RU2686155C1 - Стенд измерения параметров тепловизионных каналов - Google Patents

Стенд измерения параметров тепловизионных каналов Download PDF

Info

Publication number
RU2686155C1
RU2686155C1 RU2018125097A RU2018125097A RU2686155C1 RU 2686155 C1 RU2686155 C1 RU 2686155C1 RU 2018125097 A RU2018125097 A RU 2018125097A RU 2018125097 A RU2018125097 A RU 2018125097A RU 2686155 C1 RU2686155 C1 RU 2686155C1
Authority
RU
Russia
Prior art keywords
port
ports
thermal imaging
tpvc
parameters
Prior art date
Application number
RU2018125097A
Other languages
English (en)
Inventor
Михаил Николаевич Батавин
Ильдар Масхутович Габдуллин
Антон Николаевич Елагин
Александр Владимирович Мингалев
Андрей Викторович Николаев
Сергей Николаевич Шушарин
Original Assignee
Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") filed Critical Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО")
Priority to RU2018125097A priority Critical patent/RU2686155C1/ru
Application granted granted Critical
Publication of RU2686155C1 publication Critical patent/RU2686155C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

Изобретение относится к оптико-электронному приборостроению и предназначено для автоматизированного измерения параметров тепловизионных каналов (ТПВК). Техническим результатом изобретения является расширение функциональных возможностей стенда за счет обеспечения возможности автоматизированного измерения параметров ТПВК, при которых необходимо выполнять изменение и измерение значения углов поворота и наклона оптической оси ТПВК относительно оптической оси ИКК. Технический результат достигается тем, что в стенде измерения параметров тепловизионных каналов, содержащем последовательно установленные инфракрасный коллиматорный комплекс (ИКК) и контролируемый тепловизионный канал (ТПВК), а также устройство управления, отображения, записи и обработки информации (УОЗОИ), содержащее персональный компьютер (ПК), первый порт которого соединен с первым портом ИКК, преобразователь форматов видеосигналов (ПФВ), первый порт которого подключен к первому порту ТПВК, а второй порт подключен к второму порту ПК, преобразователь стандартов обмена (ПСО), первый и второй порты которого подключены к второму порту ТПВК и третьему порту ПК соответственно, формирователь рабочих напряжений (ФРН), первый порт которого соединен с третьим портом ТПВК, согласно настоящему изобретению дополнительно введено устройство поворотно-наклонное (УПН) для размещения ТПВК, снабженное исполнительным механизмом (ИМ), при этом УОЗОИ дополнительно содержит преобразователь сигналов устройства поворотно-наклонного (ПС-УПН), первый и второй порты которого подключены к первому и второму портам ИМ, а третий и четвертый порты ПС-УПН соединены с четвертым и пятым портами ПК соответственно, при этом второй порт ФРН соединен с третьим портом ИМ. Также технический результат достигается тем, что шестой порт ПК соединен с третьим портом ФРН для управления режимом работы ФРН. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к оптико-электронному приборостроению и предназначено для автоматизированного измерения параметров тепловизионных каналов (ТПВК).
Известна установка, используемая при измерении параметров оптико-электронных систем (ОЭС), содержащая коллиматор с блоком излучателя, мирой и зеркалом, термокамеру с оптическим входным окном и турелью для закрепления ОЭС, осциллограф и телевизионный монитор (патент RU 2507495 С1, МПК G01M 11/02, опубликован 20.02.2014).
Данная установка позволяет проводить неавтоматизированные измерения в диапазоне рабочих температур следующих параметров: изменение размеров поля зрения ОЭС, изменение пространственного разрешения ОЭС по полю зрения, изменение температурного разрешения ОЭС в различных участках поля зрения, изменение пространственной ориентации линии визирования ОЭС.
Недостатками известной установки являются:
- отсутствие устройства автоматизированного управления, записи и хранения информации, поступающей в процессе выполнения измерений;
- участие оператора в процессе выполнения измерения параметров ОЭС, что говорит о наличии в результатах измерений погрешности, связанной с влиянием на результат человеческого фактора;
- использование осциллографа или телевизионного монитора для измерения пространственного разрешения ОЭС по полю зрения в качестве измерительного оборудования, что усложняет структуру применяемого оборудования и снижает точность выполняемых измерений.
