RU2686115C1 - Способ получения композитного материала для активного электрода суперконденсатора - Google Patents
Способ получения композитного материала для активного электрода суперконденсатора Download PDFInfo
- Publication number
- RU2686115C1 RU2686115C1 RU2018132255A RU2018132255A RU2686115C1 RU 2686115 C1 RU2686115 C1 RU 2686115C1 RU 2018132255 A RU2018132255 A RU 2018132255A RU 2018132255 A RU2018132255 A RU 2018132255A RU 2686115 C1 RU2686115 C1 RU 2686115C1
- Authority
- RU
- Russia
- Prior art keywords
- dispersion
- carbon nanotubes
- acetone
- composite material
- swcnt
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 14
- 239000006185 dispersion Substances 0.000 claims abstract description 38
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims abstract description 28
- 239000004926 polymethyl methacrylate Substances 0.000 claims abstract description 28
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000000203 mixture Substances 0.000 claims abstract description 13
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000000843 powder Substances 0.000 claims abstract description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 5
- 239000002109 single walled nanotube Substances 0.000 claims description 36
- 238000003756 stirring Methods 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 41
- 239000002041 carbon nanotube Substances 0.000 abstract description 9
- 229910021393 carbon nanotube Inorganic materials 0.000 abstract description 9
- 239000002356 single layer Substances 0.000 abstract description 7
- 239000011159 matrix material Substances 0.000 abstract description 4
- 239000000945 filler Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 238000004821 distillation Methods 0.000 abstract 1
- 239000002861 polymer material Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 238000001035 drying Methods 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 3
- 239000011889 copper foil Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000004014 plasticizer Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- -1 for example Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 108010029541 Laccase Proteins 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/168—After-treatment
- C01B32/174—Derivatisation; Solubilisation; Dispersion in solvents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Изобретение относится к способу получения композитного материала для активного электрода суперконденсатора (СК), содержащего матрицу из термоокисленного полиметилметакрилата и наполнителя из однослойных углеродных нанотрубок. Способ получения композитного материала для активного электрода СК включает следующие этапы: диспергирование однослойных углеродных нанотрубок в ацетоне в ультразвуковом концентраторе; смешивание полученной дисперсии однослойных углеродных нанотрубок с раствором термоокисленного полиметилметакрилата в ацетоне, с последующим удалением ацетона путем его отгонки из полученной дисперсии; получение дисперсии смеси порошков однослойных углеродных нанотрубок и полиметилметакрилата в тетрагидрофуране, с последующим добавление в полученную дисперсию N-метилпирролидона и с последующим перемешиванием дисперсии. Изобретение позволяет получать композитный полимерный материал с высокими электрохимическими свойствами. 1 табл.
Description
ОБЛАСТЬ ТЕХНИКИ
Изобретение относится к способу получения композитного материала для активного электрода (АЭ) суперконденсатора (СК), содержащего матрицу из полиметилметакрилата (ПММА) и наполнителя из однослойных углеродных нанотрубок (ОСУНТ).
УРОВЕНЬ ТЕХНИКИ
СК являются перспективными благодаря их высокой эффективности, длительной циклируемости, простоте и экологической безопасности основных компонентов. Накопление энергии в СК происходит в результате адсорбции ионов электролита (двойнослойная ёмкость). В этом случае заряд накапливается на границе раздела фаз, поэтому материал электрода должен обладать высокой площадью поверхности. Традиционным электродным материалом СК является активированный уголь. По мнению специалиста, в этой области, например, г-на Калерта (Dr. Kahlert), СК следует считать конденсаторы с удельной емкостью минимум 10 фарад/гр. Благодаря высокой удельной емкости и плотности энергии, СК используются как источник кратковременного электропитания в электронных устройствах. Их также очень широко используют в системах бесперебойного электропитания. Преимуществом является то, что они обеспечивают мгновенную мощность в критических областях применения.
