RU2683255C1 - Биоактивный композиционный материал для замещения костных дефектов и способ его получения - Google Patents
Биоактивный композиционный материал для замещения костных дефектов и способ его получения Download PDFInfo
- Publication number
- RU2683255C1 RU2683255C1 RU2018107994A RU2018107994A RU2683255C1 RU 2683255 C1 RU2683255 C1 RU 2683255C1 RU 2018107994 A RU2018107994 A RU 2018107994A RU 2018107994 A RU2018107994 A RU 2018107994A RU 2683255 C1 RU2683255 C1 RU 2683255C1
- Authority
- RU
- Russia
- Prior art keywords
- hydroxyapatite
- bioactive
- caf
- replacement
- bone
- Prior art date
Links
- 210000000988 bone and bone Anatomy 0.000 title claims abstract description 20
- 230000000975 bioactive effect Effects 0.000 title claims abstract description 11
- 230000007547 defect Effects 0.000 title claims abstract description 9
- 239000000463 material Substances 0.000 title abstract description 20
- 238000004519 manufacturing process Methods 0.000 title description 3
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims abstract description 20
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims abstract description 20
- 229910001634 calcium fluoride Inorganic materials 0.000 claims abstract description 17
- 239000002131 composite material Substances 0.000 claims abstract description 16
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims abstract description 15
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000000265 homogenisation Methods 0.000 claims abstract description 6
- 239000000203 mixture Substances 0.000 claims description 18
- 238000002156 mixing Methods 0.000 abstract description 5
- 230000000399 orthopedic effect Effects 0.000 abstract description 4
- 238000001356 surgical procedure Methods 0.000 abstract description 4
- 239000003814 drug Substances 0.000 abstract description 3
- 239000012567 medical material Substances 0.000 abstract description 3
- 239000013543 active substance Substances 0.000 abstract description 2
- 239000011575 calcium Substances 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract 1
- 238000011084 recovery Methods 0.000 abstract 1
- 230000017423 tissue regeneration Effects 0.000 abstract 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 15
- 229910014497 Ca10(PO4)6(OH)2 Inorganic materials 0.000 description 10
- 239000012620 biological material Substances 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 239000000843 powder Substances 0.000 description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 239000012467 final product Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 235000014653 Carica parviflora Nutrition 0.000 description 2
- 241000243321 Cnidaria Species 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 238000007385 chemical modification Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000011164 ossification Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 230000001954 sterilising effect Effects 0.000 description 2
- 238000004659 sterilization and disinfection Methods 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 241000242731 Acroporidae Species 0.000 description 1
- 241001446961 Faviinae Species 0.000 description 1
- 239000005708 Sodium hypochlorite Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003462 bioceramic Substances 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000005587 carbonate group Chemical group 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000009388 chemical precipitation Methods 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001687 destabilization Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052587 fluorapatite Inorganic materials 0.000 description 1
- 229940077441 fluorapatite Drugs 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- -1 fluorine ions Chemical class 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 238000009364 mariculture Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 230000003642 osteotropic effect Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 101150082630 pdf-2 gene Proteins 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000012758 reinforcing additive Substances 0.000 description 1
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/12—Phosphorus-containing materials, e.g. apatite
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/28—Bones
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Engineering & Computer Science (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Cardiology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Inorganic Chemistry (AREA)
- Dermatology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Materials For Medical Uses (AREA)
Abstract
Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя биологически активных веществ. Предлагается способ получения биоактивного композиционного материала для замещения костных дефектов, заключающийся в том, что смесь гидроксиапатита и фторида кальция, взятых в массовом соотношении 5,25-6,14:1, соответственно, смешивают до полной гомогенизации, таблетируют при давлении 200-300 МПа и отжигают при температуре 950-1050С в течение 1-1,5 ч. Полученный композиционный биоактивный материал (Ca(PO)(OH)-CaF, имеющий елкокристаллическую структуру и повышенную твердость, может быть использован в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. 1 табл., 2 пр.
Description
Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя биологически активных веществ.
