TW201200471A - The preparation of fluoridated hydroxyapatites and their applications - Google Patents

The preparation of fluoridated hydroxyapatites and their applications Download PDF

Info

Publication number
TW201200471A
TW201200471A TW99120042A TW99120042A TW201200471A TW 201200471 A TW201200471 A TW 201200471A TW 99120042 A TW99120042 A TW 99120042A TW 99120042 A TW99120042 A TW 99120042A TW 201200471 A TW201200471 A TW 201200471A
Authority
TW
Taiwan
Prior art keywords
fluorinated
composite
hydroxyapatite
hydroxyl
fluoride
Prior art date
Application number
TW99120042A
Other languages
Chinese (zh)
Inventor
Cheng-Chei Wu
Original Assignee
Cheng-Chei Wu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheng-Chei Wu filed Critical Cheng-Chei Wu
Priority to TW99120042A priority Critical patent/TW201200471A/en
Publication of TW201200471A publication Critical patent/TW201200471A/en

Links

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

Previous technology in preparing fluoridated hydroxyapatites require many kinds of compound in solution. Neither can they prepare apatites simultaneously has the OH and the OH.F hydrogen bonds nor simultaneously has the OH, OH.F and OH.F.HO hydrogen bonds of different functional group performance. Therefore, this invention's goal is the changes of calcination temperature and the weight ratio between calcium fluoride and hydroxyapatite of mixture condition to make the apatites with biological activity. Fluoridated hydroxyapatites of this invention or their constituents of the other compounds do as bone filler. They may promote osteogenesis and regeneration of the hard tissue. Constituents of this invention may further contain one kind or many kinds of osteogenetic and regenerative medical constituents, cause this medical constituents further be helpful to bone tissue osteogenesis and regeneration when implant into animal hard tissue defect.

Description

201200471 四、指定代表圖: ㈠本案指定代表圖為:第(5 )圖。 (二)本代表圖之元件符號簡單說明: 圖5.顯示氟化_灰石複合不囉件製 譜儀檢測結果,分別具備(a) 0H和0H.F氫鍵;或㈤ΛΗ、轉換紅外光201200471 IV. Designated representative map: (1) The representative representative of the case is: (5). (2) A brief description of the symbol of the representative figure: Figure 5. shows the results of the spectrometer detection of the fluorinated ash-stone composite, with (a) 0H and 0H.F hydrogen bonds, respectively; or (5) ΛΗ, converted infrared light