Другие углеродные материалы привлекают внимание исследователей благодаря высокой электропроводности, прочности, химической устойчивости и многообразию структур, что делает их перспективными для создания более эффективных электродов. В настоящее время активно изучаются: однослойные и многослойные углеродные нанотрубки; восстановленный оксид графена; карбидный активированный углерод; полиакрилонитриловое волокно, подвергнутое карбонизации и активации; активированный углеродный волокнистый материал; активированная углеродная ткань марки СН-900 (Япония), композит полианилина с однослойными нанотрубками, электроосаждённый на углеродную бумагу.
Использование нетрадиционных углеродных материалов, например, однослойных и многослойных углеродных нанотрубок пока ограничено их высокой стоимостью, использование композитов на основе полианилина ограничивается плохой растворимостью последнего. Углеродные ткани типа бусофита имеют плохую проводимость, толщина таких тканей 1.5-2 мм, что влечет за собой большие габариты СК.
Известен способ получения композитного материала для электрода СК, раскрытый в RU 2495509 C1, опубл. 10.03.2013. Известный способ включает синтез электропроводящих полимеров или их замещенных производных в процессе окислительной полимеризации соответствующих мономеров на поверхности углеродных материалов. Причем полимеризацию проводят в присутствии растворенных в реакционной смеси фермента лакказы, кислых допантов, окислителя и редокс-медиатора ферментативной реакции.
Недостатком известного способа является то, что он многостадийный и длительный по времени получения конечного продукта (массы АЭ). Известно также, что электропроводящие полимеры типа полианилина быстро деградируют при циклах заряд/разряд.
Кроме того, из уровня техники известен способ получения материала для АЭ на основе углеродных нанотрубок, связанных полимерной матрицей (А.Ю.Воробьев. Технологические основы создания углеродных электродов суперконденсаторов с применением нанотрубок. Диссертация на соискание ученой степени кандидата технических наук. Воронеж 2016, прототип).
Недостатком указанного выше способа является то, что процесс получения АЭ включает большое количество стадий (21) и является технологически сложным.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Задачей заявленного изобретения является разработка способа получения материала для активных электродов на основе однослойных углеродных нанотрубок, капсулированных в полимерную матрицу из полиметилметакрилата, который может быть нанесен на металлические токосъемники из алюминия, титана, меди или на подложку материала, используемого в качестве сепараторов.
Техническим результатом изобретения является снижение энергозатрат при изготовлении композитного материала для активного электрода СК с сохранением высоких электрохимических характеристик электрода СК.
Указанный технический результат достигается за счет того, что способ получения композитного материала для активного электрода суперконденсатора включает следующие этапы:
a) диспергирование ОСУНТ в ацетоне в ультразвуковом концентраторе;
b) смешивание полученной дисперсии ОСУНТ с раствором термоокисленного полиметилметакрилата в ацетоне, с последующим удалением ацетона путем его отгонки из полученной дисперсии;
c) получение дисперсии смеси порошков ОСУНТ и полиметилметакрилата в тетрагидрофуране, с последующим добавление в полученную дисперсию N-метилпирролидона и последующим перемешиванием дисперсии.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Способ получения композитного материала для активного электрода СК осуществляют следующим образом.
Получают дисперсию ОСУНТ путем диспергирования однослойных углеродных нанотрубок в ацетоне в ультразвуковом концентраторе. Концентрация ОСУНТ в дисперсии составляет 0,1-0,5 вес. % (при концентрации ОСУНТ, выходящей за рамки заявленного интервала, происходит затухание ультразвука). Диспергирование в ультразвуковом концентраторе осуществляли при частоте 20-22 КГц в течение 25-30 мин.
