RU2666555C2 - Однопозиционный корреляционный угломерный относительно-дальномерный способ определения координат местоположения источников радиоизлучения - Google Patents

Однопозиционный корреляционный угломерный относительно-дальномерный способ определения координат местоположения источников радиоизлучения Download PDF

Info

Publication number
RU2666555C2
RU2666555C2 RU2017104552A RU2017104552A RU2666555C2 RU 2666555 C2 RU2666555 C2 RU 2666555C2 RU 2017104552 A RU2017104552 A RU 2017104552A RU 2017104552 A RU2017104552 A RU 2017104552A RU 2666555 C2 RU2666555 C2 RU 2666555C2
Authority
RU
Russia
Prior art keywords
coordinates
rcp
calculated
radio
location
Prior art date
Application number
RU2017104552A
Other languages
English (en)
Other versions
RU2017104552A (ru
RU2017104552A3 (ru
Inventor
Юрий Иванович Логинов
Светлана Юрьевна Портнаго
Original Assignee
Общество с ограниченной ответственностью "Квадрокс"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Квадрокс" filed Critical Общество с ограниченной ответственностью "Квадрокс"
Priority to RU2017104552A priority Critical patent/RU2666555C2/ru
Publication of RU2017104552A publication Critical patent/RU2017104552A/ru
Publication of RU2017104552A3 publication Critical patent/RU2017104552A3/ru
Application granted granted Critical
Publication of RU2666555C2 publication Critical patent/RU2666555C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/72Radar-tracking systems; Analogous systems for two-dimensional tracking, e.g. combination of angle and range tracking, track-while-scan radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/72Diversity systems specially adapted for direction-finding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/12Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements
    • G01S7/06Cathode-ray tube displays or other two dimensional or three-dimensional displays
    • G01S7/10Providing two-dimensional and co-ordinated display of distance and direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к системам радиоконтроля для определения координат местоположения источников радиоизлучения (КМПИРИ) УКВ-СВЧ диапазонов как цифровых, так и аналоговых видов связи. Технический результат - определение КМПИРИ одним постом радиоконтроля (РКП). Способ основан на измерении параметров искомого источника радиоизлучений (ИРИ) на одном радиоконтрольном посту (РКП) и вычислении тех же параметров в точке, местоположение которой полагается известным, при этом измеряют напряженность поля искомого ИРИ и азимут на него, применяя РКП с логопериодической поворотной антенной системой (ЛПАС), задают координаты местоположения виртуального поста (ВП), на расстоянии нескольких угловых минут относительно РКП в направлении измеренного азимута, вычисляют напряженность поля в месте расположения РКП и ВП, создаваемую каждым из q базовых радиоэлектронных средств (q БРЭС), известных по базе данных, заданного диапазона частот используемого РКП, и находящихся в секторе измеренного азимута, устанавливают корреляционную зависимость (КЗ) между напряженностью поля на ВП и напряженностью поля на РКП, составляют по вычисленным напряженностям уравнения линий положения в виде окружностей равных отношений (ОРО) напряженностей полей (окружность Апполония), создаваемых независимо каждым из q БРЭС, составляют уравнения азимутальных лучей, исходящих из РКП и ВП на каждый из q БРЭС, и переопределяют координаты q БРЭС как координаты точек пересечения ОРО с лучами, направленными от РКП и ВП на q БРЭС, получают при этом калибровочные характеристики (КХ) пар РКП/ВП по широте (КХШ) и долготе (КХД) как зависимости разности истинных и вычисленных координат q БРЭС от вычисленных, вычисляют величину напряженности поля на ВП по КЗ и величине измеренной на РКП напряженности от ИРИ, составляют уравнение ОРО этих напряженностей (окружность Апполония), вычисляют пробные координаты искомого ИРИ, как координаты точек пересечения ОРО с лучами, исходящими от РКП и ВП, с измеренным и вычисленным для них азимутами на ИРИ, усредняют и корректируют по КХ вычисленные координаты, а после этого фиксируют их как окончательные. Кроме того, для повышения точности дополнительно задают координаты n-1 ВП, получают при этом n пар РКП/ВП и n калибровочных характеристик по широте (КХШ) и долготе (КХД), вычисляютпробных значений КМПИРИ, корректируют по КХ вычисленные координаты, усредняют и после этого фиксируют их как окончательные. 1 з.п. ф-лы, 6 ил..

