RU2683255C1 - Биоактивный композиционный материал для замещения костных дефектов и способ его получения - Google Patents

Биоактивный композиционный материал для замещения костных дефектов и способ его получения Download PDF

Info

Publication number
RU2683255C1
RU2683255C1 RU2018107994A RU2018107994A RU2683255C1 RU 2683255 C1 RU2683255 C1 RU 2683255C1 RU 2018107994 A RU2018107994 A RU 2018107994A RU 2018107994 A RU2018107994 A RU 2018107994A RU 2683255 C1 RU2683255 C1 RU 2683255C1
Authority
RU
Russia
Prior art keywords
hydroxyapatite
bioactive
caf
replacement
bone
Prior art date
Application number
RU2018107994A
Other languages
English (en)
Inventor
Екатерина Анатольевна Богданова
Владимир Михайлович Скачков
Ольга Владимировна Скачкова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority to RU2018107994A priority Critical patent/RU2683255C1/ru
Application granted granted Critical
Publication of RU2683255C1 publication Critical patent/RU2683255C1/ru

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials For Medical Uses (AREA)
  • Inorganic Chemistry (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Medicinal Chemistry (AREA)

Abstract

Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя биологически активных веществ. Предлагается способ получения биоактивного композиционного материала для замещения костных дефектов, заключающийся в том, что смесь гидроксиапатита и фторида кальция, взятых в массовом соотношении 5,25-6,14:1, соответственно, смешивают до полной гомогенизации, таблетируют при давлении 200-300 МПа и отжигают при температуре 950-1050С в течение 1-1,5 ч. Полученный композиционный биоактивный материал (Ca(PO)(OH)-CaF, имеющий елкокристаллическую структуру и повышенную твердость, может быть использован в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани. 1 табл., 2 пр.

