RU2685564C1 - Способ синтеза наночастиц металлов осаждением на пористый углеродный материал - Google Patents

Способ синтеза наночастиц металлов осаждением на пористый углеродный материал Download PDF

Info

Publication number
RU2685564C1
RU2685564C1 RU2018100372A RU2018100372A RU2685564C1 RU 2685564 C1 RU2685564 C1 RU 2685564C1 RU 2018100372 A RU2018100372 A RU 2018100372A RU 2018100372 A RU2018100372 A RU 2018100372A RU 2685564 C1 RU2685564 C1 RU 2685564C1
Authority
RU
Russia
Prior art keywords
metal
nanoparticles
electron beam
target
deposition
Prior art date
Application number
RU2018100372A
Other languages
English (en)
Inventor
Всеволод Германович Кизнер
Михаил Викторович Стрельцов
Сергей Андреевич Новопашин
Original Assignee
Всеволод Германович Кизнер
Михаил Викторович Стрельцов
Сергей Андреевич Новопашин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Всеволод Германович Кизнер, Михаил Викторович Стрельцов, Сергей Андреевич Новопашин filed Critical Всеволод Германович Кизнер
Priority to RU2018100372A priority Critical patent/RU2685564C1/ru
Application granted granted Critical
Publication of RU2685564C1 publication Critical patent/RU2685564C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

Изобретение относится к получению наночастиц металла. Способ включает испарение мишени из металла электронным пучком в вакууме и осаждение наночастиц металла. Испарение мишени из металла ведут электронным пучком, направленным под углом 30-90 градусов к поверхности мишени. Обеспечивают пространственное сканирование электронного пучка по двум координатам на мишени с частотами в пределах 5-200 Гц и амплитудой 5 мм в течение 10-1000 секунд и временную модуляцию тока пучка с частотой 10-100 Гц со скважностью 1-10. Осаждение наночастиц металла осуществляют из направленного потока на подложку, покрытую пористым углеродным материалом толщиной 0,1-2 мм, насыпной плотностью 0,04-0,06 г/см и установленную на водоохлаждаемом медном экране. Обеспечивается уменьшение поглощения энергии в парах металла, что увеличивает производительность распыления. 3 ил.

