RU2682565C1 - Способ измерения длины электропроводного объекта - Google Patents

Способ измерения длины электропроводного объекта Download PDF

Info

Publication number
RU2682565C1
RU2682565C1 RU2017146112A RU2017146112A RU2682565C1 RU 2682565 C1 RU2682565 C1 RU 2682565C1 RU 2017146112 A RU2017146112 A RU 2017146112A RU 2017146112 A RU2017146112 A RU 2017146112A RU 2682565 C1 RU2682565 C1 RU 2682565C1
Authority
RU
Russia
Prior art keywords
antenna
measuring
length
frequency
resonant frequency
Prior art date
Application number
RU2017146112A
Other languages
English (en)
Inventor
Юрий Владимирович Юханов
Сергей Сергеевич Гарматюк
Original Assignee
федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" (Южный федеральный университет)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" (Южный федеральный университет) filed Critical федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" (Южный федеральный университет)
Priority to RU2017146112A priority Critical patent/RU2682565C1/ru
Application granted granted Critical
Publication of RU2682565C1 publication Critical patent/RU2682565C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Предлагаемый способ относится к контрольно-измерительной технике и может быть использован в автоматизированных системах производства, а также при измерении длины радиоактивных объектов, отрезков тонких проводов и других электропроводных объектов, измерение которых известными способами затруднено. Для повышения точности измерений при небольших затратах времени на проведение измерений с использованием простых приборов в способе измерения длины электропроводного объекта, основанном на возбуждении в объекте электромагнитного колебания, измерении резонансной частоты этого колебания и вычислении длины объекта по величине этой частоты, объект используют в качестве четвертьволновой штыревой антенны и измеряют частоту первого последовательного резонанса этой антенны, причем при измерении резонансной частоты используют измерительный параллельный LC-контур в цепи питания антенны, который настраивают на резонансную частоту антенны таким образом, чтобы частотная характеристика колебательной системы, образованной этим контуром и антенной, имела симметричный вид, а длину объекта определяют по формулегде- резонансная частота антенны, с - скорость света, а А=0,22-0,24 - коэффициент, величина которого зависит от диаметра антенны, площади противовеса и электропроводных объектов, находящихся вблизи антенны. 4 ил.