Description

Изобретение относится к области биологически активных фармацевтических и медицинских материалов с повышенной механической прочностью, такие материалы могут быть использованы в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани, а также в качестве носителя биологически активных веществ.
В настоящее время в медицинской практике для замены и восстановления костной ткани широко используются биоматериалы на основе фосфатов кальция, главным образом – Ca10(PO4)6(OH)2 (гидроксиапатит - ГАП), практически идентичный по структуре и химическому составу природной костной ткани и обладающий выраженным остеотропным поведением в биологических средах. Недостатком биокерамики на основе ГАП является низкая механическая твердость, что не предполагает ее использование для ликвидации дефектов костных тканей, испытывающих значительные механические нагрузки. Повысить твердость биоматериалов на основе ГАП возможно за счет химического модифицирования его структуры.
Известен биоматериал для замещения дефектов костной ткани на основе натурального коралла, очищенного от коралловой пыли и микроорганизмов проточной водой с последующей стерилизацией, семейства Acroporidae, или Pocillporidae, или Faviidae естественного происхождения или выращенный в марикультуре в виде цельных фрагментов или в гранулированной форме, дополнительно очищенный 3%-ным раствором гипохлорита натрия и ультразвуковым воздействием частотой 40 кГц в течение 3-5 мин, высушиванием и стерилизацией γ-облучением при суммарной дозе 25 кГр, при этом его поверхность может быть активирована лизатом аутологичных тромбоцитов (ЛАТ) путем помещения биоматериала в жидкий ЛАТ на 3 ч при соотношении объемов биоматериал/ЛАТ - 1/3 (патент RU 2472516; МПК A61K 35/56, A61F 2/28; A61L 27/00; 2013г.).
Недостатком известного материала является сложный способ его получения, а также ограниченная доступность исходного материала.
Известен материал на основе гидроксиапатита, содержащий карбонат кальция, предназначенный для изготовления костных имплантатов и/или замещения дефектов при различных костных патологиях. Известный материал получают в результате химического осаждения из водных растворов с промывкой в этаноле, фильтрованием и сушкой, и последующим старением в маточном растворе в течение не менее 14 суток. Таким образом, известный способ позволяет получить порошок состава 75-85 масс.% гидроксиапатита и 15-25 масс.% карбоната кальция, применяемых в медицине в качестве матриксов для восстановления костной ткани (патент RU 2440149; МПК A61L 22/02, A61L 27/12, B82B 1/00; 2012 г.).
Однако известный биоактивный материал имеет следующие недостатки: при получении материала применяется длительный ступенчатый способ синтеза, в результате в конечном продукте могут содержаться нежелательные примеси, загрязняющие конечный продукт, кроме того наличие карбонатной группы обусловливает невысокую механическую твердость.
Известен материал, представляющий собой фторированный гидроксиапатитовый композит, который содержит смесь фторида кальция (< 50 масс.%) и гидроксиапатита (> 50 масс.%) (патент TW 201200471; МПК A61L27/12, C01B25/455; 2012 год ) (прототип), который получают путем смешивания фторида кальция (< 50 масс.%) и гидроксиапатита (> 50 масс.%) в деионизированной воде в течение 24 часов, далее смесь просушивается при температуре 100°С, после прокаливается при температуре 1000°С. После прокалки охлажденную смесь измельчают с помощью шаровой мельницы, после измельчения сушат готовый порошковый материал при температуре 100 °С.
Недостатками известного материала являются недостаточно высокая микротвердость (225-290 МПа) и возможность дестабилизации конечного состава за счет потери массы при обжиге.
Таким образом, перед авторами была поставлена задача разработать биологически активный композиционный материал, обладающий повышенной твердостью и стабильностью конечного состава, и технологически простой способ его получения.
Поставленная задача решена в предлагаемом биоактивном композиционном материале для замещения костных дефектов, содержащем гидроксиапатит и фторид кальция, который содержит компоненты в следующем соотношении (масс.%):
- гидроксиапатит - 84÷86;
- фторид кальция - 14÷16.
Поставленная задача решена также в способе получения биоактивного композиционного материала для замещения костных дефектов по п.1, заключающемся в том, что смесь гидроксиапатита и фторида кальция, взятых в массовом соотношении 5,25÷6,14:1, соответственно, смешивают до полной гомогенизации, таблетируют при давлении 200÷300 МПа и отжигают при температуре 950÷1050оС в течение 1÷1,5 часа.
В настоящее время из патентной и научно-технической литературы не известен биоактивный композиционный материал для замещения костных дефектов, содержащий гидроксиапатит и фторид кальция в предлагаемом соотношении компонентов, а также способ его получения путем обработки смеси гидроксиапатита и фторида кальция в предлагаемых условиях.