Затем осуществляют смешение полученной дисперсии ОСУНТ с раствором термоокисленного полиметилметакрилата в ацетоне при соотношении от 1\1 до 7\1 при перемешивании высокоскоростной мешалкой в течение 10мин при 20 000 об/мин. После перемешивания осуществляют удалением ацетона путем его отгонки из полученной дисперсии, в результате получают смесь порошков ОСУНТ и термоокисленного полиметилметакрилата. Термоокисленный полимер получали путем термоокислительной деструкции при температуре 2000С ПММА с числом мономерных звеньев от n=100 (время окисления 2 часа) до n=500 (время окисления 1 час).
После чего осуществляют получение дисперсии смеси порошков ОСУНТ и ПММА в тетрагидрофуране (ТГФ), с последующим добавление в полученную дисперсию N-метилпирролидона (N-МП) и последующим перемешиванием дисперсии высокоскоростной мешалкой в течение 10 мин при 20 000 об/мин. Как отмечалось выше соотношение ОСУНТ\ ПММА варьировалось от1\1 до 7\1. Соотношение ПММА\N-МП всегда оставалось 1\2.
Это соотношение оптимально для набухания полимера в пластификаторе. Далее полученную дисперсию наносили на токосъемники из алюминиевой, титановой или медной фольги, или сепараторного материала (лента из нетканого полипропилена) для СК и осуществляли сушку нанесенного покрытия. Толщина нанесенного покрытия из дисперсии составляла 50-100 мкм. Полученную дисперсию до нанесения на токосъемники можно хранить в закрытой таре в течение месяца.
Пример 1 (сравнительный)
Осуществляли диспергирование ОСУНТ в ацетоне в ультразвуковом концентраторе с частотой 22 КГц в течение 30 минут, с поучением дисперсии ОСУНТ с концентрацией ОСУНТ 0,2 вес. %. Далее дисперсию ОСУНТ смешивали с ацетоновым раствором ПММА с числом мономерных звеньев n=5000 (не термоокисленный полимер) с соотношением ОСУНТ\ ПММА = 7\1 и тщательно перемешивали высокоскоростной мешалкой при 20 000 об\мин в течение 10 минут. Затем из полученной смеси отгоняли весь ацетон, с получением смеси порошков ОСУНТ и ПММА. Далее к смеси порошков ОСУНТ и ПММА добавляли ТГФ, а затем пластификатор – N-МП. Конечный состав ОСУНТ\ ПММА \N-МП равнялся 7\1\2. или 70% массовых ОСУНТ,10% ПММА и 20% метилпирролидона. Дисперсию композитного материала наносили на токосъемники из алюминиевой, титановой или медной фольги с последующей сушкой покрытия. При сушке наблюдалось отслоение материала АЭ от подложки, что свидетельствовало о плохой адгезии и не позволяло снимать вольтамперные характеристики электрода.
Дисперсии композитного материала с другими заявленными содержаниями компонентов получали как описано в примере1.
Пример 2
Осуществляли диспергирование ОСУНТ в ацетоне в ультразвуковом концентраторе с частотой 22 КГц в течение 30 минут, в результате чего получали дисперсию ОСУНТ с концентрацией ОСУНТ 0.5 вес. %. Далее дисперсию ОСУНТ смешивают с ацетоновым раствором термоокисленного ПММА с числом мономерных звеньев n=500 с соотношением ОСУНТ \ПММА = 3\1 и тщательно перемешивали высокоскоростной мешалкой при 20 000 об\мин в течение 10 минут. Затем из смесей отгонялся весь ацетон, с получением смеси порошков ОСУНТ и ПММА. Далее к смеси порошков ОСУНТ и ПММА добавляли ТГФ, а затем пластификатор – N-МП. Конечный состав включал ОСУНТ\ПММА\ N-МП = 3\1\2 или 50% массовых ОСУНТ, 16.66% и 33,33% N-МП. Дисперсию композитного материала наносили на токосъемники из алюминиевой, титановой или медной фольги с последующей сушкой покрытия. При сушке не наблюдалось отслоение материала АЭ от подложки, что свидетельствовало о хорошей адгезии и позволяло снимать вольтамперные характеристики электрода. Все данные экспериментов по вольтамперным характеристикам приведены в таблице 1, в которой раскрыта средняя удельная электроемкость (Сср) композитного материала для АЭ от содержания ОСУНТ в композиционном материале. Данные вольтамперных характеристик получены при различных напряжениях на токосъемниках.