Description

Предлагаемый способ относится к контрольно-измерительной технике и может быть использован в автоматизированных системах производства, а также при измерении длины радиоактивных объектов, отрезков тонких проводов и других электропроводных объектов, измерение которых известными способами затруднено.
Известен способ бесконтактного радиоволнового определения размеров электропроводных изделий (Носков В.Я., Игнатков К.А., Чупахин А.П. «Применение двухдиодных автодинов в устройствах радиоволнового контроля размеров изделий»// Измерительная техника. 2016. №7. С. 24-28). При использовании этого способа автодин применяют как доплеровский локатор, измеряют угол между вектором скорости движения объекта и осью диаграммы направленности антенны, с помощью специального датчика регистрируют измерительный интервал за время движения объекта и считают количество импульсов, попавших в измерительный интервал. По этим данным вычисляют длину объекта.
Общими признаками с заявляемым способом являются измерение длины электропроводного объекта в радиоволновом диапазоне, без непосредственного контакта с объектом.
Недостатками аналога являются большая погрешность измерений, обусловленная погрешностью датчика, формирующего сигналы измерительного интервала, большие затраты времени на проведение измерений и сложность приемо-передающей аппаратуры. Для реализации данного способа необходимо обеспечить движение объекта.
Известен бесконтактный радиоволновый способ измерения длины электропроводного объекта, основанный на использовании зависимости параметров электромагнитного поля от расстояния и длины электрически проводимых структур (в предлагаемом способе - электропроводного объекта). (Гартнянски Р. и др. «Измерение длины проводника в электромагнитном поле». Статья в журнале «Интеллектуальные системы в производстве» Издательство: Ижевский государственный технический университет им. М.Т. Калашникова (Ижевск), ISSN: 1813-7911). При использовании этого способа измеряемый электропроводный объект помещают вблизи полуволнового вибратора и определяют положение минимума функции активной части входного сопротивления этого вибратора в диапазоне частот. По результатам этих измерений вычисляют длину объекта.
Общими признаками с заявляемым способом являются измерение длины электропроводного объекта в радиоволновом диапазоне с использованием зависимости параметров электромагнитного поля от длины объекта, без непосредственного контакта с объектом.
Недостатками аналога являются большая погрешность измерений и большие затраты времени на проведение измерений с использования сложных приборов, поскольку минимум функции входного сопротивления, определяемый при измерении, выражен не четко
Из известных способов измерения длины наиболее близким по технической сущности является бесконтактный радиоволновый способ измерения длины электропроводного объекта, основанный на возбуждении в объекте электромагнитного колебания, измерении резонансной частоты этого колебания и вычислении длины объекта по величине этой частоты. (В.А. Викторов и др. «Радиоволновые измерения параметров технологических процессов». - М.: Энергоатомиздат, 1989, стр. 80-81). При использовании этого способа измеряемый электропроводный объект используют в качестве элемента двухпроводной или коаксиальной линии, разомкнутой на обоих концах, возбуждают в объекте электромагнитное колебание и измеряют его резонансную частоту. По результатам измерения резонансной частоты вычисляют длину объекта.
Существенными признаками, общими с существенными признаками заявляемого способа, являются возбуждение в объекте электромагнитного колебания, измерение его резонансной частоты и вычисление длины объекта по результатам измерения резонансной частоты.
Причинами, препятствующими достижению технического результата, являются низкая точность измерений и сложность эксплуатации, поскольку частотная характеристика использованной одноконтурной колебательной системы имеет тупой экстремум. Кроме того, на величину резонансной частоты влияют не учтенные элементы связи объекта с измерительными цепями и элементы крепления объекта. Измеритель сложен в эксплуатации, поскольку необходимо обеспечивать определенное взаимное расположение объекта и измерительных цепей.
Технический результат, на решение которого направлен предлагаемый способ, - повышение точности измерений при небольших затратах времени на проведение измерений с использованием простых приборов.
Технический результат достигается тем, что при измерении объект используют в качестве четвертьволновой штыревой антенны и измеряют частоту первого последовательного резонанса этой антенны, причем при измерении резонансной частоты используют измерительный параллельный LC-контур в цепи питания антенны, который настраивают на резонансную частоту антенны таким образом, чтобы частотная характеристика колебательной системы, образованной этим контуром и антенной, имела симметричный вид, а длину объекта определяют по формуле
Figure 00000001
, где
Figure 00000002
- резонансная частота антенны; с - скорость света; а А=0,22-0,24 - коэффициент, величина которого зависит от диаметра антенны, площади противовеса, и электропроводных объектов, находящихся вблизи антенны.
Для достижения технического результата в способе измерения длины электропроводного объекта, основанном на возбуждении в объекте электромагнитного колебания, измерении резонансной частоты этого колебания и вычислении длины объекта по величине этой частоты, при измерении объект используют в качестве четвертьволновой штыревой антенны и измеряют частоту первого последовательного резонанса этой антенны, причем при измерении резонансной частоты используют измерительный параллельный LC-контур в цепи питания антенны, который настраивают на резонансную частоту антенны таким образом, чтобы частотная характеристика колебательной системы, образованной этим контуром и антенной, имела симметричный вид, а длину объекта определяют по формуле