oh" " ::· ^5 ^ ^ C 五、本綠有化學鱗’請齡最能齡發明槪的化 氟化經碟灰石複合物由於敗化程度的不同形成不同的氣化工^ 合物,ε^(ρ〇4)6(〇υ (X氟化程度,x =1 〇氣碟灰石,χ= 石,〇<χ<1敦化氫氧鱗灰石)。 嶙次 六、發明說明: 【發明所屬之技術領域】 本發明涉及一種氟化羥磷灰石複合物製備及其用途,特別是涉及幾種 同時具備不同官能基團的活化氟化經填灰石複合物製備及其用途。 【先前技術】 一般習知氟化羥磷灰石複合物的製備方法可以歸納爲兩種途徑:一、直 接合成法,是指合成填灰石時直接將氟離子引入從而形成氟化經填灰石複 合物的方法。典型代表爲固相反應法、熱分解法、共沈澱法、熱合成法和 溶膠-凝膠法;二、分步置換法’是指合成磷灰石時不直接將氟離子引入, 而是在形成羥磷灰石後將氟離子引入取代羥基而形成氟化羥磷灰石複合物 的方法(L.M. Rodriguez-Lorenzo,etal. 4; 3777-3785,2003.)。 在先前技術中所提供作爲製備氟化羥磷灰石複合物的方法,需經由多 *. ·*-* 種化合物水溶液製備而成。在TW 253936號專利案揭示一種氟磷灰石的簡 便製備方法,該製備方法無法製備同時具有羥基與羥基氟離子氫鍵或同時 具有羥基與不同羥基氟離子氫鍵等各種不同官能基團表現者。因此,本發 明的目的係在提供一種同時具有羥基與羥基氟離子氫鍵或同時具有羥基與 201200471 不同細基氣離子氫鍵等各種不同官能基團表現,且具生物活性的氣化經碟 灰石複合物者。 【發明内容】 本發明的目的,是提供一種具有生物相容性的氟化羥磷灰石複合物。 複σ物在傅立葉轉換紅外線光譜儀檢測下同時具有經基團與經基氟離子氫 鍵或同時具有羥基與不同羥基氟離子氫鍵特徵的各種氟化羥磷灰石複合 物。 先前技術作爲製備氟化羥磷灰石複合物的方法,需經由多種化合物水 / 谷液製備或無法製備在傅立葉轉換紅外線光譜儀檢測下同時具有經基與經 • 基氟離子氫鍵或同時具有羥基與不同羥基氟離子氫鍵等各種不同官能基表 現者。 本發明的目的係透過改變煆燒溫度、時間與改變氟化鈣、羥磷灰石混 合比例的條件下製造具生物活性的氟化羥磷灰石複合物。本發明之氟化羥 磷灰石複合物或其與其他化合物之組成物適用做爲生物醫學材料,其可以 促進骨細胞之再生與修復。又,本發明之組成物可進一步包含有一種或多 種骨再生與修復的醫藥組成物’以使該醫藥組成物被植入動物體内進一步 有助於體内骨組織再生與修復。 本發明具有如下特點: • L不同比例的氟化鈣與羥磷灰石,未藉助其他需進一步工藝程序排除 的化合物水溶液下’所燒結形成的氟化經填灰石複合物,在不同的製備條 件下展現不同分子特性。 2. 藉助氟化鈣和其與羥磷灰石反應產物氫氧化鈣爲共晶易熔物,使得 燒結氟化羥磷灰石複合物所需的溫度遠低於羥磷灰石本身燒结所需的溫 度》 3, 當氟化辑的力口入< 1 wt%,燒结後氟化羥磷灰石複合物於小角度(3〇〇) 繞射峰的X光晶體繞射分析觀察到主要羥填灰石晶相與較少的氟化羥磷灰 石的結晶相’伴隨傅立葉轉換紅外光譜檢測下的0H基團與0H.F氫鍵波峰。 4·當氟化鈣的加入=1的%,燒結後羥磷灰石複合物於小角度(300)繞 射峰的X光晶體繞射分析^ι察到主要經填灰石晶相與較少的氟化羥磷灰石 201200471 的結晶相,伴隨傅立葉轉換红外光譜檢測下的OH基團,OH. F氫鍵與〇H. F. HO 氫鍵波峰。 5. 當氟化鈣的加入=5 wt%,燒結後羥磷灰石複合物於小角度(300)繞 射峰的X光晶體繞射分析觀察到主要氟化羥磷灰石晶相,伴隨傅立葉轉換紅 外光譜檢測下的OH. F氫鍵與OH. F. H0氫鍵波峰。 6. 當氟化鈣的加入2 25 wt% ’燒結後羥磷灰石複合物於小角度(3〇〇)繞 射峰的X光晶體繞射分析觀察到主要氟化鈣晶相、次要氟化羥碟灰石與氟填 灰石晶相,伴隨傅立葉轉換紅外光譜檢測下的0H.F氫鍵與0H.F.H0氫鍵波 峰。 7. 骨細胞(hFOB 1.19)於不同分子特性的氟化經碟灰石複合物培養下, φ 在骨形態蛋白的表現不同。傅立葉轉換紅外光譜檢測下同時具備〇H基團, 0H.F氫鍵分子特性的氟化羥磷灰石複合物,具備骨誘導之能力。 【實施方式】 將不同重量百分比的氟化約(重量百分比2 50 wt%)與經璃灰石(重量 百分比2 50 wt%)在去離子水下’滚球滾動混合二十四小時。混合後取出 乾燥,將乾燥後的混合物在不同攝氏溫度、時間下煆燒。將瑕燒後的混合 物’以球研磨器研磨成粉狀後再乾燥。燒結後所得氟化羥磷灰石複合物具 備氟化羥磷灰石晶相。傅立葉轉換紅外線光譜儀檢測下,分別可獲得同時 φ 具有羥基團(0H)與羥基氟離子氫鍵(0H.F)或同時具有羥基團(〇H)與不同經 基氟離子氫鍵(0H.F,OH. F.H0)等各種不同官能基表現者,上述具生物活性 的複合物在造骨細胞(hFOB 1· 19)培養實驗下顯示具有良好的生物相容性。 【圖式簡單說明】 圖1.顯示氟化羥磷灰石複合生醫材料密度測試。 圖2.顧不不同溫度下氟化#5與經鱗灰石燒結所得氟化經璃灰石複备物在傳 統X光晶體繞射(20-65°)分析的結果。 圖3·顯示氟化羥磷灰石複合物在傳統X光晶體繞射(1〇_8〇。)分析的結果。氟 化鈣在未燒結氟化羥磷灰石複合物的重量百分比分別為:(A)〇 〇 1(B) 〇·〇5,(C) 1,(D) 5, (E) 25,(F) 50,(G)0. 201200471 圖4.顯不氣化_灰石複合物小角度繞射(32· 5_33. 5。)的χ射線(獨繞射 分析’顯示具備氟化輔灰石晶相。t*化飼在未燒結氣化鋪灰石複 2的重量百分比分別為:⑷ 〇.〇1,(B) 0.G5,(C) 1,(D) 5, (E) 25, (F) 50, 圖5.員不傅立葉轉換紅外線光譜儀檢測結果顯示,氣化賴灰石複合物於 不同條件製備下’分別具備(a) 〇H和〇〇氫鍵;或⑹〇H,〇〇 和0H.F.H0氯鍵;或(c) OH F^〇H F H〇氫鍵,各種不同官能基團表 現者°氟化#5在未燒結氟她做石複合物的重量百姐分別為:(A) 〇.〇1,(B) 0.05,(C) 1,(D) 5, (E) 25, (F) 50, (G)0. (*,0H鍵;+,OH. F 鍵. #,〇H. F· H0 鍵) ’ 圖6·月細胞(hFOB 1.19)在不同分子特性的氣化經填灰石複合物試片與同一 種培養液培養下’骨形祕自呈現不同表現。