Description

Изобретение относится к области нанотехнологий. Изобретение относится к способам получения наночастиц металлов и может применяться в медицине, химической промышленности, микро- и наноэлектронике, приборостроении.
При синтезе наночастиц металлов известными из области техники способами, например, плазменным распылением, взрывом проволочек, термическим распылением, лазерным распылением и др., основанными на нагреве исходного образца до температур, при которых происходит его интенсивное распыление в молекулярном, либо атомарном виде, приходится решать следующие задачи:
- минимизация потерь энергии и вещества при нагреве;
- отвод тепла при охлаждении продуктов распыления и выделения теплоты конденсации;
- реализация механизма конденсации, который приводит к формированию наночастиц нужного размера;
- сбор, хранение и транспортировка наночастиц металлов. Использование мощных электронных пучков для синтеза наночастиц
имеет ряд преимуществ, связанных с их высоким КПД, малым энергопотреблением (возможностью подвода энергии без потерь к необходимой области образца), низкой ценой оборудования и эксплуатационных расходов. Способ является универсальным относительно материалов мишени, т.к. позволяет испарять практически любые материалы, включая органические.
При использовании ускорителей с высокой энергией электронов (более 2 МэВ) возможно испарение мишеней в газе высокого давления, что упрощает вопросы охлаждения паровой фазы. Преимуществами являются также высокий КПД процесса вследствие прямого преобразования электрической энергии в тепловую энергию в нагреваемом материале, темп нагрева испаряемого материала выше 1000 град/сек и химическая чистота пучка электронов.
Однако сбор наночастиц из газовой среды представляет определенные трудности.
Электронно-лучевые установки с энергией электронов до 100 КэВ доступны, однако в этом случае вывод пучка в атмосферу невозможен. Сечение взаимодействия электронов с атомами другого вещества достаточно большое, в результате чего необходимо выводить пучок из электронной пушки в глубокий вакуум (10-3 - 10-4 торр), что позволяет вкладывать большую энергию в малый объем, т.к. длина пробега электронов в твердом материале составляет несколько микрон.
Расширение паров металла в газ низкого давления позволяет получить высокие скорости охлаждения пара и одновременного уменьшения его концентрации, что приводит к протеканию процессов гомогенной конденсации и формированию потоков наночастиц.
Одной из самых сложных и не решенных до сих пор проблем при синтезе наночастиц металлов остается их сбор, хранение и транспортировка. Высокая поверхностная энергия наночастиц способствует их активному взаимодействию с окружающей средой и быстрому коагулированию. Для хранения и транспортировки необходимы специальные контейнеры, содержащие инертную среду, пригодную для данного нанопорошка (газообразную, жидкую или твердую). Инертную окружающую среду для хранения наночастиц создать достаточно сложно.
Известны технические решения, когда наночастицы, помещают в органическую жидкость, полимерную матрицу, инкапсулируют углеродом или солью, чтобы предохранить их от коагулирования. При этом органическая жидкость или полимер не должны менять свойства наночастиц, и при необходимости должны удаляться и освобождать наночастицы с сохранением их свойств и размеров.
Известен способ получения нанопорошков металлов, сплавов или соединений металлов с неметаллами (В, С, О, Si), инкапсулированных в инертную оболочку соли, [US 2008268178, 2008-10-30, С23С 14/30; С23С 16/00], включающий испарение материала и галогенида щелочного металла и конденсацию смеси из паровой фазы на поверхности подложки, выполняемые одновременно в замкнутом объеме. В нижней части закрытого объема располагают тигли со слитками соли и материала, а электронные и/или лазерные лучи используют в качестве источника для нагрева соли и материала вплоть до температуры их испарения. Получаемые инкапсулированные в инертную оболочку нанопорошки материалов имеют небольшую дисперсию распределения по размеру, не подвержены окислению в атмосфере, легко извлекаются путем растворения оболочки.
Недостатком указанного способа является то, что при выделении наночастиц металла они попадают в жидкую среду растворителя и могут либо коагулировать в ней, либо вступать в химическую реакцию с растворителем (в зависимости от металла).
Известен способ получения наночастиц металл-кислород путем испарения и конденсации электронным пучком в вакууме [UA 92556, 2010-11-10, С23С 14/24; С23С 14/54; В82В 3/00], включающий одновременное нагревание и испарение в вакуумной камере металла или сплавов металлов, а также твердого носителя, по меньшей мере из двух отдельных контейнеров, смешивание паровых потоков исходного материала и носителя, осаждение пара на подложке с фиксацией наночастиц исходного материала на подложке материалом упрочняющего носителя и образование конденсата наночастиц в носителе.
В изобретении заявлено, что применение указанного способа позволяет упростить процессы хранения, транспортировки и подготовки растворов без нарушения размера наночастиц со временем. Однако недостатком указанного способа является то, что при одновременном распылении углерода и металла (для большинства металлов) возможно образование карбидов, которые невозможно восстановить до чистого металла.
Наиболее близким по совокупности существенных признаков и получаемому результату является способ получения наночастиц никеля в углеродной оболочке [UA 104013 (С2) - 2013-12-25 С23С 14/28; С23С 14/54; С23С 14/58; С30В 30/00], заключающийся в испарении смеси углерода и никеля электронным пучком в вакууме до температуры, превышающей температуру плавления никеля (1455°С) с выдержкой в течение 20-30 мин. до образования стабильной жидкой фазы Ni3C, после чего увеличивают температуру выше 2300°С и проводят испарение в вакууме с последующим осаждением материала в виде закапсулированных углеродом наночастиц никеля на поверхности полупроводника с молекулярным типом связи и слоистой кристаллической структурой.