Таблица 1
Напряжение на токосъемнике, В | ||
2,0 | 3,0 | |
Содержание ОСУНТ, мас. % | Сср, Ф/г | Сср, Ф/г |
5 | 1,9 | 2,8 |
10 | 4,1 | 5,8 |
15 | 6,8 | 9,7 |
25 | 13,9 | 19,7 |
50 | 30,5 | 43,6 |
70 | 42,9 | 61,3 |
Экспериментально установлено, что количество мономерных звеньев термоокисленного ПММА не влияет на удельную электроемкость.
Таким образом, заявленное изобретение по сравнению с наиболее близким аналогом позволяет снизить энергозатраты при получении дисперсии композитного материала, а также получить высокие электрохимические характеристики. Изобретение было раскрыто выше со ссылкой на конкретный вариант его осуществления. Для специалистов могут быть очевидны и иные варианты осуществления изобретения, не меняющие его сущности, как она раскрыта в настоящем описании. Соответственно, изобретение следует считать ограниченным по объему только ниже следующей формулой изобретения.
Claims (4)
- Способ получения композитного материала для активного электрода суперконденсатора, включающий следующие этапы:
- a) диспергирование однослойных углеродных нанотрубок в ацетоне в ультразвуковом концентраторе;
- b) смешивание полученной дисперсии однослойных углеродных нанотрубок с раствором термоокисленного полиметилметакрилата в ацетоне, с последующим удалением ацетона путем его отгонки из полученной дисперсии;
- c) получение дисперсии смеси порошков однослойных углеродных нанотрубок и полиметилметакрилата в тетрагидрофуране, с последующим добавлением в полученную дисперсию N-метилпирролидона и с последующим перемешиванием дисперсии.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018132255A RU2686115C1 (ru) | 2018-09-11 | 2018-09-11 | Способ получения композитного материала для активного электрода суперконденсатора |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018132255A RU2686115C1 (ru) | 2018-09-11 | 2018-09-11 | Способ получения композитного материала для активного электрода суперконденсатора |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2686115C1 true RU2686115C1 (ru) | 2019-04-24 |
Family
ID=66314711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018132255A RU2686115C1 (ru) | 2018-09-11 | 2018-09-11 | Способ получения композитного материала для активного электрода суперконденсатора |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2686115C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060058443A1 (en) * | 2004-03-24 | 2006-03-16 | Honda Motor Co., Ltd. | Process for producing carbon nanotube reinforced composite material |
US20080176071A1 (en) * | 2006-11-03 | 2008-07-24 | Sung-Min Choi | Single wall carbon nanotubes with surfactant-coated surface and process for preparing the same |
RU2490204C1 (ru) * | 2011-12-19 | 2013-08-20 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) Федеральный Университет" (ФГАОУ ВПО КФУ) | Способ получения композиций на основе углеродных нанотрубок и полиолефинов |
RU2645007C1 (ru) * | 2016-11-11 | 2018-02-15 | Общество с ограниченной ответственностью "Углерод Чг" | Способ получения композитного материала |
-
2018
- 2018-09-11 RU RU2018132255A patent/RU2686115C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060058443A1 (en) * | 2004-03-24 | 2006-03-16 | Honda Motor Co., Ltd. | Process for producing carbon nanotube reinforced composite material |