氟簡在未燒結氣化經 磷灰石複合物的重量百分比分別為:(A)〇〇1,⑻〇〇5,(c)1(d 25, (F) 50,⑹〇. ’ 【主要元件符號說明】Oh"" ::· ^5 ^ ^ C V. This green has chemical scales. The fluorinated disc-grey stone composites of the age-old inventions are different in terms of the degree of disintegration. ε^(ρ〇4)6(〇υ (X degree of fluorination, x =1 〇 碟 碟 χ χ χ χ 石 石 石 石 石 石 石 χ χ 1 1 1 1 1 1 1 敦 敦 敦 敦 敦 敦 敦 敦 敦 敦 敦 敦 敦 敦 敦 敦 敦 氢 氢 氢[Description of the Invention] [Technical Field] The present invention relates to the preparation of a fluorinated hydroxyapatite composite and its use, in particular to the preparation of activated fluorinated ore-filled composites having simultaneously different functional groups [Previous technique] Generally, the preparation method of the fluorinated hydroxyapatite composite can be summarized into two ways: First, the direct synthesis method refers to direct introduction of fluoride ions into the fluoridation when forming the ash-filled stone. The method of filling the stone composite. The typical representative is solid phase reaction method, thermal decomposition method, coprecipitation method, thermal synthesis method and sol-gel method; second, step replacement method refers to the synthesis of apatite Introducing fluoride ions directly, but introducing fluorine ions into the substituted hydroxyl groups after forming hydroxyapatite Method for forming a fluorinated hydroxyapatite composite (LM Rodriguez-Lorenzo, et al. 4; 3777-3785, 2003.) The method provided in the prior art for preparing a fluorinated hydroxyapatite composite is via A method for preparing a fluoroapatite is disclosed in the TW 253936 patent. The preparation method cannot simultaneously prepare a hydrogen bond with a hydroxyl group and a hydroxyl fluoride ion or a hydroxyl group at the same time. Different kinds of different functional groups such as different hydroxyl fluoride hydrogen bonds are expressed. Therefore, the object of the present invention is to provide a hydrogen bond having a hydroxyl group and a hydroxyl fluoride ion or a hydroxyl group at the same time and a hydrogen ion bond of a different fine group at 201200471. A functional group exhibits a biologically active gasified discite composition. SUMMARY OF THE INVENTION It is an object of the present invention to provide a biocompatible fluorinated hydroxyapatite composite. Under the detection of Fourier transform infrared spectrometer, there are various kinds of fluorinated hydroxyphosphorus which are characterized by a hydrogen bond between a group and a radical fluoride ion or a hydrogen bond with a hydroxyl group and a different hydroxyl group. Stone composite. The prior art as a method for preparing a fluorinated hydroxyapatite composite needs to be prepared by a plurality of compounds of water/gluten solution or cannot be prepared by a Fourier transform infrared spectrometer with both a base group and a radical ion bond. Or at the same time having various functional groups such as hydroxyl groups and different hydroxyl fluoride hydrogen bonds. The object of the present invention is to produce biological