Изобретение обеспечивает получение инкапсулированных в углероде наночастиц никеля высокой плотности, однородности формы и геометрических размеров и легкое отделение этих частиц от подложки.
Недостатком указанного способа является то, что при попадании в атмосферу, диффузия кислорода приведет к формированию наночастиц оксидов металла. В случае, если конечным материалом является оксид металла, то это не является проблемой, в случае же использования наночастиц металлов, необходимо хранение закапсулированных углеродом наночастиц (на углеродной матрице) в инертной среде, например, в среде инертного газа.
Во всех известных технических решениях напыляют одновременно и матрицу и наночастицы.
В основу изобретения положена задача создания способа синтеза наночастиц металлов, позволяющего существенно упростить процессы сбора, хранения, транспортировки и выделения наночастиц чистых металлов, минимизировать потери энергии, чем увеличить производительность по распылению металла.
Задача решается путем создания способа синтеза наночастиц металлов осаждением из направленного потока на пористый углеродный материал, включающего испарение металла электронным пучком в вакууме и осаждение наночастиц на подложку, в котором, согласно изобретению, для сбора наночастиц металла в вакуумной камере на водоохлаждаемом медном экране устанавливают подложку, покрытую пористым углеродным материалом толщиной 0,1-2 мм, насыпной плотностью 0,04-0,06 г/см, пространственное сканирование электронного пучка осуществляют по двум координатам на мишени с частотами в пределах 5-200 Гц и амплитудой 5 мм, в течение 10-1000 секунд, временную модуляцию тока пучка осуществляют с частотой 10-100 Гц со скважностью (отношение длительности тока к длительности паузы) 1-10, при этом электронный пучок направляют под углом 30-90 градусов к поверхности металла.
Для распыления образцов электронным пучком в открытую вакуумную камеру помещают металл либо в виде пластины, либо металл в графитовом тигле. На водоохлаждаемом медном плоском экране устанавливают подложку с нанесенным углеродным покрытием. Подложка может быть выполнена из любого материала с высокой теплопроводностью, например, из тонкой медной фольги.
Предварительно на подложку осаждают углеродный материал толщиной 0,1-2 мм, насыпной плотностью 0,04 - 0,06 г/см. Осаждение пористого углеродного покрытия на подложку осуществляют, например, плазменно-дуговым синтезом. Предварительно напыленный пористый углеродный материал является матрицей для хранения и транспортировки наночастиц металла. Использование пористой сажи определяет наличие большого числа «разорванных» углеродных связей, что позволяет надежно удерживать наночастицы металла, предотвращая их коагуляцию. Слабая
адгезия сажи к подложке и высокая ее пористость являются существенным преимуществом при сборе наночастиц металла на углеродной матрице.
Распыление осуществляют электронной пушкой в вакууме.
Пространственное сканирование электронного пучка осуществляют по двум координатам на мишени с частотами в пределах 5-200 Гц и амплитудой 5 мм. Временную модуляцию тока пучка осуществляют с частотой 10-100 Гц со скважностью (отношение длительности тока к длительности паузы) 1-10. При этом электронный пучок направляют под углом 30-90 градусов к поверхности металла.
При интенсивном испарении для данной энергии электронов отсутствие модуляции (перемещение зоны взаимодействия электронного пучка с металлом по области диаметром около 1 см) приводит к поглощению определенной доли электронов пучка (энергии) уже в газовой фазе. Это приводит к уменьшению расхода испаренного вещества и увеличению энергии атомов металла в газовой фазе. Также могут происходить процессы ионизации атомов металла. Предотвращению указанных эффектов способствует наклонное падение пучка электронов на поверхность металла. Это приводит к уменьшению взаимодействия электронов пучка с атомами металла в газовой фазе.
Предложенные параметры сканирования позволяют достичь уменьшения поглощения энергии в парах металла и, следовательно, увеличения производительности распыления металла.
Для реализации способа используют электронно-лучевую установку. Распыление электронным пучком осуществляют в открытой вакуумной камере. Пучок электронов направляют на мишень через отверстие в охлаждаемом медном экране, на который установлена подложка для сбора распыленного материала.
К настоящему времени выполнены эксперименты по распылению различных металлов, в том числе, серебра, вольфрама, олова, железа,
которые показали, что подобным способом в углеродную матрицу можно осаждать любой металл.
Экспериментальная установка представляла собой источник пучка электронов с энергией 60 КэВ и регулируемым током в пределах 0 - 250 мА. Вакуумную камеру откачивали до давления 10-4 - 10-5 Тор. Для анализа результатов использовали: электронные просвечивающие микроскопы JEM-2010 (JEOL, Ltd, Japan) и JEM-2200FS (JEOL, Ltd, Japan); электронные сканирующие микроскопы S-3400N и JSM-6700F.
В качестве примера на фигуре 1 представлена фотография морфологии материала при напылении вольфрама на сажу (серые области). На фигуре видны в саже наночастицы вольфрама размером несколько нано метров (б) и скопления этих наночастиц (а). Размер частиц составляет 1-10 нм.
Результаты экспериментов по влиянию модуляции пучка электронов (перемещение зоны взаимодействия электронного пучка с металлом по области диаметром около 1 см) при распылении вольфрама представлены на фигуре 2 и на фигуре 3. На фигуре 2 представлена фотография среза кремниевой пластины без модуляции электронного пучка при испарении вольфрама. На фигуре 3 представлена фотография среза кремниевой пластины с модуляцией электронного пучка при испарении вольфрама. Толщина напыления с модуляцией электронного пучка заметно больше (540 нм) по сравнению со случаем отсутствия модуляции (350 нм).
Полученные результаты продемонстрировали уменьшение потерь энергии и увеличение производительности, упрощение процессов сбора, хранения, транспортировки и выделения наночастиц чистых металлов.

