля искомого ИРИ и азимут на него, применяя РКП с логопериодической поворотной антенной системой (ЛПАС), на расстоянии нескольких угловых минут относительно РКП, задают координаты местоположения виртуального поста (ВП), вычисляют по специализированной программе напряженность поля в месте расположения РКП и ВП, создаваемую каждым q базовым радиоэлектронным средством (q БРЭС), известным по базе данных заданного диапазона частот и находящимся в секторе измеренного азимута, устанавливают корреляционную зависимость (КЗ) между напряженностью поля на ВП и напряженностью поля на РКП, составляют по вычисленным напряженностям уравнения линий положения в виде окружностей равных отношений (ОРО) напряженностей (окружность Аполлония) полей, создаваемых от каждого из q БРЭС, составляют уравнения азимутальных лучей, исходящих из РКП и ВП на каждый из последних, и переопределяют координаты q БРЭС, как координаты точек пересечения ОРО с лучами, направленными от РКП и ВП на q БРЭС, получают, при этом, калибровочные характеристики (КХ) пары РКП/ВП по широте (КХШ) и долготе (КХД), как зависимость вычисленных координат q БРЭС от истинных, вычисляют величину напряженности поля на ВП по КЗ и величине измеренной на РКП напряженности от ИРИ, а, затем, составляют уравнение ОРО этих напряженностей (окружность Аполлония), вычисляют пробные координаты искомого ИРИ, как координаты точек пересечения ОРО с лучами, исходящими от РКП и ВП, с измеренным и вычисленным для них азимутами на ИРИ, усредняют, и корректируют по КХ вычисленные координаты, а после этого фиксируют их, как окончательные. 2. Однопозиционный угломерный относительно-дальномерный способ отличающийся по п. 1 тем, что, вместо одного ВП, задают координаты n ВП, получают, при этом, n пар РКП/ВП и n калибровочных характеристик по широте (КХШ) и долготе (КХД), вычисляют
Figure 00000017
пробных значений, КМПИРИ, корректируют по КХ вычисленные координаты, усредняют и, после этого, фиксируют их, как окончательные.
Задача определения координат местоположения источника радиоизлучения с одной позиции может быть решена при использовании дополнительного (виртуального) поста. По известным координатам постов (основного и виртуального) и полученным на этих постах результатам измерения или вычислений напряженностей поля сигналов и измерений азимута на искомый ИРИ с одного поста могут быть определены координаты местоположения ИРИ (КМПИРИ)
Для определения КМПИРИ априори должна быть известна несущая частота его радиоизлучений, что достигается (для любых методов) на этапе сканирования диапазонов или полос частот с определенным шагом радиоприемным устройством или с помощью спектроанализатора, позволяющего точнее определить значение несущей частоты в полосе радиоизлучения ИРИ.
Для осуществления способа используем детерминистскую модель со следующими допущениями:
1. Используем уравнения распространения сигналов в свободном пространстве [1].
2. Параметры и характеристики приемников постов радиотехнических измерений идентичны, а их изменения, а также изменения параметров и характеристик наблюдаемых РЭС и условий распространения сигналов на интервале измерений отсутствуют.
3. Диаграммы направленности приемных и передающих антенн в горизонтальной плоскости круговые.
1. Однопозиционный корреляционный относительно-дальномерный способ определения координат местоположения источников радиоизлучения, основанный на измерении параметров искомого источника радиоизлучений (ИРИ) на одном радиоконтрольном посту (РКП) и вычислении тех же параметров в точке, местоположение которой полагается известным, отличающийся тем, что, измеряют азимут на него, применяя РКП с логопериодической поворотной антенной системой (ЛПАС), задают координаты местоположения двух виртуальных постов (ВП) в секторе измеренного на ИРИ азимута на расстоянии нескольких угловых минут относительно РКП, вычисляют по специализированной программе напряженность поля в месте расположения РКП, ВП1 и ВП2, создаваемую каждым из q базовых радиоэлектронных средств (q БРЭС), известных по базе данных заданного диапазона частот применяемого РКП и находящихся в секторе измеренного азимута, устанавливают корреляционную зависимость (КЗН) между вычисленными напряженностями полей на ВП и РКП, составляют для ВП1 и ВП2, по вычисленным напряженностям, q уравнений линий положения в виде q окружностей равных отношений (ОРО) напряженностей полей (окружности Аполлония), создаваемых независимо каждым из q БРЭС, составляют уравнения базовых линий между центрами q ОРО1 (ЦОРО1) и q ОРО2 (ЦОРО2), а также q уравнений радикальных осей ОРО1 и ОРО2, и переопределяют координаты q БРЭС, как координаты точек пересечения q радикальных осей ОРО с соответствующими q базовыми линиями ОРО, получают, при этом, калибровочные характеристики (КХ) пар РКП/ВП1 и РКП/ВП2 по широте (КХШ) и долготе (КХД), как зависимости разности истинных и вычисленных координат q БРЭС от вычисленных; измеряют на РКП напряженность поля искомого ИРИ и вычисляют по ней, используя КЗН, величину напряженности поля на ВП1 и ВП2, а, затем, составляют для пар ВП1/РКП и ВП2/РКП два уравнения ОРО (окружностей Аполлония), уравнение радикальной оси и базовой линии ОРО этих напряженностей, вычисляют пробные координаты искомого ИРИ, как координаты точки пересечения радикальной оси ОРО с их базовой линией, корректируют их по КХ, а, потом, усредняют и фиксируют, как окончательные.
2. С целью повышения точности определения КМПИРИ вместо одного ВП, задают координаты n ВП, получают, при этом, n пар корреляционных зависимостей напряженностей поля РКП/ВП и n калибровочных характеристик по широте (КХШ) и долготе (КХД), получают n ОРО,