activity by changing the temperature and time of calcination and changing the mixing ratio of calcium fluoride and hydroxyapatite. Fluorinated hydroxyapatite composite. The fluorinated hydroxyapatite composite of the present invention or a composition thereof and other compounds are suitable as biomedical materials, which can promote regeneration and repair of bone cells. The composition may further comprise one or more medicinal compositions for bone regeneration and repair 'to enable the medicinal composition to be implanted into the animal to further aid in the regeneration and repair of bone tissue in the body. The invention has the following characteristics: • L different proportions of calcium fluoride and hydroxyapatite, which are formed by different aqueous solutions of the fluorinated ore formed by the aqueous solution of the compound which is excluded by further process procedures. Different molecular properties are exhibited under conditions. 2. By using calcium fluoride and its hydroxyapatite reaction product calcium hydroxide as a eutectic fusible, the temperature required for sintering the fluorinated hydroxyapatite composite is much lower than that of hydroxyapatite itself. The required temperature" 3, when the fluorination of the force into the < 1 wt%, after sintering, the fluorinated hydroxyapatite composite at a small angle (3 〇〇) diffraction peak X-ray crystal diffraction analysis The crystal phase of the main hydroxyapatite crystal phase with less fluorinated hydroxyapatite is accompanied by the HF group and the 0H.F hydrogen bond peak detected by Fourier transform infrared spectroscopy. 4. When the addition of calcium fluoride is =1%, the X-ray crystal diffraction analysis of the hydroxyapatite composite after sintering at a small angle (300) diffraction peak is observed by the main intercalated crystal phase and The crystalline phase of less fluorinated hydroxyapatite 201200471, accompanied by Fourier transform infrared spectroscopy detection of OH groups, OH. F hydrogen bonds and 〇HF HO hydrogen bond peaks. 5. When the addition of calcium fluoride = 5 wt%, the main fluorinated hydroxyapatite crystal phase is observed by the X-ray crystal diffraction analysis of the hydroxyapatite composite at a small angle (300). OH. F hydrogen bond and OH. F. H0 hydrogen bond peak under Fourier transform infrared spectroscopy. 6. When calcium fluoride is added to 2 25 wt% 'sintered hydroxyapatite composites at a small angle (3 〇〇) diffraction peak X-ray crystal diffraction analysis observed the main calcium fluoride crystal phase, secondary Fluorinated hydroxyapatite and fluorine-filled naphtha crystal phase, accompanied by Fourier transform infrared spectroscopy detection of 0H.F hydrogen bond and 0H.F.H0 hydrogen bond peak. 7. Bone cells (hFOB 1.19) are different in the expression of bone morphogenetic proteins under