Claims (1)

  1. Способ получения наночастиц металла, включающий испарение мишени из металла электронным пучком в вакууме и осаждение наночастиц металла, отличающийся тем, что испарение мишени из металла ведут электронным пучком, направленным под углом 30-90 градусов к поверхности мишени, при этом обеспечивают пространственное сканирование электронного пучка по двум координатам на мишени с частотами в пределах 5-200 Гц и амплитудой 5 мм в течение 10-1000 секунд и временную модуляцию тока пучка с частотой 10-100 Гц со скважностью 1-10, причем осаждение наночастиц металла осуществляют из направленного потока на подложку, покрытую пористым углеродным материалом толщиной 0,1-2 мм, насыпной плотностью 0,04-0,06 г/см и установленную на водоохлаждаемом медном экране.
RU2018100372A 2018-01-09 2018-01-09 Способ синтеза наночастиц металлов осаждением на пористый углеродный материал RU2685564C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018100372A RU2685564C1 (ru) 2018-01-09 2018-01-09 Способ синтеза наночастиц металлов осаждением на пористый углеродный материал

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018100372A RU2685564C1 (ru) 2018-01-09 2018-01-09 Способ синтеза наночастиц металлов осаждением на пористый углеродный материал

Publications (1)

Publication Number Publication Date
RU2685564C1 true RU2685564C1 (ru) 2019-04-22

Family

ID=66314395

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018100372A RU2685564C1 (ru) 2018-01-09 2018-01-09 Способ синтеза наночастиц металлов осаждением на пористый углеродный материал

Country Status (1)

Country Link
RU (1) RU2685564C1 (ru)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589234A (en) * 1993-06-23 1996-12-31 Osaka University Method of manufacturing ultrafine particles of a compound
US6392188B1 (en) * 1999-02-26 2002-05-21 Istituto Nazionale Per La Fisica Della Materia Apparatus for production of nanosized particulate matter by vaporization of solid materials
RU2185931C1 (ru) * 2001-01-24 2002-07-27 Институт электрофизики Уральского отделения РАН Способ получения нанопорошков сложных соединений и смесевых составов и устройство для его реализации
UA92556C2 (ru) * 2009-06-10 2010-11-10 Астромонт Лимитед Способ получения наночастиц системы металл-кислород с заданным составом электронно-лучевым испарением и конденсацией в вакууме
RU2455119C2 (ru) * 2010-08-27 2012-07-10 Алексей Александрович Калачев Способ получения наночастиц
RU2465983C2 (ru) * 2010-12-15 2012-11-10 Учреждение Российской академии наук Институт электрофизики Уральского отделения РАН (ИЭФ УрО РАН) Способ получения нанопорошка и устройство для его реализации
RU2489232C1 (ru) * 2011-12-22 2013-08-10 Общество с ограниченной ответственностью "НОРМИН" Способ получения наноразмерного порошка металла
UA104013C2 (ru) * 2011-08-05 2013-12-25 Черновецкое Отделение Института Проблем Материаловедения Национальной Академии Наук Украины СПОСОБ ИЗГОТОВЛЕНИЯ ЗАКАПСУЛированных В УГЛЕРОДНЫЕ ОБОЛОЧКИ НАНОЧАСТИЦ НИКЕЛЯ
RU2623935C2 (ru) * 2012-04-27 2017-06-29 Риэктив Метал Партиклз Ас Устройство и способ изготовления частиц