Description

Изобретение относится к области радиотехники, а именно к системам радиоконтроля для определения местоположения источников радиоизлучения (ИРИ), сведения о которых отсутствуют в базе данных (например, государственных радиочастотных служб или государственных служб надзора за связью). Изобретение может быть использовано при поиске местоположения несанкционированных средств радиосвязи, как возможных источников помех связи.
Известны способы определения координат ИРИ, в которых используются пассивные пеленгаторы в количестве не менее трех, центр тяжести области пересечения выявленных азимутов которых на фронт прихода волны принимается за оценку местоположения. Основными принципами работы таких пеленгаторов являются амплитудные, фазовые и интерферометрические [1, 2]. К их недостаткам следует отнести высокую степень сложности антенных систем, коммутационных устройств и наличие многоканальных радиоприемников, а также необходимость в быстродействующих системах обработки информации.
Наличие в федеральных округах государственной радиочастотной службы взаимосвязанных через центральный пункт разветвленной сети радиоконтрольных постов, оборудованных средствами приема радиосигналов, измерения и обработки их параметров, позволяет дополнить их функции и задачами определения местоположения тех ИРИ, сведения о которых отсутствуют в базе данных, не прибегая к использованию сложных и дорогостоящих пеленгаторов. Известен способ [3], заключающийся в приеме сигналов источников радиоизлучений в полосе частот ΔF перемещающимся в пространстве измерителем. При перемещении измерителя измеряют уровни сигналов в n (n≥4) точках, последовательно вычисляют n уровней сигнала, по вычисленным отношениям строят n круговых линий положения и определяют координаты источников радиоизлучения как точку пересечения n круговых линий положения. Для повышения достоверности определения местоположения используют статистику. Основным недостатком этого аналога является его не реализуемость, так как так найти точку пересечения n>2 круговых линий положения нельзя.
Известен угломерно-корреляционный способ оценивания местоположения наземных источников радиоизлучения [4]. Угломерно-корреляционный способ оценивания координат местоположения наземных источников радиоизлучения (ИРИ), заключающийся в том, что на борту самолета-пеленгатора одновременно измеряют собственные координаты местоположения x(k), угол курса
Figure 00000001
, пеленг ИРИ
Figure 00000002
, отличающийся тем, что бортовая вычислительная система (БВС) осуществляет разбиение участка местности вокруг ИРИ с грубо определенными прямоугольными координатами хц, zц на I×J прямоугольников с координатами центров xi, zi; для каждого прямоугольника и всех точек пеленгации рассчитывают ожидаемые значения пеленгов, затем осуществляют поиск элементарного участка местности возможного местоположения ИРИ, которому соответствует совокупность измеренных значений пеленгов определяют текущее местоположение ИРИ по величине функционала качества, характеризующего степень соответствия текущей измеренной совокупности пеленгов и их ожидаемых расчетных значений, соответствующих элементарным участкам местности, координаты которых известны, при этом в качестве функционала качества используется экстремум взаимно-корреляционной функции реализации
Figure 00000003
и
Figure 00000004
, определяющий совпадение текущего местоположения ИРИ с измеренным элементарным участком местности, координаты которого известны, или взвешенные суммы квадратов разностей текущих измеренных и расчетных значений пеленгов
Figure 00000005
и
Figure 00000006
, при этом критерием совпадения текущей реализации пеленгов и их расчетных значений является минимум функционала качества
Figure 00000007
Недостатки этого аналога:
1. Способ рассчитан только на применение на борту самолета-пеленгатора,
2. Требует измерения собственных координат местоположения самолета-пеленгатора,
3. Требует предварительного грубого определения местоположения ИРИ,
4. Требует разбиения участка местности вокруг предполагаемого местоположения ИРИ,
5. Требует измерения пеленгов на каждый участок местности возможного местоположения ИРИ.
Известно также техническое решение [5], которое относится к радиолокации, в частности, к определению местоположения источников радиоизлучений. Техническим результатом является обеспечение возможности определения координат источников радиоизлучений однопозиционной наземной радиолокационной станцией и независимо от условий местности.
Указанный технический результат достигается также тем, что в радиолокационной станции, содержащей пассивный канал обнаружения, включающий последовательно соединенные антенну и приемник, а также блок вычисления координат, содержащий последовательно соединенные устройство измерения сдвига принимаемых сигналов во времени и устройство вычисления координат.
Суть способа состоит в следующем.
Для определения координат источника радиоизлучения используют два канала: пассивный и активный каналы обнаружения. Вся система размещена на одной позиции.
Антенна пассивного канала обнаружения направлена на источник и принимает его прямое радиоизлучение. Для измерения дальности до источника радиоизлучения с угловыми координатами
Figure 00000008
(угол места) и
Figure 00000009
(азимут) используется объект, отражающий радиоизлучение этого источника При этом с помощью активного канала обнаружения работающего в пассивном режиме, осуществляются операции поиска, обнаружения и измерения угловых координат (угла места -
Figure 00000010
и азимута -
Figure 00000011