В настоящее время в медицинской практике для замены и восстановления костной ткани широко используются биоматериалы на основе фосфатов кальция, главным образом – Ca10(PO4)6(OH)2 (гидроксиапатит - ГАП), практически идентичный по структуре и химическому составу природной костной ткани и обладающий выраженным остеотропным поведением в биологических средах. Недостатком биокерамики на основе ГАП является низкая механическая твердость, что не предполагает ее использование для ликвидации дефектов костных тканей, испытывающих значительные механические нагрузки. Повысить твердость биоматериалов на основе ГАП возможно за счет химического модифицирования его структуры.
Известен биоматериал для замещения дефектов костной ткани на основе натурального коралла, очищенного от коралловой пыли и микроорганизмов проточной водой с последующей стерилизацией, семейства Acroporidae, или Pocillporidae, или Faviidae естественного происхождения или выращенный в марикультуре в виде цельных фрагментов или в гранулированной форме, дополнительно очищенный 3%-ным раствором гипохлорита натрия и ультразвуковым воздействием частотой 40 кГц в течение 3-5 мин, высушиванием и стерилизацией γ-облучением при суммарной дозе 25 кГр, при этом его поверхность может быть активирована лизатом аутологичных тромбоцитов (ЛАТ) путем помещения биоматериала в жидкий ЛАТ на 3 ч при соотношении объемов биоматериал/ЛАТ - 1/3 (патент RU 2472516; МПК A61K 35/56, A61F 2/28; A61L 27/00; 2013г.).
Недостатком известного материала является сложный способ его получения, а также ограниченная доступность исходного материала.
Известен материал на основе гидроксиапатита, содержащий карбонат кальция, предназначенный для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Известный материал получают в результате химического осаждения из водных растворов с промывкой в этаноле, фильтрованием и сушкой, и последующим старением в маточном растворе в течение не менее 14 суток. Таким образом, известный способ позволяет получить порошок состава 75-85 масс.% гидроксиапатита и 15-25 масс.% карбоната кальция, применяемых в медицине в качестве матриксов для восстановления костной ткани (патент RU 2440149; МПК A61L 22/02, A61L 27/12, B82B 1/00; 2012 г.).
Однако известный биоактивный материал имеет следующие недостатки: при получении материала применяется длительный ступенчатый способ синтеза, в результате в конечном продукте могут содержаться нежелательные примеси, загрязняющие конечный продукт, кроме того наличие карбонатной группы обусловливает невысокую механическую твердость.
Известен материал, представляющий собой фторированный гидроксиапатитовый композит, который содержит смесь фторида кальция (< 50 масс.%) и гидроксиапатита (> 50 масс.%) (патент TW 201200471; МПК A61L27/12, C01B25/455; 2012 год ) (прототип), который получают путем смешивания фторида кальция (< 50 масс.%) и гидроксиапатита (> 50 масс.%) в деионизированной воде в течение 24 часов, далее смесь просушивается при температуре 100°С, после прокаливается при температуре 1000°С. После прокалки охлажденную смесь измельчают с помощью шаровой мельницы, после измельчения сушат готовый порошковый материал при температуре 100 °С.
Недостатками известного материала являются недостаточно высокая микротвердость (225-290 МПа) и возможность дестабилизации конечного состава за счет потери массы при обжиге.
Таким образом, перед авторами была поставлена задача разработать биологически активный композиционный материал, обладающий повышенной твердостью и стабильностью конечного состава, и технологически простой способ его получения.
Поставленная задача решена в предлагаемом биоактивном композиционном материале для замещения костных дефектов, содержащем гидроксиапатит и фторид кальция, который содержит компоненты в следующем соотношении (масс.%):
- гидроксиапатит - 84÷86;
- фторид кальция - 14÷16.
Поставленная задача решена также в способе получения биоактивного композиционного материала для замещения костных дефектов по п.1, заключающемся в том, что смесь гидроксиапатита и фторида кальция, взятых в массовом соотношении 5,25÷6,14:1, соответственно, смешивают до полной гомогенизации, таблетируют при давлении 200÷300 МПа и отжигают при температуре 950÷1050оС в течение 1÷1,5 часа.