Figure 00000018
радикальных осей пар ОРО и
Figure 00000019
их базовых линий, вычисляют
Figure 00000020
пробных значений КМПИРИ, как координат точек пересечения
Figure 00000021
радикальных осей с соответствующими
Figure 00000022
базовыми линиями, корректируют по КХШ и КХД, усредняют и фиксируют их, как окончательные.
Принцип действия способа поясняется иллюстрациями, приведенными на:
фигуре 1 - размещение РКП, виртуальных постов ВП1 и ВП2, окружностей равных отношений (ОРО1 и ОРО2) с центрами ЦОРО1 и ЦОР02, радикальной их оси и базовой линии, искомого ИРИ,
фигуре 2 - пример корреляционной зависимости напряженности, созданной базовыми РЭС на ВП от напряженности поля этих же БРЭС на РКП, аппроксимированной полиномом,
фигуре 3 - калибровочная характеристика пары РКП/ВП по долготе,
фигуре 4 - калибровочная характеристика пары РКП/ВП по широте,
фигуре 5 - размещение РКП (точка А), виртуальных постов ВП1 и ВП2, ВПЗ, окружностей равных отношений (ОРО1, ОРО2 и ОРО3) с центрами ЦОРО1 и ЦОРО2, радикальных осей и базовых линий, азимута ϕ на ИРИ, пробных координат искомого ИРИ (1/2, 1/3, 2/3).
Напряженность поля в любой точке изотропной среды связана с мощностью излучающего объекта, в том числе и искомого ИРИ, и его расстоянием R от точки местоположения излучателя, формулой [7]:
Figure 00000023
Здесь P - мощность ИРИ в кВт, η - коэффициент полезного действия антенны, G - коэффициент усиления антенны относительно изотропного излучателя, R - расстояние, в км.
Отсюда, для двух точек a и b, получают:
Figure 00000024
Эти отношения напряженностей в точках а и b при приеме сигналов не зависят от мощности передатчика и статистически равны отношению расстояний или отношению времен распространения от ИРИ до точек приема сигналов. Как корреляционно связаны продолжительности распространения сигналов, пропорциональные расстояниям от ИРИ до точек их приема, так и напряженности в точках приема корреляционно, а не функционально, детерминировано, связаны друг с другом. Почему корреляционно, а не функционально? Трассы распространения разные, среда распространения не является изотропной. Расстояния от ИРИ до точек приема определяются не только координатами точек местоположения ИРИ и приема сигналов, но и особенностью трассы распространения радиоволны: препятствиями, переотражениями и т.п. В предложенном способе для измерения напряженности сигналов используется только один РКП. С этого же поста измеряют азимут ϕ на искомый ИРИ. Для определения КМПИРИ применены два дополнительных виртуальных поста. Для этих постов задают только координаты их местоположения. Параметры ИРИ в них вычисляют. Напряженность на ВП вычисляют по результату измерения напряженности на РКП и с использованием корреляционной зависимости между точками пространства по напряженности (КЗН), полученной в результате расчета напряженности по какой либо известной программе, например, по программе ПИАР [8]. Координаты ИРИ, выявленного в результате сканирования диапазона частот в процессе радиоконтроля, как претендента на поиск, находят, как координаты точки пересечения радикальной оси двух окружностей равных отношений (ОРО1 и ОРО2) с базовой линией, проходящей через центры этих ОРО. Для получения КЗН, из базы данных РЭС используемого РКП, формируют перечень qБPЭC, координаты которых находятся в секторе измеренного для искомого ИРИ азимута. По данным этих РЭС (координаты, мощность, высота подвеса антенны, коэффициент усиления антенны и другие параметры, необходимые для расчета напряженности поля), взятым из базы данных, производят расчет напряженности по программе [8], как для РКП, так и для обоих ВП. Уравнение аппроксимированной корреляционной зависимости напряженности для пар ВП1/РКП и ВП1/РКП от напряженности на РКП, по результатам выполненного их расчета, получают с помощью стандартной программы Excel. Для получения уравнения ОРО запишем уравнения исходных окружностей положения ИРИ через их радиусы и географические координаты постов в виде:
Для РКП (xа, yа) в точке A:
Figure 00000025
Для ВП1 (xв, yв) в точке B:
Figure 00000026
Для ВП2 (xс, yс) в точке C:
Figure 00000027
Уравнения ОРО находят путем деления квадратов радиусов исходных окружностей, приравнивая полученное отношение обратному отношению квадратов напряженностей поля в точках размещения (фиг. 1) этих окружностей, то есть, в точке A РКП, и точке ВП1. При этом, получают:
Figure 00000028
, где:
Figure 00000029
- квадрат отношения напряженностей поля сигналов в точках В и А. Уравнения ОРО для поста С получают аналогично:
Figure 00000030
, где:
Figure 00000031
- квадрат отношения напряженностей поля сигналов в точках C и A. Отношение напряженностей поля сигналов, согласно (2), делает решение задачи определения координат местоположения излучающих объектов инвариантным относительно мощности этих РЭС и снижает погрешность координатометрии от флюктуации напряженности поля сигналов. Коэффициенты
Figure 00000032
и
Figure 00000033
с принятыми допущениями зависят только от взаимного расположения РКП и пунктов ВП1, ВП2 и наблюдаемого ИРИ. Преобразовав выражения (6) и (7), в соответствии с выражениями (3) и (4), получим уравнения ОРО:
Figure 00000034
где: xав, yав, Rав - координаты и радиус ОРО1 (окружности Аполлония), определяют по следующим соотношениям:
Figure 00000035
Соответственно, координаты и радиус ОРО2 (окружности Аполлония) получают виде следующих соотношений:
Figure 00000036
Уравнение радикальной оси получают вычитанием друг из друга уравнений ОРО1 и ОРО2, представленных в (8). Уравнение радикальной оси имеет вид:
Figure 00000037
, где:
Figure 00000038
Уравнение базовой линии, проходящей через ЦОРО1 и ЦОРО2 может быть представлено в виде:
Figure 00000039
Совместное решение уравнений (11) и (13) дает пробные (предварительные) координаты КМПИРИ в виде:
Figure 00000040
Figure 00000041
Так как и азимут ϕ, измеренная напряженность Еа и вычисленная напряженность Eb включают случайную и систематическую ошибки, то и полученный результат вычисления КМПИРИ будет содержать ошибку. Для ее снижения предусматривают калибровку способа по калибровочной характеристике.
Вычисленные по уравнениям (14) и (15), пробные КМПИРИ корректируют по калибровочным характеристикам (КХ) пары РКП/ВП, приведенным на фиг. 3 (КХ по долготе) и фиг. 4. (КХ по широте). Калибровочные характеристики получают, как зависимости разности истинных и вычисленных координат по базе данных БРЭС от вычисленных. После корректировки КМПИРИ их фиксируют, как окончательные.
2. Для повышения точности определения КМПИРИ увеличивают количество ВП. Для чего: задают координаты n ВП, вычисляют по специализированной программе, например, [7], напряженность поля в месте расположения n ВП и РКП, создаваемую каждым q базовым радиоэлектронным средством (q БРЭС) заданного диапазона частот, известным по базе данных и находящимся в секторе измеренного азимута.
По вычисленным напряженностям поля q БРЭС составляют для всех ВП n аппроксимированных корреляционных зависимостей напряженности (КЗН) на ВП от напряженности на РКП. Затем, составляют для каждой пары ВП/РКП n уравнений линий положения в виде ОРО (окружностей Аполлония), и переопределяют координаты БРЭС, как координаты точек пересечения радикальных осей n ОРО с их базовыми линиями, проходящими через центры соответствующих пар ОРО. Получают, при этом, n калибровочных характеристик (КХ) для n пар РКП/ВП, как зависимости разности истинных и переопределенных координат БРЭС от вычисленных. Измеряют напряженность поля ИРИ и по полученной ранее КЗН и измеренной напряженности поля искомого ИРИ, вычисляют величину напряженности поля ИРИ на n ВП. Составляют для каждой из n пар РКП/ВП уравнения линий положения в виде ОРО этих напряженностей (окружности Аполлония). Составляют для каждого сочетания пар ОРО
Figure 00000042
уравнений радикальных осей и базовых линий и находят по уравнениям (14) и (15)
Figure 00000042
пробных значений координат местоположения искомого ИРИ, как координат точек пересечения соответствующих радикальных осей и базовых линий этих пар ОРО. На фиг. 5. иллюстрируется, на примере трех ВП, получение пробных значений координат ИРИ. По каждой КХ пары РКП/ВП корректируют вычисленные координаты, усредняют все пробные откорректированные координаты искомого ИРИ и фиксируют усредненные откорректированные значения, как окончательные. Применение n ВП, вместо одного, требует, как это описано по п 1, формулы, получения n КЗ и n КХ (по долготе и широте) при однопозиционном измерении на СРКП напряженности искомого ИРИ При этом, увеличивается статистика в
Figure 00000042
раз, что приводит к снижению среднего значения ошибки определения КМПИРИ в
Figure 00000043
раз и снижению среднеквадратической ошибки более, чем в 0,5n раз.
Предложенный способ, по принципу работы и отсутствию средств радиосвязи для своего функционирования, является пассивным, наиболее скрытным и, следовательно, наименее уязвимым для обнаружения средствами радиоразведки. Способ, для своей реализации, является предельно минимальным по количеству оборудования, размещенном на одной позиции. Способ позволяет без каких либо затрат, только путем увеличения количества виртуальных постов, повышать точность определения КМПИРИ.
Таким образом, предложенный способ позволяет устранить недостатки прототипа и определять местоположение любых стационарных источников ИРИ. Отсутствие принципиальных ограничений по быстродействию, низкая стоимость внедрения способа, не требующего дополнительных аппаратных затрат для его реализации на существующих радиконтрольных постах Радиочастотной службы Российской Федерации, прозрачность алгоритма определения местоположения ИРИ, свидетельствует о высокой технико-экономической эффективности предложенного способа.
Источники информации
1. Справочник по радиоконтролю. Международный союз электросвязи. - Женева: Бюро радиосвязи. 2002. - 585 с.
2. Корнеев И.В., Ленцман В.Л. и др. Теория и практика государственного регулирования использования радиочастот и РЭС гражданского применения. Сборник материалов курсов повышения квалификации специалистов радиочастотных центров федеральных округов. Книга 2. - СПб.: СПбГУТ. 2003.
3. Патент RU №2306579, опубл. 20.09.2007 г.
4. Угломерно-корреляционный способ оценивания координат местоположения наземных источников радиоизлучения. Патент РФ №2458358. Авторы: Верб B.C., Гандурин В.А,, Косогор А.А,, Меркулов В.И., Миляков Д.А., Тетеруков А.Г., Чернов B.C.
5. Способ определения координат источника радиоизлучения и радиолокационная станция для его реализации. Патент РФ №2217773 Автор(ы): Беляев Б.Г., Голубев Г.Н., Жибинов В.А., Кисляков В.И., Лужных С.Н.
6. Способ определения координат местоположения источников радиоизлучений. Патент РФ №2423721 С2. Авторы: Логинов Ю.И., Екимов О.Б.
7. РЕКОМЕНДАЦИЯ МСЭ-R Р. 525-2* (* 3-я Исследовательская комиссия по радиосвязи внесла в 2000 году в настоящую Рекомендацию редакционные поправки в соответствии с Резолюцией МСЭ-R 44.) Расчет ослабления в свободном пространстве.
8. Проектирование и анализ радиосетей. Описание и инструкция по эксплуатации. Ярославль, 2009.