) объекта, отражающего излучение, коррелированное с прямым излучением (т.е. осуществляется поиск отражающего объекта). По положению максимума взаимной корреляционной функции излучений, принятых двумя каналами обнаружения, определяют величину временного сдвига
Figure 00000012
этих излучений.
После чего осуществляется зондирование направления с координатами
Figure 00000013
,
Figure 00000014
и измеряется дальность R0 до объекта, при необходимости уточняются координаты
Figure 00000015
,
Figure 00000016
.
Недостатками этого аналога являются:
1. Способ может применяться только к цифровым (дискретным) видам связи.
2. Необходимы два канала: активный и пассивный, что совершенно недопустимо в военных условиях применения из-за демаскирования средства.
3. Необходимость измерения сдвига принимаемых сигналов во времени требует системы жесткой синхронизации.
4. Необходимо осуществлять операции поиска, обнаружения и измерения угловых координат (угла места -
Figure 00000017
и азимута -
Figure 00000018
) объекта, отражающего излучение.
Существенно ближе к предлагаемому способу, является [6].
Способ [6] относится к пассивным системам радиоконтроля и предназначен для определения координат источников радиоизлучений УКВ-СВЧ диапазонов, использующих цифровые (дискретные) виды сигналов из одного РКП. Способ определения местоположения ИРИ основан на измерении направления на ИРИ, оценке относительной временной задержки, с последующим вычислением координат ИРИ, как точки пересечения линии направления на источник и гиперболической линии положения. Все измерения производятся на одном приемном пункте. При этом, оценка относительной временной задержки определяется путем вычисления времени расхождения прихода сигнала от источника относительно опорной временной шкалы, сформированной на основе оценки временной структуры сигнала источника, местоположение которого полагается известным, определяемой на основе сравнения оценок расхождения времени прихода сигналов по времени от источников с известным и оцениваемым местоположением, функционирующих в единой системе синхронизации цифровыми (дискретными) видами сигналов.
Недостатками способа являются:
1). Способ распространяется только на цифровые (дискретные) виды средств связи с четко выраженным периодом следования импульсов тактовой (цикловой) синхронизации, функционирующие в единой системе синхронизации, временные параметры которой и точность их определения существенно влияют на оценку относительной временной задержки, а, следовательно, и точность определения координат искомого ИРИ.
2) Отсутствует решение по повышению точности оценки определения координат искомого ИРИ, например, путем увеличении числа корреспондентов из состава радиосети и усреднения результатов вычисления координат искомого ИРИ применительно к каждому из корреспондентов радиосети;
3) Должна быть априорно известна (либо доступна оцениванию) частотно-временная структура сигнала (частота (период) следования импульсов тактовой (цикловой) синхронизации). При этом, оценивание частотно-временной структуры сигнала приводит к появлению дополнительной погрешности вычисления координат искомого ИРИ и появлению дополнительных временных и аппаратурных затрат при внедрении способа.
4) Область применения способа ограничивается тем, что для реализации способа необходимо иметь:
а) особое радиоприемное устройство, в котором дополнительно должен быть введен автокоррелятор,
б) пеленгатор, удовлетворяющий требованиям по достаточной точности пеленгования, исходя из точности определения координат искомого ИРИ.
Наиболее близким по своей технической реализуемости к заявляемому способу является способ [7], выбранный за прототип.
Способ определения координат местоположения источников радиоизлучения, основанный на измерении параметров радиоизлучений в нескольких точках пространства сканирующими радиоприемными устройствами и преобразованных в систему уравнений окружностей равных отношений, отличающийся тем, что для измерения параметров радиоизлучений используют N, не менее четырех, стационарных радиоконтрольных постов, расположенных не на одной прямой, один из которых принимают за базовый, снабжая его дополнительным специальным программным обеспечением и соединяя с остальными N-1 постами линиями связи, на всех постах осуществляют квазисинхронное сканирование по заданным фиксированным частотам настройки, усредняют полученные значения уровней сигналов на каждой из сканируемых частот, а затем на базовом посту для каждого из сочетаний
Figure 00000019
(сочетаний из N по 4) на основании обратно пропорциональной зависимости отношений расстояний от поста до источника радиоизлучения и соответствующих им разностей уровней сигналов, выраженных в дБ, составляют три уравнения, каждое из которых описывает окружность равных отношений, по параметрам двух любых пар которых и определяют текущее среднее значение широты и долготы местоположения источника радиоизлучения.
Основными недостатками прототипа являются:
1. Необходимость иметь не менее 4-х СРКП, требующих обеспечения радиосвязи между ними, что снижает надежность и эффективность такой системы определения КМПИРИ, а также демаскирует параметры ее функционирования и местоположение перед иностранной радиоразведкой.
2. Нет простого решения по повышению точности определения КМПИРИ путем, например, статистических накоплений.
Целью настоящего изобретения является разработка способа определения координат местоположения ИРИ, не требующего дополнительных аппаратных затрат для его реализации на существующих радиоконтрольных постах Радиочастотной службы Российской Федерации, в котором устранены недостатки прототипа.