US20080176071A1 (en) * | 2006-11-03 | 2008-07-24 | Sung-Min Choi | Single wall carbon nanotubes with surfactant-coated surface and process for preparing the same |
RU2490204C1 (ru) * | 2011-12-19 | 2013-08-20 | Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Казанский (Приволжский) Федеральный Университет" (ФГАОУ ВПО КФУ) | Способ получения композиций на основе углеродных нанотрубок и полиолефинов |
RU2645007C1 (ru) * | 2016-11-11 | 2018-02-15 | Общество с ограниченной ответственностью "Углерод Чг" | Способ получения композитного материала |
Non-Patent Citations (1)
Title |
---|
ДЫШИН А.А. и др. "Армирование полиметилметакрилата различных молекулярных масс диффузионным внедрением одностенных углеродных нанотрубок в среде сверхкритичного диоксида углерода", Журнал физической химии,#10,т.91,с.1740-1747. * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kadir et al. | Biopolymeric electrolyte based on glycerolized methyl cellulose with NH 4 Br as proton source and potential application in EDLC | |
JP5197905B2 (ja) | 電気化学構造部材用フィルム及びそのフィルムの製造方法 | |
Kim et al. | High performance flexible double-sided micro-supercapacitors with an organic gel electrolyte containing a redox-active additive | |
JP5999367B2 (ja) | 高電子伝導性高分子及びこれを用いた高用量/高出力電気エネルギー貯蔵素子 | |
US20130062571A1 (en) | Method for preparing electrode active material slurry and electrochemical capacitor comprising electrode using electrode active material slurry prepared by the method | |
JP2007529586A (ja) | コロイド状導電性ポリマーおよび炭素を含む組成物 | |
CA2198074A1 (en) | Vinylidene fluoride polymer-based binder solution and electrode-forming composition | |
TW201633590A (zh) | 電極用集電體,電極用集電體之製造方法,電極,鋰離子二次電池,氧化還原液流電池,電雙層電容器 | |
JP5219320B2 (ja) | 電気化学構造要素及び層用のナノ結晶性材料を有するペースト状物質体及びそれから製造される電気化学構造要素 | |
Wang et al. | Flexible supercapacitor with high energy density prepared by GO-induced porous coral-like polypyrrole (PPy)/PET non-woven fabrics | |
TW518790B (en) | Films for electrochemical components and a method for production thereof | |
Verma et al. | Microporous PVDF–PMMA blend-based gel polymer electrolyte for electrochemical applications: effect of PMMA on electrochemical and structural properties | |
Lv et al. | Graphene/MnO 2 aerogel with both high compression-tolerance ability and high capacitance, for compressible all-solid-state supercapacitors | |
Kamarulazam et al. | Stretchable, self-healable and highly conductive natural-rubber hydrogel electrolytes for supercapacitors: Advanced wearable technology | |
JP2010045341A (ja) | 電極シート及びそれを用いた電気二重層キャパシタ、リチウムイオンキャパシタ | |
RU2686115C1 (ru) | Способ получения композитного материала для активного электрода суперконденсатора | |
JP4900295B2 (ja) | ファラデー容量型キャパシタ | |
JP2019521499A (ja) | 可撓性電極−セパレーター要素およびそれらの調製のためのプロセス | |
JP4911294B2 (ja) | 非水系電解液が封入されている電気二重層キャパシタの電極用スラリーおよびそのスラリーを用いた電気二重層キャパシタ | |
JP3981697B1 (ja) | 分極性電極用電極合剤の製造方法 | |
KR102188242B1 (ko) | 전극밀도를 개선할 수 있는 슈퍼커패시터 전극용 조성물, 이를 이용한 슈퍼커패시터 전극의 제조방법 및 상기 제조방법을 이용하여 제조된 슈퍼커패시터 | |
EP2919306B1 (en) | Nonaqueous electrolyte secondary battery and method for producing same | |
Xu et al. | Dihydrophenazine-based polymer with multi-electron redox characteristics: its electrochemical performances as the cathode of aqueous zinc-ion batteries | |
Beg et al. | Organic Electrolytes for Flexible Supercapacitors | |
Liew et al. | Conducting polymer nanocomposite-based supercapacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200912 |