Прототипом является устройство контроля и управления тепловизионными каналами, содержащее инфракрасный коллиматорный комплекс (ИКК), контролируемый тепловизионный канал (ТПВК), оптическая ось которого расположена параллельно оптической оси ИКК, и устройство отображения, записи и обработки информации, включающее персональный компьютер, преобразователь форматов видеосигналов, вход которого является видеовходом устройства контроля и управления тепловизионными каналами и служит для приема сигнала с видеовыхода контролируемого тепловизионного канала, а выход подключен к первому порту персонального компьютера, преобразователь стандартов обмена, первый порт ввода-вывода которого является портом ввода-вывода устройства контроля и управления тепловизионными каналами и служит для выдачи цифровых сигналов во второй порт ввода-вывода контролируемого тепловизионного канала, а второй порт ввода-вывода подключен к второму порту ввода-вывода персонального компьютера, формирователь команд управления, вход которого подключен к третьему порту персонального компьютера, а выход является управляющим выходом устройства контроля и управления тепловизионными каналами и служит для подачи силовых команд управления на третий вход контролируемого тепловизионного канала, формирователь рабочих напряжений, выходы которого являются выходами рабочих напряжений устройства контроля и управления тепловизионными каналами, служит для подачи данных напряжений на четвертый вход контролируемого тепловизионного канала, при этом персональный компьютер снабжен четвертым портом ввода-вывода для возможности подключения к управляющему входу инфракрасного коллиматорного комплекса (патент RU 2605934 С1, МПК H04N 5/33, G05F 1/00, опубликован 27.12.2016).
Недостатком известного устройства являются ограниченные функциональные возможности, которые обусловлены тем, что при измерении характеристик оптическая ось ТПВК должна быть расположена параллельно оптической оси ИКК, что делает невозможным выполнение автоматизированного измерения параметров ТПВК, при которых необходимо выполнять изменение и измерение значения углов поворота и наклона оптической оси ТПВК относительно оптической оси ИКК: размеры угловых полей зрения, угол отклонения оси визирования в узком поле зрения относительно посадочной плоскости ТПВК, угол отклонения оси визирования при переключении полей зрения.
Техническим результатом изобретения является расширение функциональных возможностей стенда за счет обеспечения возможности автоматизированного измерения параметров ТПВК, при которых необходимо выполнять изменение и измерение значения углов поворота и наклона оптической оси ТПВК относительно оптической оси ИКК.
Технический результат достигается тем, что в стенде измерения параметров тепловизионных каналов, содержащем последовательно установленные инфракрасный коллиматорный комплекс (ИКК) и контролируемый тепловизионный канал (ТПВК), а также устройство управления, отображения, записи и обработки информации (УОЗОИ), содержащее персональный компьютер (ПК), первый порт которого соединен с первым портом ИКК, преобразователь форматов видеосигналов (ПФВ), первый порт которого подключен к первому порту ТПВК, а второй порт подключен к второму порту ПК, преобразователь стандартов обмена (ПСО) первый и второй порты которого подключены к второму порту ТПВК и третьему порту ПК соответственно, формирователь рабочих напряжений (ФРН), первый порт которого соединен с третьим портом ТПВК, согласно настоящему изобретению, дополнительно введено устройство поворотно-наклонное (УПН) для размещения ТПВК, снабженное исполнительным механизмом (ИМ), при этом УОЗОИ дополнительно содержит преобразователь сигналов устройства поворотно-наклонного (ПС-УПН), первый и второй порты которого подключены к первому и второму портам ИМ, а третий и четвертый порты ПС-УПН соединены с четвертым и пятым портами ПК соответственно, при этом второй порт ФРН соединен с третьим портом ИМ. Также технический результат достигается тем, что шестой порт ПК соединен с третьим портом ФРН для управления режимом работы ФРН.
На фиг. 1 представлена функциональная схема предлагаемого стенда измерения параметров тепловизионных каналов.
Стенд измерения параметров тепловизионных каналов содержит последовательно установленные инфракрасный коллиматорный комплекс 1 и контролируемый тепловизионный канал 2, а также устройство 3 управления, отображения, записи и обработки информации.