the fluorination of different molecular properties by the disc ash-stone complex. The fluorinated hydroxyapatite composite with 〇H group and 0H.F hydrogen bond molecular characteristics under the Fourier transform infrared spectroscopy has the ability of osteoinduction. [Embodiment] Different weight percentages of fluorination (weight 2 50 wt%) were mixed with pulverite (weight 2 50 wt%) under deionized water's balls for twenty-four hours. After mixing, it was taken out and dried, and the dried mixture was calcined at different temperatures and temperatures. The mixture after the simmering was ground into a powder by a ball mill and then dried. The fluorinated hydroxyapatite composite obtained after sintering has a fluorinated hydroxyapatite crystal phase. Under the detection of Fourier transform infrared spectrometer, it can be obtained that φ has hydroxyl group (0H) and hydroxyl fluoride hydrogen bond (0H.F) or both hydroxyl group (〇H) and different radical fluoride ion hydrogen bond (0H.F , OH. F. H0) and other different functional groups, the above bioactive complex showed good biocompatibility under osteoblast (hFOB 1 · 19) culture experiments. [Simple description of the diagram] Figure 1. shows the density test of fluorinated hydroxyapatite composite biomedical materials. Figure 2. Results of analysis of conventional X-ray crystal diffraction (20-65°) of fluorinated glaze-recycled fluorinated #5 and titaned sinter. Figure 3 shows the results of analysis of a fluorinated hydroxyapatite composite in a conventional X-ray crystal diffraction (1 〇 _8 〇.). The weight percentages of calcium fluoride in the unsintered fluorinated hydroxyapatite composite are: (A) 〇〇 1 (B) 〇 · 〇 5, (C) 1, (D) 5, (E) 25, ( F) 50,(G)0. 201200471 Figure 4. Xenon ray (double diffraction analysis) showing fluorinated auxiliary limestone with small angle diffraction (32·5_33. 5) The crystal phase. The weight percentage of t* feed in the unsintered gasified limestone complex 2 is: (4) 〇.〇1, (B) 0.G5, (C) 1, (D) 5, (E) 25 , (F) 50, Figure 5. The results of the non-Fourier transform infrared spectrometer show that the gasified limestone composites have (a) 〇H and 〇〇 hydrogen bonds respectively under different conditions; or (6) 〇H, 〇〇 and 0H.F.H0 chlorine bond; or (c) OH F^〇HFH〇 hydrogen bond, various functional groups expressed by ° °#5 in the unsintered fluorine she made stone compound weight It is: (A) 〇.〇1, (B) 0.05, (C) 1, (D) 5, (E) 25, (F) 50, (G)0. (*, 0H bond; +, OH. F key. #,〇H. F· H0 key) ' Figure 6. Moon cells (hFOB 1.19) in the gasification of different molecular properties through the ascites composite test piece and the same culture medium culture The performance is different. The weight percentage of fluorine in the unsintered gasified apatite composite is: (A) 〇〇 1, (8) 〇〇 5, (c) 1 (d 25, (F) 50, (6) 〇 . ' [Main component symbol description]