Claims (2)

1. Однопозиционный корреляционный относительно-дальномерный способ определения координат местоположения источников радиоизлучения, основанный на измерении параметров искомого источника радиоизлучений (ИРИ) на одном радиоконтрольном посту (РКП) и вычислении тех же параметров в точке, местоположение которой полагается известным, отличающийся тем, что измеряют азимут на него, применяя РКП с логопериодической поворотной антенной системой (ЛПАС), задают координаты местоположения двух виртуальных постов (ВП) в секторе измеренного на ИРИ азимута на расстоянии нескольких угловых минут относительно РКП, вычисляют напряженность поля в месте расположения РКП, ВП1 и ВП2, создаваемую каждым из q базовых радиоэлектронных средств (q БРЭС), известных по базе данных заданного диапазона частот применяемого РКП и находящихся в секторе измеренного азимута, устанавливают корреляционную зависимость (КЗН) между вычисленными напряженностями полей на ВП и РКП, составляют для ВП1 и ВП2, по вычисленным напряженностям, q уравнений линий положения в виде q окружностей равных отношений (ОРО) напряженностей полей (окружности Аполлония), создаваемых независимо каждым из q БРЭС, составляют уравнения базовых линий между центрами q OPO1 (ЦОРО1) и q ОРО2 (ЦОРО2), а также q уравнений радикальных осей OPO1 и ОРО2, и переопределяют координаты q БРЭС, как координаты точек пересечения q радикальных осей ОРО с соответствующими q базовыми линиями ОРО, получают при этом калибровочные характеристики (КХ) пар РКП/ВП1 и РКП/ВП2 по широте (КХШ) и долготе (КХД) как зависимости разности истинных и вычисленных координат q БРЭС от вычисленных; измеряют на РКП напряженность поля искомого ИРИ и вычисляют по ней, используя КЗН, величину напряженности поля на ВП1 и ВП2, а затем составляют для пар ВП1/РКП и ВП2/РКП два уравнения ОРО (окружностей Аполлония), уравнение радикальной оси и базовой линии ОРО этих напряженностей, вычисляют пробные координаты искомого ИРИ как координаты точки пересечения радикальной оси двух ОРО с их базовой линией, корректируют их по КХ, а потом усредняют и фиксируют как окончательные.
2. Однопозиционный корреляционный относительно-дальномерный способ по п. 1, отличающийся тем, что дополнительно задают координаты (n-2) ВП, получают при этом n пар корреляционных зависимостей напряженностей поля РКП/ВП и n калибровочных характеристик по широте (КХШ) и долготе (КХД), получают n ОРО,
Figure 00000044
радикальных осей пар ОРО и
Figure 00000045
их базовых линий, вычисляют
Figure 00000046
пробных значений КМПИРИ как координат точек пересечения
Figure 00000047
радикальных осей с соответствующими
Figure 00000048
базовыми линиями, корректируют по КХШ и КХД, усредняют и фиксируют их как окончательные.
RU2017104551A 2017-02-13 2017-02-13 Однопозиционный корреляционный относительно-дальномерный способ определения координат местоположения источников радиоизлучения RU2686373C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017104551A RU2686373C2 (ru) 2017-02-13 2017-02-13 Однопозиционный корреляционный относительно-дальномерный способ определения координат местоположения источников радиоизлучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017104551A RU2686373C2 (ru) 2017-02-13 2017-02-13 Однопозиционный корреляционный относительно-дальномерный способ определения координат местоположения источников радиоизлучения