Устройство 3 управления, отображения, записи и обработки информации включает в себя персональный компьютер 4, преобразователь форматов видеосигналов 5, представляющий собой плату видеозахвата SDI, либо плату видеозахвата CameraLink, преобразователь стандартов обмена 6, реализованный на базе платы сопряжения RS-232/422/485 для шины PCI, формирователь рабочих напряжений 7, представляющий собой источник питания с возможностью управления режимом его работы от персонального компьютера 4. Первый и второй порты преобразователя форматов видеосигналов 5 соединены с первым портом контролируемого тепловизионного канала 2 и со вторым портом персонального компьютера 4 соответственно, что обеспечивает преобразование и передачу в персональный компьютер 4 видеосигнала, формируемого контролируемым тепловизионным каналом 2. Первый и второй порты преобразователя стандартов обмена 6 соединены со вторым портом контролируемого тепловизионного канала 2 и третьим портом персонального компьютера 4, что обеспечивает преобразование и передачу управляющих цифровых сигналов между контролируемым тепловизионным каналом 2 и персональным компьютером 4. Первый порт инфракрасного коллиматорного комплекса 1 соединен с первым портом персонального компьютера 4 для обеспечения возможности управления режимом работы инфракрасного коллиматорного комплекса 1 непосредственно с персонального компьютера 4. Первый порт формирователя рабочих напряжений 7 соединен с третьим портом контролируемого тепловизионного канала 2 и служит для обеспечения подачи рабочих напряжений в контролируемый тепловизионный канал 2.
Отличием предлагаемого стенда измерения параметров тепловизионных каналов является то, что устройство 3 управления, отображения, записи и обработки информации выполнено с возможностью автоматизированного измерения параметров контролируемого тепловизионного канала 2, при которых необходимо выполнять и измерять значения углов поворота и наклона оптической оси контролируемого тепловизионного канала 2 относительно оптической оси инфракрасного коллиматорного комплекса 1, а именно, размеры угловых полей зрения, угол отклонения оси визирования в узком поле зрения относительно посадочной плоскости ТПВК, угол отклонения оси визирования при переключении полей зрения.
Возможность автоматизированного измерения указанных параметров ТПВК обеспечивается тем, что стенд дополнительно содержит устройство поворотно-наклонное 8 для размещения контролируемого тепловизионного канала 2, причем устройство поворотно-наклонное 8 снабжено исполнительным механизмом 9, состоящим из двигателей и датчиков углового положения (на фиг. 1 не показаны). Исполнительный механизм 9 обеспечивает поворот и наклон оптической оси контролируемого тепловизионного канала 2 относительно оптической оси инфракрасного коллиматорного комплекса 1 с целью перемещения изображения тест-объекта инфракрасного коллиматорного комплекса 1 (на фиг. 1 не показан) в кадре в пределах поля зрения контролируемого тепловизионного канала 2. Причем поворот оптической оси контролируемого тепловизионного канала 2 позволяет перемещать изображение тест-объекта формируемого инфракрасным коллиматорным комплексом 1, вдоль горизонтальной оси кадра в пределах поля зрения контролируемого тепловизионного канала 2, а наклон оптической оси контролируемого тепловизионного канала 2 позволяет перемещать изображение тест-объекта, формируемого инфракрасным коллиматорным комплексом 1, вдоль вертикальной оси кадра в пределах поля зрения контролируемого тепловизионного канала 2.
Устройство 3 управления, отображения, записи и обработки информации дополнительно содержит преобразователь 10 сигналов устройства поворотно-наклонного, включающий блок управления двигателями и плату обработки сигналов датчиков углового положения (на фиг. 1 не показаны). Первый и третий порты преобразователя 10 сигналов устройства поворотно-наклонного соединены соответственно с первым портом исполнительного механизма 9 и четвертым портом персонального компьютера 4 с целью преобразования и передачи в исполнительный механизм 9 от персонального компьютера 4 управляющих цифровых сигналов для осуществления поворота и наклона УПН 8 и, соответственно, оптической оси контролируемого тепловизионного канала 2, установленного на устройство поворотно-наклонное 8, относительно оптической оси инфракрасного коллиматорного комплекса 1. Второй и четвертый порты преобразователя 10 сигналов устройства поворотно-наклонного соединены соответственно со вторым портом исполнительного механизма 9 и пятым портом персонального компьютера 4 для преобразования и передачи в персональный компьютер 4 от исполнительного механизма 9 цифровых сигналов углового положения оптической оси контролируемого тепловизионного канала 2 относительно оптической оси инфракрасного коллиматорного комплекса 1. Второй порт формирователя рабочих напряжений 7 соединен с третьим портом исполнительного механизма 9 для подачи в него рабочих напряжений. Кроме того, шестой порт персонального компьютера 4 соединен с третьим портом формирователя рабочих напряжений 7 для обеспечения возможности управления режимом работы формирователя рабочих напряжений 7. При этом устройство 3 управления, отображения, записи и обработки информации производит измерение параметров контролируемого тепловизионного канала 2 без непосредственного участия оператора, а оператор выполняет подготовительные операции и контролирует результаты выполненных измерений.