В настоящее время из патентной и научно-технической литературы не известен биоактивный композиционный материал для замещения костных дефектов, содержащий гидроксиапатит и фторид кальция в предлагаемом соотношении компонентов, а также способ его получения путем обработки смеси гидроксиапатита и фторида кальция в предлагаемых условиях.
Известно, что химическое модифицирование структуры гидроксиапатита за счет использования армирующих добавок, в частности фторида кальция способствует остеогенезу и регенерации твердых тканей при его использовании в качестве костного наполнителя. Однако исследования, проведенные авторами, позволили установить, что улучшить характеристики материала, такие как твердость, можно за счет изменения числа и характера функциональных групп, возникающих в процессе взаимодействия гидроксиапатита и армирующей фазы - фторида кальция при отжиге их смеси. При этом изменение фазового состава, определяющего характеристики материала, в процессе физико-химических превращений, происходящих в системе, зависит от количества вводимого армирующего компонента. Анализ экспериментальных данных, полученных авторами, позволяет сделать вывод, что именно предлагаемое соотношение гидроксиапатита и фторида кальция (Ca10(PO4)6(OH)2 - 84÷86 масс./%; CaF2 - 14÷16 масс.%) обеспечивает увеличение твердости биоактивного материала за счет оптимального соотношения ионов фтора (фторида) и гидроксильных групп. Содержание фторид-иона в предлагаемом диапазоне способствует ускорению срастания костей, но не вызывает возможных костных деформаций. Наличие гидроксильных групп повышает устойчивость к биодеградации за счет улучшения адсорбции белка, но увеличения количества гидроксильных групп повышает иммунологические риски и риск инфицирования, а при уменьшении их количества может быть затруднен процесс естественного остеогенеза. Условия получения предлагаемого биоактивного композиционного материала обеспечивают стабильность состава. Известно, что гидроксиапатит частично разлагается с образованием трикальцийфосфата (Ca3(PO4)2 уже при 800оС, при этом отрывается ОН-группа, испаряясь в виде водяного пара. Не только наличие фторида кальция, но определенное соотношение исходных компонентов в совокупности с предлагаемым температурным и временным интервалами отжига позволяет стабилизировать состав конечного продукта, о чем свидетельствует меньшая потеря массы при отжиге, что подтверждают данные рентгено-фазового анализа (см. табл.).
Предлагаемый способ может быть осуществлен следующим образом: в мельнице при одновременном смешивании и измельчении исходных компонентов гидроксиапатита и фторида кальция (Ca10(PO4)6(OH)2-CaF2), взятых в массовом соотношении 5,25÷6,14:1, соотвественно. Полученную порошковую смесь прессуют в заготовки (таблетки) при давлении 200-300 МПа. Затем полученные заготовки помещают в муфельную печь и подвергают отжигу при температуре 950÷1050°С в течение 1-1,5 часов. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2 в виде мелкозернистого прочного материал. При этом степень кристалличности материалов возрастает, о чем свидетельствует увеличение разрешения пиков на рентгенограммах и уменьшение их ширины (выполнялось на дифрактометрах Shimadzu, ДРОН-2.0, излучение CuKα, интервал углов 10°≤ 2Θ ≤ 70°, шаг съемки 0.03°, время на точку 2 секунды, идентификация фаз осуществлялась с помощью картотеки Powder Diffraction File JCPDSD-ICDD PDF2 (set’s 1-47)), что также подтверждают изображения со сканирующего электронного микроскопа (микроскоп JEOL JSM 6390 LA (Япония), коэффициент увеличения от х5 до х300000, разрешающая способность 3.0 нм при 30 кВ). В результате установлено, что при таких режимах происходит взаимодействие в системе Ca10(PO4)6(OH)2-CaF2 с образованием фазы фторапатита, и получают твердый композиционный биоматериал, обладающий равномерной плотной структурой с высокой степенью кристалличности, устойчивый при 1000±50 °C. (см. табл.).