Эта цель достигается с помощью признаков, указанных в формуле изобретения, общих с прототипом: способ определения координат местоположения источников радиоизлучения (КМПИРИ), основанный на измерении и вычислении напряженности поля на радиоконтрольных постах в нескольких точках пространства, и отличительных: измеряют напряженность поля искомого ИРИ и азимут на него, применяя РКП с логопериодической поворотной антенной системой (ЛПАС), на расстоянии нескольких угловых минут относительно РКП, задают координаты местоположения виртуального поста (ВП), вычисляют по специализированной программе напряженность поля в месте расположения РКП и ВП, создаваемую каждым q базовым радиоэлектронным средством (q БРЭС), известным по базе данных заданного диапазона частот и находящимся в секторе измеренного азимута, устанавливают корреляционную зависимость (КЗ) между напряженностью поля на ВП и напряженностью поля на РКП, составляют по вычисленным напряженностям уравнения линий положения в виде окружностей равных отношений (ОРО) напряженностей (окружность Аполлония) полей, создаваемых от каждого из q БРЭС, составляют уравнения азимутальных лучей, исходящих из РКП и ВП на каждый из последних, и переопределяют координаты q БРЭС, как координаты точек пересечения ОРО с лучами, направленными от РКП и ВП на q БРЭС, получают, при этом, калибровочные характеристики (КХ) пары РКП/ВП по широте (КХШ) и долготе (КХД), как зависимость вычисленных координат q БРЭС от истинных, вычисляют величину напряженности поля на ВП по КЗ и величине измеренной на РКП напряженности от ИРИ, а, затем, составляют уравнение ОРО этих напряженностей (окружность Аполлония), вычисляют пробные координаты искомого ИРИ, как координаты точек пересечения ОРО с лучами, исходящими от РКП и ВП, с измеренным и вычисленным для них азимутами на ИРИ, усредняют, и корректируют по КХ вычисленные координаты, а после этого фиксируют их, как окончательные. 2. Однопозиционный угломерный относительно-дальномерный способ отличающийся по п.1 тем, что, вместо одного ВП, задают координаты n ВП, получают, при этом, n пар РКП/ВП и n калибровочных характеристик по широте (КХШ) и долготе (КХД), вычисляют
Figure 00000020
пробных значений, КМПИРИ, корректируют по КХ вычисленные координаты, усредняют и, после этого, фиксируют их, как окончательные.
Задача определения координат местоположения источника радиоизлучения с одной позиции может быть решена при использовании дополнительного (виртуального) поста. По известным координатам постов (основного и виртуального) и полученным на этих постах результатам измерения или вычислений напряженностей поля сигналов и измерений азимута на искомый ИРИ с одного поста могут быть определены координаты местоположения ИРИ (КМПИРИ)
Для определения КМПИРИ априори должна быть известна несущая частота его радиоизлучений, что достигается (для любых методов) на этапе сканирования диапазонов или полос частот с определенным шагом радиоприемным устройством или с помощью спектроанализатора, позволяющего точнее определить значение несущей частоты в полосе радиоизлучения ИРИ.
Для осуществления способа используем детерминистскую модель со следующими допущениями:
1. Используем уравнения распространения сигналов в свободном пространстве [1].
2. Параметры и характеристики приемников постов радиотехнических измерений идентичны, а их изменения, а также изменения параметров и характеристик наблюдаемых РЭС и условий распространения сигналов на интервале измерений отсутствуют.
3. Диаграммы направленности приемных и передающих антенн в горизонтальной плоскости круговые.
1. Однопозиционный угломерный относительно-дальномерный способ определения координат местоположения источников радиоизлучения, основанный на измерении параметров искомого источника радиоизлучений (ИРИ) на одном радиоконтрольном посту (РКП) и вычислении тех же параметров в точке, местоположение которой полагается известным, отличающийся тем, что, измеряют напряженность поля искомого ИРИ и азимут на него, применяя РКП с логопериодической поворотной антенной системой (ЛПАС), на расстоянии нескольких угловых минут относительно РКП в направлении измеренного азимута задают координаты местоположения виртуального поста (ВП) вычисляют по специализированной программе напряженность поля в месте расположения РКП и ВП, создаваемую каждым из q базовых радиоэлектронных средств (q БРЭС), известных по базе данных заданного диапазона частот и находящихся в секторе измеренного азимута, устанавливают по вычисленным напряженностям полей корреляционную зависимость (КЗ) между напряженностью поля на ВП и напряженностью поля на РКП, составляют по вычисленным напряженностям уравнения линий положения в виде окружностей равных отношений (ОРО) напряженностей (окружность Аполлония) полей, создаваемых независимо каждым из q БРЭС, составляют уравнения азимутальных лучей, исходящих из РКП и ВП на каждый из q БРЭС, и переопределяют координаты q БРЭС, как координаты точек пересечения ОРО с лучами, направленными от РКП и ВП на q БРЭС, получают, при этом, калибровочные характеристики (КХ) пары РКП/ВП по широте (КХШ) и долготе (КХД), как зависимость разности истинных и вычисленных координат q БРЭС от вычисленных, вычисляют величину напряженности поля на ВП по КЗ и величине измеренной на РКП напряженности от ИРИ, а, затем, составляют уравнение ОРО этих напряженностей (окружность Аполлония), вычисляют пробные координаты искомого ИРИ, как координаты точек пересечения ОРО с лучами, исходящими от РКП и ВП, с измеренным и вычисленным для них азимутами на ИРИ, усредняют, и корректируют по КХ вычисленные координаты, а после этого фиксируют их, как окончательные.