Процесс работы стенда измерения параметров тепловизионных каналов выглядит следующим образом. Оператор включает ПК 4, ИКК 1 и ФРН 7. В программном обеспечении (ПО), установленном в ПК 4, заложены алгоритмы выполнения автоматизированного измерения следующих параметров ТПВК: функция передачи модуляции (ФПМ), разность температур, эквивалентная шуму (РТЭШ), температурно-частотная характеристика (ТЧХ), минимально разрешаемая разность температур (МРРТ), отношение сигнал/шум, размеры угловых полей зрения, угол отклонения оси визирования в узком поле зрения относительно посадочной плоскости ТПВК, угол отклонения оси визирования при переключении полей зрения, время переключения полей зрения, модуляция яркости. Также в ПО заложены алгоритмы управления режимами работы ИКК 1, ТПВК 2, ФРН 7 и У ПН 8. В интерфейсных графических окнах ПО, отображаемых на мониторе ПК 4 (на фиг. 1 не показан), оператор формирует список измеряемых параметров ТПВК 2 и запускает процесс измерения выбранных параметров ТПВК 2.
После чего УОЗОИ 3 в соответствии с алгоритмом выполнения выбранных типов измерений производит следующие действия:
- управляет включением-выключением ТПВК 2 посредством передачи команд в виде управляющих цифровых сигналов из порта VI ПК 4 в порт III ФРН 7, в результате чего ФРН 7 через порт I подает или прекращает подачу питающего напряжения в порт III ТПВК 2;
- управляет включением-выключением УПН 8 посредством передачи команд в виде управляющих цифровых сигналов из порта VI ПК 4 в порт III ФРН 7, в результате чего ФРН 7 через порт II подает или прекращает подачу питающего напряжения в порт III ИМ 9;
- задает режим работы и контролирует текущее состояние ТПВК 2 посредством передачи и приема управляющих цифровых сигналов, передаваемых через порт III ПК 4, порт II ПСО 6, порт I ПСО 6 и порт II ТПВК 2;
- устанавливает необходимый тест-объект (на фиг. 1 не показан) и температурный контраст в ИКК 1 посредством передачи и приема команд и сообщений в виде управляющих цифровых сигналов по линии связи, организованной соединением порта I ПК 4 и порта I ИКК 1;
- задает значения углов поворота и наклона оптической оси ТПВК 2, установленного на УПН 8, относительно оптической оси ИКК выдачей управляющих цифровых сигналов в ИМ 9 через порт IV ПК 4, порт III ПС-УПН 10, порт I ПС-УПН 10 и порт I ИМ 9. Например, при измерении размеров угловых полей зрения вдоль горизонтальной оси кадра УОЗОИ 3 выполняет отправку команд в виде управляющих цифровых сигналов через ПС-УПН 10 в ИМ 9 на поворот оптической оси ТПВК 2 относительно оптической оси ИКК 1 до момента совмещения центра тест-объекта (на фиг. 1 не показан) ИКК 1 с правым краем кадра, а затем до момента совмещения центра тест-объекта ИКК 1 с левым краем кадра, при этом УОЗОИ 3 контролирует текущие значения углов поворота и наклона УПН 8 и, соответственно, оптической оси ТПВК 2, установленного на УПН 8, относительно оптической оси ИКК посредством приема сигналов от датчиков углового положения (на фиг. 1 не показаны) из порта II ИМ 9 в порт II ПС-УПН 10, поступающих далее через порт IV ПС-УПН 10 в порт V ПК 4;
- выполняет распознавание и контроль положения тест-объектов на изображениях из видеопотока, формируемого ТПВК 2 и передаваемого через порт I ТПВК 2 в порт I ПФВ 5, поступающего затем через порт II ПФВ 5 в порт II ПК 4;
- производит измерение выбранных параметров ТПВК 2;
- сохраняет значение измеренных параметров в протоколе измерений и в одном из интерфейсных графических окон ПО.
По окончании процесса измерения выбранных параметров оператор анализирует сформированный протокол измерений с целью проверки соответствия результатов выполненных измерений заданным диапазонам значений, и сохраняет протокол измерений в памяти ПК 4.
Таким образом, использование предлагаемого стенда измерения параметров тепловизионных каналов позволяет расширить функциональные возможности прототипа, а именно, обеспечивает возможность автоматизированного измерения таких параметров тепловизионных каналов, как: угловое поле зрения, угол отклонения оси визирования в узком поле зрения относительно посадочной плоскости ТПВК, угол отклонения оси визирования при переключении полей зрения при одновременном повышении точности и степени повторяемости результатов измерения параметров тепловизионных каналов, скорости и уровня автоматизации выполняемых работ за счет уменьшения влияния человеческого фактора на результаты измерения параметров тепловизионных каналов.