Получение предлагаемого биоматериала иллюстрируется следующими примерами:
Пример 1. Берут 84 грамм гидроксиапатита и 16 грамм фторида кальция (массовое соотношение 5,25:1), с крупностью частиц 1-15 мкм, проводят тщательное перемешивание (полная гомогенизация). Полученную порошковую смесь прессуют в заготовки (таблетки) при давлении 200 МПа. Затем полученные заготовки помещают в муфельную печь и подвергают отжигу при температуре 950 °С в течение 1,5 часов. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2 в виде мелкозернистого твердого материала. Потеря массы при термообработке и микротвердость в таблице.
Пример 1. Берут 85 грамм гидроксиапатита и 15 грамм фторида кальция, помещают в планетарную, вибрационную или шаровую мельницу, истирание ведут до крупности частиц 1-15 мкм (полная гомогенизация). Полученная порошковая смесь прессуется в заготовки (таблетки) при давлении ≥ 200-300 МПа. Затем полученные заготовки помещаются в муфельную печь и подвергаются термообработке при температуре 1000±50 °С в течение 1-1,5 часов. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2 в виде мелкозернистого прочного материала. Потеря массы при термообработке и микротвердость в таблице 1.
Пример 2. Берут 80 грамм гидроксиапатита и 20 грамм фторида кальция (массовое соотношение 6,14:1), с крупностью частиц 1-15 мкм, проводят тщательное перемешивание (полная гомогенизация). Полученную порошковую смесь прессуют в заготовки (таблетки) при давлении 300 МПа. Затем полученные заготовки помещают в муфельную печь и подвергают отжигу при температуре 1050 °С в течение 1 часа. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2 в виде мелкозернистого твердого материала. Потеря массы при термообработке и микротвердость в таблице.
Таблица
Убыль массы и микротвердость композитов Ca10(PO4)6(OH)2-CaF2
Исследуемый биоматериал (содержание СаF2) | Температура отжига 1000°С | |
Потеря массы, % | Микротвёрдость, МПа. | |
10масс.%CaF2 | 8.80 | 290 |
Пример 1 (16 масс.%CaF2) | 6.70 | 980 |
Приме 2 (14 масс.% CaF2) | 6,60 | 986 |
20масс.%CaF2 | 8.55 | 225 |
Контрольный образец ГАП (0%CaF2) | 9.48 | 195 |
Таким образом, авторами предлагается композиционный биоактивный материал (Ca10(PO4)6(OH)2-CaF2, имеющий мелкокристаллическую структуру и повышенную твердость, который может быть использован в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани.
Claims (1)
- Способ получения биоактивного композиционного материала для замещения костных дефектов, заключающийся в том, что смесь гидроксиапатита и фторида кальция, взятых в массовом соотношении 5,25-6,14:1, соответственно, смешивают до полной гомогенизации, таблетируют при давлении 200-300 МПа и отжигают при температуре 950-1050оС в течение 1-1,5 ч.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018107994A RU2683255C1 (ru) | 2018-03-06 | 2018-03-06 | Биоактивный композиционный материал для замещения костных дефектов и способ его получения |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018107994A RU2683255C1 (ru) | 2018-03-06 | 2018-03-06 | Биоактивный композиционный материал для замещения костных дефектов и способ его получения |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2683255C1 true RU2683255C1 (ru) | 2019-03-27 |
Family
ID=65858766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018107994A RU2683255C1 (ru) | 2018-03-06 | 2018-03-06 | Биоактивный композиционный материал для замещения костных дефектов и способ его получения |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2683255C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2756020C1 (ru) * | 2021-01-13 | 2021-09-24 | Юлия Сергеевна Лукина | Самосхватывающаяся композиция для получения кальцийфосфатного матрикса для замещения костных дефектов опорно-двигательной системы человека и способ получения кальцийфосфатного матрикса на её основе |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2405537C2 (ru) * | 2006-03-14 | 2010-12-10 | Лиддс Аб | Биологически рассасывающаяся композиция с контролируемым высвобождением |