Claims (1)

201200471 七、申請專利範圍: 1. 一種活性氟化羥鱗灰石複合物(fluoridated hydroxyapatite conroosites)化學式爲[CaVPOACOHWFh] (x=0〜2)之制法,其特徵在 於:均勻混合的氟化約重量百分比(< 50 wt%)與經碌灰石重量百分比(> 5〇 wt%)在攝氏溫度一千一百度以下煆燒而得到成品。 2. —種活性氟化羥碟灰石複合物,用於製作人造骨、生物水泥、多孔 生物材料'生物塗層、人體齒根、生物支架、填補材料等。其特徵在於: 所述的氟化羥磷灰石複合物是煆燒後具備氟化羥磷灰石爲其中晶相之一且 傅立葉變換紅外光譜檢測下同時具備羥基團與羥基氟離子氫鍵或同時具有 羥基與不同羥基氟離子氫鍵等各種不同官能基表現者。 Φ 3·根據權利要求1所述的製造方法’其特徵在於:所述的氣化經碟灰石 複合物是採用煆燒方法直接合成,其工藝過程爲:將氟化鈣與經填灰石按 化學計量配料,均勻混合後進行燒結合成。 4. 根據權利要求1所述的製造方法,其特徵在於:所述的氟化經磷灰石 複合物是採用攝氏溫度一千一百度以下煆燒形成氟化羥磷灰石複合物者。 5. 根據權利要求1所述的製造方法’其特徵在於:所述的氣化經磷灰石 複合物是氟化鈣重量百分比« 50 wt%)與羥磷灰石重量百分比5〇 wt%) 均勻混合後煆燒方法直接合成者。 — ° 6. 根據權利要求1所述的製造方法,其特徵在於:所述的氟化羥磷灰石 φ 複合物是以氟化約或氫氧化鈣爲共晶易熔物者。 7. -種驗活化人類造骨細胞生物活性之㈣喊物,其包括根據申 請專利範圍第1項之化合物及其藥學上可接受之載劑。 8. -種麟抑制人臟骨細魅紐性之醫驗祕,其包括根據申 請專利範圍第1項之化合物及其藥學上可接受之載劑。 9. 種用於生物活性之醫藥組成物,其包括根據申請專利範圍第^ 之化合物及其藥學上可接受之載劑。 ,^ 10. -種麟生物活性之雜組成物,其傅立葉轉換红外總儀檢測結 果,为別具備(a) 0H和0H.F氫鍵;或⑹〇H,〇H F和〇〇 H〇氮鍵 (c) 0H.F和0H.F.H0氫鍵,各組不同官能基團表現之一者。 ’一201200471 VII. Patent application scope: 1. A method for preparing fluoridated hydroxyapatite conroosites with chemical formula [CaVPOACOHWFh] (x=0~2), characterized in that: uniformly mixed fluorination The weight percentage (< 50 wt%) and the weight percentage of the limestone (> 5 wt%) were calcined at a temperature of 1 in 1 degree Celsius to obtain a finished product. 2. An active fluorinated hydroxy-washstone composite for the production of artificial bone, bio-cement, porous biomaterials, bio-coatings, human tooth roots, biological scaffolds, filling materials, etc. The fluorinated hydroxyapatite composite has fluorinated hydroxyapatite as one of the crystal phases after calcination and has a hydroxyl group and a hydroxyl fluoride hydrogen bond under the Fourier transform infrared spectroscopy At the same time, there are various functional groups such as hydroxyl groups and different hydroxyl fluoride hydrogen bonds. Φ 3. The manufacturing method according to claim 1, characterized in that: the vaporized disc-washing stone composite is directly synthesized by a calcining method, and the process is: calcium fluoride and naphtha According to the stoichiometric ingredients, the mixture is uniformly mixed and then sintered. 4. The method according to claim 1, wherein the fluorinated apatite composite is formed by calcining at a temperature of one thousand and one hundred degrees Celsius to form a fluorinated hydroxyapatite composite. 5. The manufacturing method according to claim 1, characterized in that: the gasified apatite composite is a weight percent of calcium fluoride «50 wt%) and a weight percentage of hydroxyapatite (5 wt%) After the homogeneous mixing, the simmering method is directly synthesized. The method according to claim 1, wherein the fluorinated hydroxyapatite φ composite is fluorinated or calcium hydroxide as a eutectic fusible. 7. A test for activating the biological activity of human osteoblasts, which comprises a compound according to claim 1 and a pharmaceutically acceptable carrier thereof. 8. A medical trial for inhibiting human visceral bones, which comprises a compound according to claim 1 and a pharmaceutically acceptable carrier thereof. 9. A pharmaceutical composition for biological activity comprising a compound according to the scope of the patent application and a pharmaceutically acceptable carrier thereof. , ^ 10. - The heterogeneous composition of the biological activity of the arsenic, the Fourier transform infrared total detector test results, with (a) 0H and 0H.F hydrogen bonds; or (6) 〇H, 〇HF and 〇〇H〇N The bond (c) 0H.F and 0H.F.H0 hydrogen bond, one of the different functional groups of each group. 'One
TW99120042A 2010-06-21 2010-06-21 The preparation of fluoridated hydroxyapatites and their applications TW201200471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99120042A TW201200471A (en) 2010-06-21 2010-06-21 The preparation of fluoridated hydroxyapatites and their applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99120042A TW201200471A (en) 2010-06-21 2010-06-21 The preparation of fluoridated hydroxyapatites and their applications