Claims (2)

1. Стенд измерения параметров тепловизионных каналов, содержащий последовательно установленные инфракрасный коллиматорный комплекс (ИКК) и контролируемый тепловизионный канал (ТПВК), а также устройство управления, отображения, записи и обработки информации (УОЗОИ), содержащее персональный компьютер (ПК), первый порт которого соединен с первым портом ИКК, преобразователь форматов видеосигналов (ПФВ), первый порт которого подключен к первому порту ТПВК, а второй порт подключен к второму порту ПК, преобразователь стандартов обмена (ПСО), первый и второй порты которого подключены к второму порту ТПВК и третьему порту ПК соответственно, формирователь рабочих напряжений (ФРН), первый порт которого соединен с третьим портом ТПВК, отличающийся тем, что дополнительно введено устройство поворотно-наклонное (УПН) для размещения ТПВК, снабженное исполнительным механизмом (ИМ), при этом УОЗОИ дополнительно содержит преобразователь сигналов устройства поворотно-наклонного (ПС-УПН), первый и второй порты которого подключены к первому и второму портам ИМ, а третий и четвертый порты ПС-УПН соединены с четвертым и пятым портами ПК соответственно, при этом второй порт ФРН соединен с третьим портом ИМ.
2. Стенд измерения параметров тепловизионных каналов по п. 1, отличающийся тем, что шестой порт ПК соединен с третьим портом ФРН для управления режимом работы ФРН.
RU2018125097A 2018-07-09 2018-07-09 Стенд измерения параметров тепловизионных каналов RU2686155C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018125097A RU2686155C1 (ru) 2018-07-09 2018-07-09 Стенд измерения параметров тепловизионных каналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018125097A RU2686155C1 (ru) 2018-07-09 2018-07-09 Стенд измерения параметров тепловизионных каналов