TW201200471A (en) * | 2010-06-21 | 2012-01-01 | Cheng-Chei Wu | The preparation of fluoridated hydroxyapatites and their applications |
RU2440149C1 (ru) * | 2010-07-06 | 2012-01-20 | Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН | Способ получения наноразмерного порошка для биоматериалов |
-
2018
- 2018-03-06 RU RU2018107994A patent/RU2683255C1/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2405537C2 (ru) * | 2006-03-14 | 2010-12-10 | Лиддс Аб | Биологически рассасывающаяся композиция с контролируемым высвобождением |
TW201200471A (en) * | 2010-06-21 | 2012-01-01 | Cheng-Chei Wu | The preparation of fluoridated hydroxyapatites and their applications |
RU2440149C1 (ru) * | 2010-07-06 | 2012-01-20 | Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН | Способ получения наноразмерного порошка для биоматериалов |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2756020C1 (ru) * | 2021-01-13 | 2021-09-24 | Юлия Сергеевна Лукина | Самосхватывающаяся композиция для получения кальцийфосфатного матрикса для замещения костных дефектов опорно-двигательной системы человека и способ получения кальцийфосфатного матрикса на её основе |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2354408C2 (ru) | Неорганический резорбируемый материал для замены костей | |
KR101626441B1 (ko) | 재흡수성이 우수한 거대기공성 인산칼슘 시멘트 아파타이트 | |
KR102258806B1 (ko) | 재생의학 재료 및 그의 제조방법과 응용 | |
KR100871396B1 (ko) | 생체활성 아파타이트의 제조방법 | |
US20110185946A1 (en) | Porous composite comprising silicon-substituted hydroxyapatite and ß- tricalcium phosphate, and process for preparing the same | |
US20210121606A1 (en) | Ionic-doped composition methods and uses thereof | |
AU2009208807B2 (en) | Porous biomaterial on hydropatite | |
RU2683255C1 (ru) | Биоактивный композиционный материал для замещения костных дефектов и способ его получения | |
Suruagy et al. | Physico-chemical and histomorphometric evaluation of zinc-containing hydroxyapatite in rabbits calvaria | |
Adhikara et al. | Bovine hydroxyapatite for bone tissue engineering: Preparation, characterization, challenges, and future perspectives | |
KR20150112349A (ko) | Pla와 인산칼슘을 이용한 생분해성 골접합용 복합체 그리고 이의 제조방법 | |
Irianto et al. | A comparison of osteoblast cell proliferation and osteocalcin expression in cuttlefish bone and bovine bone xenograft | |
KR101176793B1 (ko) | 실크 피브로인 가수분해물과 pmma를 함유하는 생체적합성 골 시멘트 조성물 | |
RU2497548C1 (ru) | Пористые микросферы на основе биофосфатов кальция и магния с регулируемым размером частиц для регенерации костной ткани | |
WO2014058344A1 (ru) | Биосовместимый костнозамещающий материал и способ получения его | |
RU2735032C1 (ru) | Биоматериал на основе гидроксиапатита | |
KR101438745B1 (ko) | 동물뼈로부터 유래된 저결정성 세라믹재의 제조 방법 | |
RU2327709C2 (ru) | Способ получения пористых полимерных биодеградируемых изделий для регенерации костной ткани | |
RU2741208C1 (ru) | Биоматериал на основе гидроксиапатита | |
KR101848289B1 (ko) | 동물 유래 조직을 이용한 천연 하이드록시 아파타이트 골 이식재 제조 방법 | |
RU2827698C1 (ru) | Состав для получения композиционного биоматериала на основе гидроксиапатита | |
Arpad et al. | Effect of Osteoplasty with Bioactive Glass (S53P4) in Bone Healing-In vivo Experiment on Common European Rabbits (Oryctolagus cuniculus) | |
Smucker et al. | Assessment of SiCaP-30 in a rabbit posterolateral fusion model with concurrent chemotherapy | |
Abdelmoneim et al. | In vivo healing of low temperature deproteinized bovine bone xenograft in a rabbit cranial model | |
Kammer et al. | In vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20210307 |