Известно, что химическое модифицирование структуры гидроксиапатита за счет использования армирующих добавок, в частности фторида кальция способствует остеогенезу и регенерации твердых тканей при его использовании в качестве костного наполнителя. Однако исследования, проведенные авторами, позволили установить, что улучшить характеристики материала, такие как твердость, можно за счет изменения числа и характера функциональных групп, возникающих в процессе взаимодействия гидроксиапатита и армирующей фазы - фторида кальция при отжиге их смеси. При этом изменение фазового состава, определяющего характеристики материала, в процессе физико-химических превращений, происходящих в системе, зависит от количества вводимого армирующего компонента. Анализ экспериментальных данных, полученных авторами, позволяет сделать вывод, что именно предлагаемое соотношение гидроксиапатита и фторида кальция (Ca10(PO4)6(OH)2 - 84÷86 масс./%; CaF2 - 14÷16 масс.%) обеспечивает увеличение твердости биоактивного материала за счет оптимального соотношения ионов фтора (фторида) и гидроксильных групп. Содержание фторид-иона в предлагаемом диапазоне способствует ускорению срастания костей, но не вызывает возможных костных деформаций. Наличие гидроксильных групп повышает устойчивость к биодеградации за счет улучшения адсорбции белка, но увеличения количества гидроксильных групп повышает иммунологические риски и риск инфицирования, а при уменьшении их количества может быть затруднен процесс естественного остеогенеза. Условия получения предлагаемого биоактивного композиционного материала обеспечивают стабильность состава. Известно, что гидроксиапатит частично разлагается с образованием трикальцийфосфата (Ca3(PO4)2 уже при 800оС, при этом отрывается ОН-группа, испаряясь в виде водяного пара. Не только наличие фторида кальция, но определенное соотношение исходных компонентов в совокупности с предлагаемым температурным и временным интервалами отжига позволяет стабилизировать состав конечного продукта, о чем свидетельствует меньшая потеря массы при отжиге, что подтверждают данные рентгено-фазового анализа (см. табл.).
Предлагаемый способ может быть осуществлен следующим образом: в мельнице при одновременном смешивании и измельчении исходных компонентов гидроксиапатита и фторида кальция (Ca10(PO4)6(OH)2-CaF2), взятых в массовом соотношении 5,25÷6,14:1, соотвественно. Полученную порошковую смесь прессуют в заготовки (таблетки) при давлении 200-300 МПа. Затем полученные заготовки помещают в муфельную печь и подвергают отжигу при температуре 950÷1050°С в течение 1-1,5 часов. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2 в виде мелкозернистого прочного материал. При этом степень кристалличности материалов возрастает, о чем свидетельствует увеличение разрешения пиков на рентгенограммах и уменьшение их ширины (выполнялось на дифрактометрах Shimadzu, ДРОН-2.0, излучение CuKα, интервал углов 10°≤ 2Θ ≤ 70°, шаг съемки 0.03°, время на точку 2 секунды, идентификация фаз осуществлялась с помощью картотеки Powder Diffraction File JCPDSD-ICDD PDF2 (set’s 1-47)), что также подтверждают изображения со сканирующего электронного микроскопа (микроскоп JEOL JSM 6390 LA (Япония), коэффициент увеличения от х5 до х300000, разрешающая способность 3.0 нм при 30 кВ). В результате установлено, что при таких режимах происходит взаимодействие в системе Ca10(PO4)6(OH)2-CaF2 с образованием фазы фторапатита, и получают твердый композиционный биоматериал, обладающий равномерной плотной структурой с высокой степенью кристалличности, устойчивый при 1000±50 °C. (см. табл.).
Получение предлагаемого биоматериала иллюстрируется следующими примерами:
Пример 1. Берут 84 грамм гидроксиапатита и 16 грамм фторида кальция (массовое соотношение 5,25:1), с крупностью частиц 1-15 мкм, проводят тщательное перемешивание (полная гомогенизация). Полученную порошковую смесь прессуют в заготовки (таблетки) при давлении 200 МПа. Затем полученные заготовки помещают в муфельную печь и подвергают отжигу при температуре 950 °С в течение 1,5 часов. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2 в виде мелкозернистого твердого материала. Потеря массы при термообработке и микротвердость в таблице.
Пример 1. Берут 85 грамм гидроксиапатита и 15 грамм фторида кальция, помещают в планетарную, вибрационную или шаровую мельницу, истирание ведут до крупности частиц 1-15 мкм (полная гомогенизация). Полученная порошковая смесь прессуется в заготовки (таблетки) при давлении ≥ 200-300 МПа. Затем полученные заготовки помещаются в муфельную печь и подвергаются термообработке при температуре 1000±50 °С в течение 1-1,5 часов. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2 в виде мелкозернистого прочного материала. Потеря массы при термообработке и микротвердость в таблице 1.
Пример 2. Берут 80 грамм гидроксиапатита и 20 грамм фторида кальция (массовое соотношение 6,14:1), с крупностью частиц 1-15 мкм, проводят тщательное перемешивание (полная гомогенизация). Полученную порошковую смесь прессуют в заготовки (таблетки) при давлении 300 МПа. Затем полученные заготовки помещают в муфельную печь и подвергают отжигу при температуре 1050 °С в течение 1 часа. В результате получают композиционный материал Ca10(PO4)6(OH)2-СаF2 в виде мелкозернистого твердого материала. Потеря массы при термообработке и микротвердость в таблице.
Таблица
Убыль массы и микротвердость композитов Ca10(PO4)6(OH)2-CaF2
Исследуемый биоматериал (содержание СаF2) Температура отжига 1000°С
Потеря массы, % Микротвёрдость, МПа.
10масс.%CaF2 8.80 290
Пример 1 (16 масс.%CaF2) 6.70 980
Приме 2 (14 масс.% CaF2) 6,60 986
20масс.%CaF2 8.55 225
Контрольный образец ГАП (0%CaF2) 9.48 195
Таким образом, авторами предлагается композиционный биоактивный материал (Ca10(PO4)6(OH)2-CaF2, имеющий мелкокристаллическую структуру и повышенную твердость, который может быть использован в ортопедической стоматологии и хирургии при восстановлении и лечении костной ткани.