Для повышения точности определения КМПИРИ вместо одного ВП, задают координаты n ВП, получают, при этом, n пар РКП/ВП и n калибровочных характеристик по широте (КХШ) и долготе (КХД), вычисляют
Figure 00000021
пробных значений,
КМПИРИ, корректируют по КХ вычисленные координаты, усредняют и, после этого, фиксируют их, как окончательные.
Принцип действия способа поясняется иллюстрациями, приведенными на:
фигуре 1 - расположение РКП, ВП и ИРИ,
фигуре 2 - пример корреляционной зависимости напряженности, созданной базовыми РЭС на ВП от напряженности поля этих же БРЭС на РКП, аппроксимированной полиномом,
фигуре 3 - расположение эквипотенциальных окружностей поля вокруг РКП о(ха,уа), ВП o(xb,yb), окружности равных отношений o(xab,yab), и азимутального луча с азимутом ϕ с РКП на ИРИ(х,у),
фигуре 4 -калибровочная характеристика пары РКП/ВП по долготе,
фигуре 5 - калибровочная характеристика пары РКП/ВП по широте,
фигуре 6 - расположение РКП, трех ВП, четырех азимутов и искомого ИРИ.
Напряженность поля в любой точке изотропной среды связана [8] с мощностью излучающего объекта, в том числе и искомого ИРИ, и его расстоянием R от точки местоположения излучателя, формулой:
Figure 00000022
Здесь P - мощность ИРИ в кВт, η - коэффициент полезного действия антенны, G - коэффициент усиления антенны относительно изотропного излучателя, R - расстояние, в км.
Выражение (1) запишем, для упрощения, ввиде:
Figure 00000023
,
где П
Figure 00000024
- эквивалентная мощность передатчика.
Отсюда, для двух точек a и b, получаем:
Figure 00000025
Эти отношения напряженностей в точках а и b при приеме сигналов не зависят от мощности передатчика и статистически равны отношению расстояний или отношению времен распространения от ИРИ до точек приема сигналов. Как корреляционно связаны продолжительности распространения сигналов, пропорциональные расстояниям от ИРИ до точек их приема, так и напряженности в точках приема корреляционно, а не функционально, детерминировано, связаны друг с другом. Почему корреляционно, а не функционально? Трассы распространения разные, среда распространения не является изотропной. Расстояния от ИРИ до точек приема определяются не только координатами точек местоположения ИРИ и приема сигналов, но и и особенностью трассы распространения радиоволны: препятствиями, переотражениями и. т.п. В предложенном способе для измерения напряженности сигналов используется только один РКП. С этого же поста измеряют азимут ϕ на искомый ИРИ. Для определения КМПИРИ применен дополнительный пост-виртуальный. Координаты ИРИ, выявленного в результате сканирования диапазона частот в процессе радиоконтроля, как претендента на поиск, находят, как усредненные координаты точек пересечения азимутальных лучей с измеренным азимутом ϕ от РКП и вычисленным азимутом с ВП на ИРИ и линии положения в виде окружности равных отношений напряженностей (окружности Аполлония), измеренной на РКП и вычисленной на ВП. Напряженность на ВП вычисляют по результату измерения напряженности на РКП и с использованием корреляционной зависимости (КЗ), полученной в результате расчета напряженности по какой либо известной программе, например, по программе ПИАР [9]. Для получения КЗ, из базы данных РЭС используемого РКП, формируют перечень qБРЭС, координаты которых находятся в секторе измеренного для искомого ИРИ азимута. По данным этих РЭС (координаты, мощность, высота подвеса антенны, коэффициент усиления антенны и другие параметры, необходимые для расчета напряженности поля), взятым из базы данных, производят расчет напряженности по программе [9], как для РКП, так и для ВП. Аппроксимированное уравнение корреляционной зависимости напряженности на ВП от напряженности на РКП, по результатам выполненного их расчета, получают с помощью стандартной программы Excel. Для получения уравнения ОРО запишем уравнения исходных окружностей положения ИРИ через их радиусы и географические координаты постов в виде:
Для РКП(хаа) в точке а:
Figure 00000026
Для ВП(xв,yв) в точке в:
Figure 00000027
Уравнения ОРО находят путем деления квадратов радиусов исходных окружностей, приравнивая полученное отношение обратному отношению квадратов напряженностей поля в точках размещения этих окружностей, то есть РКП и ВП. При этом, получают:
Figure 00000028
где:
Figure 00000029
- квадрат отношения напряженностей поля сигналов в точках В и А. Отношение напряженностей поля сигналов, согласно (2), делает решение задачи определения координат местоположения излучающих объектов инвариантным относительно мощности этих РЭС и снижает погрешность координатометрии от флюктуации напряженности поля сигналов.
Коэффициент n с принятыми допущениями зависят только от взаимного расположения пунктов А, в, и наблюдаемого ИРИ. Преобразовав выражение (5), в соответствии с выражениями (3) и (4), получим:
Figure 00000030
где: xав, yав, Rав - координаты и радиус ОРО (окружности Аполлония) Sав, определяют по следующим соотношениям:
Figure 00000031
Уравнение азимутального луча с РКП на ИРИ с азимутом ϕ запишем в виде:
Figure 00000032
Пробные значения КМПИРИ определяют, как координаты точки пересечения окружности Аполлония по уравнению (6) и азимутального луча (8), то есть, решением системы:
Figure 00000033
Фигура 3 поясняет получение этой точки пересечения.
Так как, и азимут ϕ, измеренная напряженность Ea и вычисленная напряженность Eb включают случайную и систематическую ошибки, то и полученный результат вычисления КМПИРИ будет содержать ошибку. Для ее снижения предусматривают калибровку способа по калибровочной характеристике (КХ) пары РКП/ВП. Для ее получения по координатам РКП и q БРЭС, перечень которых составляют при формировании КЗ, как это описано выше, получают уравнения азимутальных лучей на каждый из последних, а, на основании вычисленных напряженностей поля q БРЭС и координат местоположения РКП и ВП, составляют уравнения (6) линии положения в виде ОРО напряженностей (окружности Аполлония) и переопределяют координаты q БРЭС, как координаты точки пересечения окружностей равных отношений с лучом, направленным с РКП на БРЭС с соответствующим угловым коэффициентом К, который вычисляют, как