Publications (1)

Publication Number Publication Date
RU2686155C1 true RU2686155C1 (ru) 2019-04-24

Family

ID=66314676

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018125097A RU2686155C1 (ru) 2018-07-09 2018-07-09 Стенд измерения параметров тепловизионных каналов

Country Status (1)

Country Link
RU (1) RU2686155C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020955A (en) * 1998-09-14 2000-02-01 Raytheon Company System for pseudo on-gimbal, automatic line-of-sight alignment and stabilization of off-gimbal electro-optical passive and active sensors
RU2292067C2 (ru) * 2005-03-15 2007-01-20 Федеральное государственное унитарное предприятие "Научно-производственное объединение "Государственный институт прикладной оптики" (ФГУП "НПО "ГИПО") Инфракрасный коллиматор
CN101825516A (zh) * 2010-05-04 2010-09-08 电子科技大学 一种红外焦平面阵列器件的测试装置及其测试方法
RU2507495C1 (ru) * 2012-08-13 2014-02-20 Открытое акционерное общество Центральный научно-исследовательский институт "ЦИКЛОН" Способ контроля параметров оптико-электронных систем в рабочем диапазоне температур
RU2605934C1 (ru) * 2015-09-28 2016-12-27 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Устройство контроля и управления тепловизионными каналами
RU2634078C1 (ru) * 2016-05-04 2017-10-23 Акционерное общество "Новосибирский приборостроительный завод" Способ центрирования в оправе линз, работающих в инфракрасной области спектра

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6020955A (en) * 1998-09-14 2000-02-01 Raytheon Company System for pseudo on-gimbal, automatic line-of-sight alignment and stabilization of off-gimbal electro-optical passive and active sensors
RU2292067C2 (ru) * 2005-03-15 2007-01-20 Федеральное государственное унитарное предприятие "Научно-производственное объединение "Государственный институт прикладной оптики" (ФГУП "НПО "ГИПО") Инфракрасный коллиматор
CN101825516A (zh) * 2010-05-04 2010-09-08 电子科技大学 一种红外焦平面阵列器件的测试装置及其测试方法
RU2507495C1 (ru) * 2012-08-13 2014-02-20 Открытое акционерное общество Центральный научно-исследовательский институт "ЦИКЛОН" Способ контроля параметров оптико-электронных систем в рабочем диапазоне температур
RU2605934C1 (ru) * 2015-09-28 2016-12-27 Акционерное общество "Научно-производственное объединение "Государственный институт прикладной оптики" (АО "НПО ГИПО") Устройство контроля и управления тепловизионными каналами
RU2634078C1 (ru) * 2016-05-04 2017-10-23 Акционерное общество "Новосибирский приборостроительный завод" Способ центрирования в оправе линз, работающих в инфракрасной области спектра

Similar Documents

Publication Publication Date Title
US11002648B2 (en) Real-time video extensometer
CN203232220U (zh) 一种液晶面板检测设备
JP6108933B2 (ja) キャリブレーション装置及びその制御方法
US20170048517A1 (en) Mass production mtf testing machine
CN101026777A (zh) 显示器动态影像色彩偏移检测系统与检测方法
CN201569492U (zh) 光纤光场分布检测仪
CN105547342A (zh) 基于液晶面板的工业镜头测试装置及方法
CN103024427B (zh) 相机调制传递函数的测试方法及其测试装置
RU2686155C1 (ru) Стенд измерения параметров тепловизионных каналов
US9520076B2 (en) Method and system for adjusting white balance, method for making liquid crystal display
CN211741554U (zh) 一种毫米波雷达测试系统及测试车辆
KR102326955B1 (ko) 디스플레이 장치 분석 시스템 및 그것의 색상 분석 방법
RU185057U1 (ru) Стенд измерения параметров тепловизионных каналов
CN104809990A (zh) 显示设备和用于确定格式的方法
CN207991299U (zh) 窑炉温度场可视化监测系统
KR102518063B1 (ko) 컴퓨터 비전을 이용한 응답 시간 측정 시스템
US9157951B1 (en) Testing electronic displays for conformity to a standard
CN112268619A (zh) 辐射率控制装置和辐射率控制方法
CN211783867U (zh) 基于电力隧道巡检机器人的电缆在线测温系统
CN111474390A (zh) 探针、测量系统以及应用探针的方法
JP6328282B2 (ja) プログラム、キャリブレーション装置及びその制御方法
CN104753592A (zh) 监测光强度涨落的设备及方法
CN111678429B (zh) 一种显微测量系统及显微测量方法
WO2023105856A1 (ja) ガス濃度測定装置、ガス濃度測定方法、およびプログラム
RU115478U1 (ru) Система измерения характеристик оптоэлектронных устройств