Claims (1)

  1. Способ получения биоактивного композиционного материала для замещения костных дефектов, заключающийся в том, что смесь гидроксиапатита и фторида кальция, взятых в массовом соотношении 5,25-6,14:1, соответственно, смешивают до полной гомогенизации, таблетируют при давлении 200-300 МПа и отжигают при температуре 950-1050оС в течение 1-1,5 ч.
RU2018107994A 2018-03-06 2018-03-06 Биоактивный композиционный материал для замещения костных дефектов и способ его получения RU2683255C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018107994A RU2683255C1 (ru) 2018-03-06 2018-03-06 Биоактивный композиционный материал для замещения костных дефектов и способ его получения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018107994A RU2683255C1 (ru) 2018-03-06 2018-03-06 Биоактивный композиционный материал для замещения костных дефектов и способ его получения

Publications (1)

Publication Number Publication Date
RU2683255C1 true RU2683255C1 (ru) 2019-03-27

Family

ID=65858766

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018107994A RU2683255C1 (ru) 2018-03-06 2018-03-06 Биоактивный композиционный материал для замещения костных дефектов и способ его получения

Country Status (1)

Country Link
RU (1) RU2683255C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2756020C1 (ru) * 2021-01-13 2021-09-24 Юлия Сергеевна Лукина Самосхватывающаяся композиция для получения кальцийфосфатного матрикса для замещения костных дефектов опорно-двигательной системы человека и способ получения кальцийфосфатного матрикса на её основе

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2405537C2 (ru) * 2006-03-14 2010-12-10 Лиддс Аб Биологически рассасывающаяся композиция с контролируемым высвобождением
TW201200471A (en) * 2010-06-21 2012-01-01 Cheng-Chei Wu The preparation of fluoridated hydroxyapatites and their applications
RU2440149C1 (ru) * 2010-07-06 2012-01-20 Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН Способ получения наноразмерного порошка для биоматериалов

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2405537C2 (ru) * 2006-03-14 2010-12-10 Лиддс Аб Биологически рассасывающаяся композиция с контролируемым высвобождением
TW201200471A (en) * 2010-06-21 2012-01-01 Cheng-Chei Wu The preparation of fluoridated hydroxyapatites and their applications
RU2440149C1 (ru) * 2010-07-06 2012-01-20 Учреждение Российской академии наук Институт металлургии и материаловедения им. А.А. Байкова РАН Способ получения наноразмерного порошка для биоматериалов

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2756020C1 (ru) * 2021-01-13 2021-09-24 Юлия Сергеевна Лукина Самосхватывающаяся композиция для получения кальцийфосфатного матрикса для замещения костных дефектов опорно-двигательной системы человека и способ получения кальцийфосфатного матрикса на её основе

Similar Documents

Publication Publication Date Title
RU2354408C2 (ru) Неорганический резорбируемый материал для замены костей
KR101626441B1 (ko) 재흡수성이 우수한 거대기공성 인산칼슘 시멘트 아파타이트
KR102258806B1 (ko) 재생의학 재료 및 그의 제조방법과 응용
US20110185946A1 (en) Porous composite comprising silicon-substituted hydroxyapatite and ß- tricalcium phosphate, and process for preparing the same
KR20080078449A (ko) 생체활성 아파타이트의 제조방법
US20210121606A1 (en) Ionic-doped composition methods and uses thereof
Bolbasov et al. Flexible intramedullary nails for limb lengthening: a comprehensive comparative study of three nails types
AU2009208807B2 (en) Porous biomaterial on hydropatite
KR101678956B1 (ko) 폴리락티드와 수산화아파타이트를 이용한 생분해성 골접합용 복합체 그리고 이의 제조방법
RU2683255C1 (ru) Биоактивный композиционный материал для замещения костных дефектов и способ его получения
Suruagy et al. Physico-chemical and histomorphometric evaluation of zinc-containing hydroxyapatite in rabbits calvaria
KR20150112349A (ko) Pla와 인산칼슘을 이용한 생분해성 골접합용 복합체 그리고 이의 제조방법
Irianto et al. A comparison of osteoblast cell proliferation and osteocalcin expression in cuttlefish bone and bovine bone xenograft
RU2735032C1 (ru) Биоматериал на основе гидроксиапатита
KR101438745B1 (ko) 동물뼈로부터 유래된 저결정성 세라믹재의 제조 방법
RU2327709C2 (ru) Способ получения пористых полимерных биодеградируемых изделий для регенерации костной ткани
RU2497548C1 (ru) Пористые микросферы на основе биофосфатов кальция и магния с регулируемым размером частиц для регенерации костной ткани
WO2014058344A1 (ru) Биосовместимый костнозамещающий материал и способ получения его
WO2003059409A2 (en) Biodegradable implant materials
RU2741208C1 (ru) Биоматериал на основе гидроксиапатита
Kammer et al. In vivo evaluation of strontium-containing nanostructured carbonated hydroxyapatite
Baiomy et al. Versatility of nano-hydroxyapatite versus nano-β-tricalcium phosphate in grafting of mandibular bone defects: experimental study
Arpad et al. Effect of Osteoplasty with Bioactive Glass (S53P4) in Bone Healing-In vivo Experiment on Common European Rabbits (Oryctolagus cuniculus)
Smucker et al. Assessment of SiCaP-30 in a rabbit posterolateral fusion model with concurrent chemotherapy
Wang et al. Development and physicochemical characterization of a porous calcium phosphate/bone matrix gelatin composite cement

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20210307