Figure 00000034
где: xi, yi - широта и долгота любого из q БРЭС.
Вычисленные путем решения системы уравнений (9), пробные КМПИРИ корректируют по калибровочным характеристикам (КХ) пары РКП/ВП, приведенным на фиг. 4 (КХ по долготе) фиг. 5. (КХ по широте), как зависимости разности истинных координат по базе данных БРЭС и вычисленных от вычисленных. После корретировки КМПИРИ их фиксируют, как окончательные.
2. Для повышения точности определения КМПИРИ увеличивают количество ВП. Для чего: задают координаты n ВП, вычисляют по специализированной программе, например, [9], напряженность поля в месте расположения n ВП и РКП, создаваемую каждым базовым радиоэлектронным средством (БРЭС) заданного диапазона частот, известным по базе данных и находящимся в секторе измеренного азимута, по координатам РКП и БРЭС составляют уравнения азимутальных лучей на каждый из последних, а на основании вычисленных напряженностей поля БРЭС и координат местоположения РКП и ВП составляют уравнения линий положения в виде окружностей равных отношений напряженностей (окружностей Аполлония). Получают n пар РКП/ВП и переопределяют координаты БРЭС, как координаты точек пересечения окружностей равных отношений с каждым лучом, направленным с РКП и ВП на БРЭС с вычисленным азимутом, получают, при этом, n калибровочных характеристик (КХ) n пар РКП/ВП, как зависимости истинных координат БРЭС от вычисленных. Устанавливают корреляционную зависимость (КЗ) между напряженностью поля БРЭС на каждый из ВП и напряженностью поля тех же БРЭС на РКП, и по полученной КЗ и измеренной на РКП напряженности поля искомого ИРИ, вычисляют величину напряженности поля ИРИ на n ВП, а, затем, на основании измеренной и вычисленной напряженности и координат местоположения РКП и ВП, составляют для каждой n пар РКП/ВП уравнения линий положения в виде ОРО этих напряженностей (окружности Аполлония), и находят пробные координаты местоположения искомого ИРИ, как координаты точек пересечения окружностей равных отношений с лучом, направленным с РКП на искомый ИРИ с измеренным азимутом, а затем по каждой КХ пары РКП/ВП корректируют вычисленные координаты, усредняют все пробные откорректированные координаты искомого ИРИ и фиксируют усредненные откорректированные значения, как окончательные. На фиг. 6. приведено размещение СРКП, трех ВП, и искомого ИРИ. Применение n ВП, вместо одного, требует, как это описано по п1, формулы получения n КЗ и 2n КХ (по долготе и широте) при однопозиционном измерении на СРКП напряженности искомого ИРИ и азимута на него. При этом, увеличивается статистика в
Figure 00000035
раз, что приводит к снижению среднего значения ошибки определения КМПИРИ в
Figure 00000036
раз и снижения среднеквадратической ошибки, примерно, в n раз.
Предложенный способ, по принципу работы и отсутствию средств радиосвязи для своего функционирования, является пассивным, наиболее скрытным и, следовательно, наименее уязвимым для обнаружения средствами радиоразведки. Способ, для своей реализации, является предельно минимальным по количеству оборудования, размещенном на одной позиции. Способ позволяет без каких либо затрат, только путем увеличения количества виртуальных постов, повышать точность определения КМПИРИ.
Таким образом, предложенный способ позволяет устранить недостатки прототипа и определять местоположение любых источников ИРИ. Отсутствие принципиальных ограничений по быстродействию, низкая стоимость внедрения способа, не требующего дополнительных аппаратных затрат для его реализации на существующих радиоконтрольных постах Радиочастотной службы Российской Федерации, прозрачность алгоритма определения местоположения ИРИ, как радикального центра окружностей равных отношений, свидетельствует о высокой технико-экономической эффективности предложенного способа.
Источники информации
1. Справочник по радиоконтролю. Международный союз электросвязи. - Женева: Бюро радиосвязи. 2002. - 585 с.
2. Корнеев И.В., Ленцман В.Л. и др. Теория и практика государственного регулирования использования радиочастот и РЭС гражданского применения. Сборник материалов курсов повышения квалификации специалистов радиочастотных центров федеральных округов. Книга 2. - СПб.: СПбГУТ. 2003.
3. Патент RU №2306579, опубл. 20.09.2007 г.
4. Угломерно-корреляционный способ оценивания координат местоположения наземных источников радиоизлучения. Патент РФ №2458358. Авторы: Верб B.C., Гандурин В.А,, Косогор А.А,, Меркулов В.И., Миляков Д.А., Тетеруков А.Г., Чернов B.C.
5. Способ определения координат источника радиоизлучения и радиолокационная станция для его реализации. Патент РФ №2217773 Автор(ы): Беляев Б.Г., Голубев Г.Н., Жибинов В.А., Кисляков В.И., Лужных С.Н
6. Способ местоопределения источников радиоизлучений.
Патент РФ №2248584 С2. Автор(ы): Лузинов В.А. (RU), Устинов К.В. (RU)
7. Способ определения координат местоположения источников радиоизлучений. Патент РФ №2423721 С2. Авторы: Логинов Ю.И., Екимов О.Б.
8. РЕКОМЕНДАЦИЯ МСЭ-R Р. 525-2* (*3-я Исследовательская комиссия по радиосвязи внесла в 2000 году в настоящую Рекомендацию редакционные поправки в соответствии с Резолюцией МСЭ-R 44.) Расчет ослабления в свободном пространстве.
9. Проектирование и анализ радиосетей. Описание и инструкция по эксплуатации. Ярославль, 2009.