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589234A (en) * 1993-06-23 1996-12-31 Osaka University Method of manufacturing ultrafine particles of a compound
US6392188B1 (en) * 1999-02-26 2002-05-21 Istituto Nazionale Per La Fisica Della Materia Apparatus for production of nanosized particulate matter by vaporization of solid materials
RU2185931C1 (ru) * 2001-01-24 2002-07-27 Институт электрофизики Уральского отделения РАН Способ получения нанопорошков сложных соединений и смесевых составов и устройство для его реализации
UA92556C2 (ru) * 2009-06-10 2010-11-10 Астромонт Лимитед Способ получения наночастиц системы металл-кислород с заданным составом электронно-лучевым испарением и конденсацией в вакууме
RU2455119C2 (ru) * 2010-08-27 2012-07-10 Алексей Александрович Калачев Способ получения наночастиц
RU2465983C2 (ru) * 2010-12-15 2012-11-10 Учреждение Российской академии наук Институт электрофизики Уральского отделения РАН (ИЭФ УрО РАН) Способ получения нанопорошка и устройство для его реализации
UA104013C2 (ru) * 2011-08-05 2013-12-25 Черновецкое Отделение Института Проблем Материаловедения Национальной Академии Наук Украины СПОСОБ ИЗГОТОВЛЕНИЯ ЗАКАПСУЛированных В УГЛЕРОДНЫЕ ОБОЛОЧКИ НАНОЧАСТИЦ НИКЕЛЯ
RU2489232C1 (ru) * 2011-12-22 2013-08-10 Общество с ограниченной ответственностью "НОРМИН" Способ получения наноразмерного порошка металла
RU2623935C2 (ru) * 2012-04-27 2017-06-29 Риэктив Метал Партиклз Ас Устройство и способ изготовления частиц

Similar Documents

Publication Publication Date Title
WO1998001596A1 (en) Production of nanometer particles by directed vapor deposition of electron beam evaporant
Yatsui et al. Preparation of thin films and nanosize powders by intense, pulsed ion beam evaporation
RU2455119C2 (ru) Способ получения наночастиц
US20050227020A1 (en) Method for carrying out homogeneous and heterogeneous chemical reactions using plasma
RU2685564C1 (ru) Способ синтеза наночастиц металлов осаждением на пористый углеродный материал
JPH0524988B2 (ru)
RU2475298C1 (ru) Способ получения нанопорошков из различных электропроводящих материалов
JPS60224706A (ja) 金属超微粒子の製造法
JP2697753B2 (ja) 直流グロー放電による金属被膜の堆積法
EP1109641A1 (en) Method and apparatus for producing material vapour
JP2013035725A (ja) ニッケル内包フラーレンの製造方法、及び、製造装置
US20110129671A1 (en) Method of producing quantum confined indium nitride structures
JPS6260876A (ja) 薄膜蒸着装置
RU2744089C1 (ru) Метод получения стабилизированных линейных цепочек углерода в жидкости
JP2505376B2 (ja) 成膜方法及び装置
JP2911127B2 (ja) プラズマ重合反応装置
Ushakov et al. Technology Ready Use For Producing Nanomaterials in the Plasma of a Low-Pressure Pulsed Arc Discharge
RU2618278C1 (ru) Способ получения гибридного материала на основе многостенных углеродных нанотрубок, декорированных дистанционно разделенными кристаллическими наночастицами алюминия
JP2004011007A (ja) 成膜方法
JPS6350473A (ja) 連続多段イオンプレ−テイング装置
AU756273B2 (en) Method and apparatus for producing material vapour
JPH02213467A (ja) 薄膜形成方法、及びその装置
WO2021124356A1 (en) A process and device for fabrication of high temperature superconductors
JP2021134093A (ja) 酸化物焼結体とその製造方法およびスパッタリングターゲット
JP3418795B2 (ja) 溶融蒸発用金属組成物および金属の溶融蒸発方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200110

NF4A Reinstatement of patent

Effective date: 20210122