Publications (1)

Publication Number Publication Date
TW201200471A true TW201200471A (en) 2012-01-01

Family

ID=46755429

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99120042A TW201200471A (en) 2010-06-21 2010-06-21 The preparation of fluoridated hydroxyapatites and their applications

Country Status (1)

Country Link
TW (1) TW201200471A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2683255C1 (en) * 2018-03-06 2019-03-27 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Bioactive composing material for replacement of bone defects and method for producing thereof
CN112158820A (en) * 2020-09-06 2021-01-01 桂林理工大学 Preparation method and application of fluorapatite solid solution
CN114014288A (en) * 2021-11-09 2022-02-08 中南大学 Calcium fluoride modified hydroxyapatite powder and preparation method thereof
EP3777904B1 (en) * 2019-08-16 2022-04-13 Universität Heidelberg Osteotropic bone replacement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2683255C1 (en) * 2018-03-06 2019-03-27 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Bioactive composing material for replacement of bone defects and method for producing thereof
EP3777904B1 (en) * 2019-08-16 2022-04-13 Universität Heidelberg Osteotropic bone replacement
CN112158820A (en) * 2020-09-06 2021-01-01 桂林理工大学 Preparation method and application of fluorapatite solid solution
CN114014288A (en) * 2021-11-09 2022-02-08 中南大学 Calcium fluoride modified hydroxyapatite powder and preparation method thereof
CN114014288B (en) * 2021-11-09 2022-12-13 中南大学 Calcium fluoride modified hydroxyapatite powder and preparation method thereof

Similar Documents

Publication Publication Date Title
Ghosh et al. Synthesis and characterization of sintered beta-tricalcium phosphate: A comparative study on the effect of preparation route
EP2403544B1 (en) Galliated calcium phosphate biomaterials
Eslami et al. The comparison of powder characteristics and physicochemical, mechanical and biological properties between nanostructure ceramics of hydroxyapatite and fluoridated hydroxyapatite
Karamian et al. Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique
Kannan et al. Aqueous precipitation method for the formation of Mg-stabilized β-tricalcium phosphate: An X-ray diffraction study
Salma-Ancane et al. Development of Mg-containing porous β-tricalcium phosphate scaffolds for bone repair
Swain et al. Fabrication of porous hydroxyapatite scaffold via polyethylene glycol-polyvinyl alcohol hydrogel state
KR20190067775A (en) Regenerative Medicine Materials and Methods of Making and Application
CN104030718A (en) Trace element-doped porous calcium carbonate ceramic, and preparation method and application thereof
Batool et al. Bone whitlockite: synthesis, applications, and future prospects
Kannan et al. Characterization and Mechanical Performance of the Mg‐Stabilized β‐Ca3 (PO4) 2 Prepared from Mg‐Substituted Ca‐Deficient Apatite
EP3157590B1 (en) Injectable apatitic cement ionically multi-substituted for regenerative vertebroplasty and kyphoplasty
TW201200471A (en) The preparation of fluoridated hydroxyapatites and their applications
Yin et al. Customized reconstruction of alveolar cleft by high mechanically stable bioactive ceramic scaffolds fabricated by digital light processing
Ayed et al. Sintering of tricalcium phosphate–fluorapatite composites with zirconia
Montoya-Cisneros et al. Low-temperature densification of Mg-doped hydroxyapatite fine powders under hydrothermal hot processing conditions
US8894958B2 (en) Galliated calcium phosphate biomaterials
Fu et al. Calcium phosphate cements: Structure-related properties
RU2652429C1 (en) Bioresorbable material and method for producing thereof
Oliveira et al. A Comparative study between β-TCP prepared by solid state reaction and by aqueous solution precipitation: application in cements
Çardaklı Lanthanum Oxide Doped Calcium Silicates Particles: Preparation and Characterization
TW201200172A (en) The fluoridated hydroxyapatite composites having an action of enhancing the biological activity of human osteoblast cells, a process for the preparation thereof, and a pharmaceutical composition comprising them
Marimuthu et al. Zirconia Toughened BCP Bioceramic Material for the Fabrication of Small Diameter Blood Vessels for Cardiovascular Applications.
Yao et al. A Comparative Study of Pressureless Sintered Nanostructured Hydroxyapatite/TiO2 Composites Prepared by Different TiO2 Addition Methods
Cioni et al. Synthesis of bioactive hydroxyapatite-zirconia toughened composites for bone replacement