Claims (2)

1. Однопозиционный угломерный относительно-дальномерный способ определения координат местоположения источников радиоизлучения, основанный на измерении параметров искомого источника радиоизлучений (ИРИ) на одном радиоконтрольном посту (РКП) и вычислении тех же параметров в точке, местоположение которой полагается известным, отличающийся тем, что измеряют напряженность поля искомого ИРИ и азимут на него, применяя РКП с логопериодической поворотной антенной системой (ЛПАС), на расстоянии нескольких угловых минут относительно РКП, задают координаты местоположения виртуального поста (ВП), вычисляют напряженность поля в месте расположения РКП и ВП, создаваемую каждым из q базовых радиоэлектронных средств (q БРЭС), известных по базе данных заданного диапазона частот и находящихся в секторе измеренного азимута, устанавливают корреляционную зависимость (КЗ) между напряженностью поля на ВП и напряженностью поля на РКП, составляют по вычисленным напряженностям уравнения линий положения в виде окружностей равных отношений (ОРО) напряженностей (окружность Аполлония) полей, создаваемых независимо каждым из q БРЭС, составляют уравнения азимутальных лучей, исходящих из РКП и ВП на каждый из q БРЭС, и переопределяют координаты q БРЭС как координаты точек пересечения ОРО с лучами, направленными от РКП и ВП на q БРЭС, получают при этом калибровочные характеристики (КХ) пар РКП/ВП по широте (КХШ) и долготе (КХД) как зависимости разности истинных и вычисленных координат q БРЭС от вычисленных, вычисляют величину напряженности поля на ВП по КЗ и величине измеренной на РКП напряженности от ИРИ, а затем составляют уравнение ОРО этих напряженностей (окружность Аполлония), вычисляют пробные координаты искомого ИРИ как координаты точек пересечения ОРО с лучами, исходящими от РКП и ВП, с измеренным и вычисленным для них азимутами на ИРИ, усредняют и корректируют по КХ вычисленные координаты, а после этого фиксируют их как окончательные.
2. Однопозиционный угломерный относительно-дальномерный способ по п. 1, отличающийся тем, что дополнительно задают координаты n-1 ВП, получают при этом n пар РКП/ВП и n калибровочных характеристик по широте (КХШ) и долготе (КХД), вычисляют
Figure 00000037
пробных значений КМПИРИ, корректируют по КХ вычисленные координаты, усредняют и после этого фиксируют их как окончательные.
RU2017104552A 2017-02-13 2017-02-13 Однопозиционный корреляционный угломерный относительно-дальномерный способ определения координат местоположения источников радиоизлучения RU2666555C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017104552A RU2666555C2 (ru) 2017-02-13 2017-02-13 Однопозиционный корреляционный угломерный относительно-дальномерный способ определения координат местоположения источников радиоизлучения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017104552A RU2666555C2 (ru) 2017-02-13 2017-02-13 Однопозиционный корреляционный угломерный относительно-дальномерный способ определения координат местоположения источников радиоизлучения