Publications (2)

Publication Number Publication Date
RU2017104551A RU2017104551A (ru) 2018-09-21
RU2686373C2 true RU2686373C2 (ru) 2019-04-25

Family

ID=63668732

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017104551A RU2686373C2 (ru) 2017-02-13 2017-02-13 Однопозиционный корреляционный относительно-дальномерный способ определения координат местоположения источников радиоизлучения

Country Status (1)

Country Link
RU (1) RU2686373C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115604275B (zh) * 2022-11-08 2023-03-10 合肥臻谱防务科技有限公司 一种信息交互网络中的虚拟专用服务器分配方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625364A (en) * 1994-07-08 1997-04-29 Lockheed Sanders, Inc. Apparatus and method for finding a signal emission source
US6791493B1 (en) * 2003-08-21 2004-09-14 Northrop Grumman Corporation Method for using signal frequency change to differentially resolve long baseline interferometer measurements
RU2248584C2 (ru) * 2002-03-21 2005-03-20 16 Центральный научно-исследовательский институт Министерства обороны Российской Федерации Способ местоопределения источников радиоизлучений
US7952521B2 (en) * 2004-06-25 2011-05-31 Thales Multiparametric direction finding method comprising the separation of the incidence and nuisance parameters
RU2423721C2 (ru) * 2008-12-23 2011-07-10 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ЭсПиЭс"(ООО "ЭсПиЭс") Способ определения координат местоположения источников радиоизлучения
WO2013085587A1 (en) * 2011-12-06 2013-06-13 Raytheon Company Position optimization
RU2510044C1 (ru) * 2012-08-07 2014-03-20 Общество с ограниченной ответственностью "Специальный Технологический Центр" Способ и устройство определения координат источников радиоизлучений