Publications (3)

Publication Number Publication Date
RU2017104552A RU2017104552A (ru) 2018-08-16
RU2017104552A3 RU2017104552A3 (ru) 2018-08-16
RU2666555C2 true RU2666555C2 (ru) 2018-09-11

Family

ID=63177166

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017104552A RU2666555C2 (ru) 2017-02-13 2017-02-13 Однопозиционный корреляционный угломерный относительно-дальномерный способ определения координат местоположения источников радиоизлучения

Country Status (1)

Country Link
RU (1) RU2666555C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733860C1 (ru) * 2020-06-08 2020-10-07 Федеральное государственное казенное военное образовательное учреждение высшего образования "Череповецкое высшее военное инженерное ордена Жукова училище радиоэлектроники" Министерства обороны Российской Федерации (ФГКВОУВО "ЧВВИУРЭ" МО РФ) Усовершенствованный способ определения местоположения квазинепрерывного источника радиоизлучения

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114449650A (zh) * 2021-12-13 2022-05-06 西安电子科技大学 一种基于5g的单基站定位方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625364A (en) * 1994-07-08 1997-04-29 Lockheed Sanders, Inc. Apparatus and method for finding a signal emission source
US6791493B1 (en) * 2003-08-21 2004-09-14 Northrop Grumman Corporation Method for using signal frequency change to differentially resolve long baseline interferometer measurements
RU2248584C2 (ru) * 2002-03-21 2005-03-20 16 Центральный научно-исследовательский институт Министерства обороны Российской Федерации Способ местоопределения источников радиоизлучений
US7952521B2 (en) * 2004-06-25 2011-05-31 Thales Multiparametric direction finding method comprising the separation of the incidence and nuisance parameters
RU2423721C2 (ru) * 2008-12-23 2011-07-10 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ЭсПиЭс"(ООО "ЭсПиЭс") Способ определения координат местоположения источников радиоизлучения
WO2013085587A1 (en) * 2011-12-06 2013-06-13 Raytheon Company Position optimization
RU2510044C1 (ru) * 2012-08-07 2014-03-20 Общество с ограниченной ответственностью "Специальный Технологический Центр" Способ и устройство определения координат источников радиоизлучений

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625364A (en) * 1994-07-08 1997-04-29 Lockheed Sanders, Inc. Apparatus and method for finding a signal emission source
RU2248584C2 (ru) * 2002-03-21 2005-03-20 16 Центральный научно-исследовательский институт Министерства обороны Российской Федерации Способ местоопределения источников радиоизлучений
US6791493B1 (en) * 2003-08-21 2004-09-14 Northrop Grumman Corporation Method for using signal frequency change to differentially resolve long baseline interferometer measurements
US7952521B2 (en) * 2004-06-25 2011-05-31 Thales Multiparametric direction finding method comprising the separation of the incidence and nuisance parameters
RU2423721C2 (ru) * 2008-12-23 2011-07-10 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "ЭсПиЭс"(ООО "ЭсПиЭс") Способ определения координат местоположения источников радиоизлучения
WO2013085587A1 (en) * 2011-12-06 2013-06-13 Raytheon Company Position optimization
RU2510044C1 (ru) * 2012-08-07 2014-03-20 Общество с ограниченной ответственностью "Специальный Технологический Центр" Способ и устройство определения координат источников радиоизлучений

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733860C1 (ru) * 2020-06-08 2020-10-07 Федеральное государственное казенное военное образовательное учреждение высшего образования "Череповецкое высшее военное инженерное ордена Жукова училище радиоэлектроники" Министерства обороны Российской Федерации (ФГКВОУВО "ЧВВИУРЭ" МО РФ) Усовершенствованный способ определения местоположения квазинепрерывного источника радиоизлучения

Also Published As

Publication number Publication date
RU2017104552A (ru) 2018-08-16
RU2017104552A3 (ru) 2018-08-16

Similar Documents

Publication Publication Date Title
KR101108749B1 (ko) 다수의 송신기들을 구비한 무선 시스템에서의 모바일 무선수신기 위치 찾기 시스템 및 방법
CA1122686A (en) Locating device
Rаzinkоv et al. Measurement of the coordinates of radio emission at high frequencies by goniometric and goniometric-range finding methods
CN110954865A (zh) 一种基于电离层信息的短波时差定位方法
RU2430385C2 (ru) Способ определения координат местоположения источников радиоизлучения
RU2666555C2 (ru) Однопозиционный корреляционный угломерный относительно-дальномерный способ определения координат местоположения источников радиоизлучения
RU2529355C2 (ru) Способ определения пространственного распределения ионосферных неоднородностей
CN109188389B (zh) 超视距多基被动雷达中的解时差测量模糊的方法
RU2643513C1 (ru) Однопозиционный способ определения координат местоположения источников радиоизлучения
RU2657237C1 (ru) Однопозиционный способ определения координат местоположения источников радиоизлучения
RU2292560C1 (ru) Способ определения местоположения источника радиоизлучения
RU2674248C2 (ru) Однопозиционный корреляционный угломерный способ определения координат местоположения источников радиоизлучения
RU2686373C2 (ru) Однопозиционный корреляционный относительно-дальномерный способ определения координат местоположения источников радиоизлучения
RU2768011C1 (ru) Способ одноэтапного адаптивного определения координат источников радиоизлучений
RU2668566C2 (ru) Однопозиционный мультипликативный разностно-относительный способ определения координат местоположения источников радиоизлучения
Nabila et al. A 3D Multilateration Using RF Burst
RU2671826C1 (ru) Однопозиционный корреляционно-угломерный способ определения координат источников радиоизлучения
RU2651796C1 (ru) Однопозиционный корреляционный мультипликативный разностно-относительный способ определения координат местоположения источников радиоизлучений
Kelner et al. The empirical verification of the location method based on the Doppler effect
RU2671828C2 (ru) Однопозиционный угломерно-дальномерный способ определения координат местоположения источников радиоизлучения
RU2651793C1 (ru) Однопозиционный мультипликативный разностно-относительный способ определения координат местоположения источников радиоизлучений
CN109856597B (zh) 一种新体制超视距短波定位系统及定位方法
RU2651587C1 (ru) Мультипликативный разностно-относительный способ определения координат местоположения источника импульсного радиоизлучения
RU2643780C1 (ru) Однопозиционный мультипликативный разностно-относительный способ определения координат местоположения источников радиоизлучения
RU2647495C1 (ru) Мультипликативный разностно-относительный способ определения координат местоположения источника импульсного радиоизлучения