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625364A (en) * 1994-07-08 1997-04-29 Lockheed Sanders, Inc. Apparatus and method for finding a signal emission source
RU2248584C2 (ru) * 2002-03-21 2005-03-20 16 Центральный научно-исследовательский институт Министерства обороны Российской Федерации Способ местоопределения источников радиоизлучений
US6791493B1 (en) * 2003-08-21 2004-09-14 Northrop Grumman Corporation Method for using signal frequency change to differentially resolve long baseline interferometer measurements
US7952521B2 (en) * 2004-06-25 2011-05-31 Thales Multiparametric direction finding method comprising the separation of the incidence and nuisance parameters
RU2423721C2 (ru) * 2008-12-23 2011-07-10 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ЭсПиЭс"(ООО "ЭсПиЭс") Способ определения координат местоположения источников радиоизлучения
WO2013085587A1 (en) * 2011-12-06 2013-06-13 Raytheon Company Position optimization
RU2510044C1 (ru) * 2012-08-07 2014-03-20 Общество с ограниченной ответственностью "Специальный Технологический Центр" Способ и устройство определения координат источников радиоизлучений

Also Published As

Publication number Publication date
RU2017104551A (ru) 2018-09-21

Similar Documents

Publication Publication Date Title
KR101108749B1 (ko) 다수의 송신기들을 구비한 무선 시스템에서의 모바일 무선수신기 위치 찾기 시스템 및 방법
CN107085150B (zh) 一种短波发射天线三维立体方向图空中移动测量系统及方法
EP3017316B1 (en) Mitigation of multipath distortions for tdoa-based geolocation
RU2423721C2 (ru) Способ определения координат местоположения источников радиоизлучения
CN110954865A (zh) 一种基于电离层信息的短波时差定位方法
CN104735620A (zh) 一种基于多个基站的精确定位方法
RU2430385C2 (ru) Способ определения координат местоположения источников радиоизлучения
RU2529355C2 (ru) Способ определения пространственного распределения ионосферных неоднородностей
RU2686373C2 (ru) Однопозиционный корреляционный относительно-дальномерный способ определения координат местоположения источников радиоизлучения
RU2666555C2 (ru) Однопозиционный корреляционный угломерный относительно-дальномерный способ определения координат местоположения источников радиоизлучения
Ott et al. Ground-wave propagation over irregular inhomogeneous terrain: Comparisons of calculations and measurements
RU2643513C1 (ru) Однопозиционный способ определения координат местоположения источников радиоизлучения
RU2644580C1 (ru) Способ определения координат источника радиоизлучения с использованием летательного аппарата
RU2657237C1 (ru) Однопозиционный способ определения координат местоположения источников радиоизлучения
RU2768011C1 (ru) Способ одноэтапного адаптивного определения координат источников радиоизлучений
RU2674248C2 (ru) Однопозиционный корреляционный угломерный способ определения координат местоположения источников радиоизлучения
CN109856597B (zh) 一种新体制超视距短波定位系统及定位方法
RU2668566C2 (ru) Однопозиционный мультипликативный разностно-относительный способ определения координат местоположения источников радиоизлучения
RU2671826C1 (ru) Однопозиционный корреляционно-угломерный способ определения координат источников радиоизлучения
Kelner et al. The empirical verification of the location method based on the Doppler effect
RU2671828C2 (ru) Однопозиционный угломерно-дальномерный способ определения координат местоположения источников радиоизлучения
RU2651796C1 (ru) Однопозиционный корреляционный мультипликативный разностно-относительный способ определения координат местоположения источников радиоизлучений
RU2651793C1 (ru) Однопозиционный мультипликативный разностно-относительный способ определения координат местоположения источников радиоизлучений
RU2671823C1 (ru) Однопозиционный корреляционно-угломерный разностно-относительный способ определения координат источников радиоизлучения
RU2671825C1 (ru) Однопозиционный корреляционный мультипликативный разностно-относительный способ определения координат источников радиоизлучения