Figure 00000001
где
Figure 00000002
- резонансная частота антенны; с - скорость света; а А=0,22-0,24 - коэффициент, величина которого зависит от диаметра антенны, площади противовеса, и электропроводных объектов, находящихся вблизи антенны.
Сущность предлагаемого изобретения поясняется чертежами, где на фиг. 1 изображена одна из возможных схем измерителя; на фиг. 2 - схема колебательной системы измерителя; на фиг. 3 вид частотных характеристик, а на фиг. 4 - сопоставление экспериментальных и расчетных данных.
На фиг. 1 представлены: противовес антенны 1; высокочастотный листовой диэлектрик 2; контурный конденсатор 3; индуктивность контура 4; опорная площадка 5; измеряемый объект 6; элементы связи LC-контура с измерительными приборами 7 и 8; амплитудный детектор 9; соединительные кабели 10; измеритель частотных характеристик 11; устройство обработки сигналов 12.
Листовой диэлектрик 2 необходим для крепления опорной площадки 5. Индуктивность 4 вместе с суммарной емкостью С, включающей контурную емкость 3, емкость опорной площадки и емкости элементов связи, образуют измерительный LC-контур. Перестройку резонансной частоты этого контура можно осуществлять изменением емкости и индуктивности. Наличие емкости опорной площадки и емкости элементов связи не влияет на погрешность измерения резонансной частоты антенны, поскольку их реактивности скомпенсированы индуктивностью 4. Объект, используемый в качестве антенны, и измерительный LС-контур образуют двухконтурную колебательную систему (фиг. 2). На фиг. 2 показаны элементы LC-контура (L, С, r) и антенны вблизи частоты ее последовательного резонанса (LA, СА, rА). Типичный вид суммарной частотной характеристики двухконтурной колебательной системы показан на фиг. 3. При высокой добротности LC-контура (Q>5) и точном совпадении резонансных частот ZC-контура и антенны суммарная частотная характеристика получается симметричной (фиг. 3, а).
При измерении объект длиной l используют в качестве четвертьволновой штыревой антенны (l=λ/4). Объект устанавливают на опорной площадке, приподнятой над противовесом, возбуждают в нем электромагнитное колебание и измеряют частоту первого последовательного резонанса. При измерении резонансной частоты используют измерительный параллельный LC-контур в цепи питания антенны, который настраивают таким образом, чтобы частотная характеристика колебательной системы, образованной этим контуром и антенной, имела симметричный вид, а длину объекта определяют по формуле
Figure 00000001
где
Figure 00000002
- резонансная частота антенны; с - скорость света; а А=0,22-0,24 - коэффициент, величина которого зависит от диаметра антенны, площади противовеса и электропроводных объектов, находящихся вблизи антенны. При измерении ось объекта должна быть перпендикулярна плоскости противовеса 1. Противовес может быть ориентирован в пространстве произвольным образом.
Возможно проведение измерений и на высоких номерах частот последовательного резонанса антенны: l=3λ/4, l=5λ/4 и т.п., однако лишь при измерении на частоте первого последовательного резонанса получается однозначность отсчета длины объекта.
В качестве противовеса антенны может быть использован металлический диск. Как известно, наибольшие потери мощности происходят в зоне земли, ограниченной диаметром 0,35λ относительно штыревой антенны (Григоров И.Н. Антенны. Настройка и согласование. - М.: ИП РадиоСофт, 2010, стр. 15). Именно металлизация этой зоны может решить проблему, связанную с потерями в земле. Поэтому диаметр D металлического диска должен удовлетворять условию D>0,35λ. При использовании противовеса меньшего диаметра снижается добротность антенны, а в результат измерения длины необходимо вводить поправочный коэффициент.
Для индикации частотных характеристик использован измеритель частотных характеристик (ИЧХ) 11. Высокочастотное напряжение с выхода ИЧХ 11 по соединительному кабелю 10 поступает на элемент связи 8 и далее на опорную площадку 5. С опорной площадки высокочастотное напряжение через элемент связи 7 поступает на амплитудный детектор 9 и далее по другому соединительному кабелю 10 поступает на вход ИЧХ 11. Соединительные кабели 10 должны иметь достаточную длину, чтобы измерительные приборы и тело оператора были удалены от антенны и не искажали электромагнитное поле антенны. При необходимости, наряду с визуальной оценкой вида частотной характеристики LC-контура и антенны может быть использовано устройство обработки сигналов 12.
Для повышения точности измерений необходимо повышать добротность LC-контура, поскольку с увеличением добротности уменьшается полоса пропускания контура и, соответственно, снижается погрешность измерения его резонансной частоты и улучшается селекция полезного сигнала. Поскольку измерение частоты может быть выполнено с наибольшей точностью, погрешность измерения получается малой. Благоприятным является и то обстоятельство, что величина коэффициента А сравнительно слабо зависит от диаметра антенны, площади противовеса, и электропроводных объектов, находящихся вблизи антенны.
Благодаря тому, что LC-контур обеспечивает свойственную резонансным методам измерения частотную селекцию полезного сигнала от электромагнитных сигналов окружающей среды, измерения могут быть выполнены в лабораторных условиях, без использования экранированной камеры и при малой мощности генератора. Величина минимального напряжения между опорной площадкой и противовесом определяется чувствительностью амплитудного детектора и не превышает долей вольта, что удовлетворяет требованиям безопасности.
При экспериментальном исследовании были использованы отрезки проводов длиной от 29 до 130 см и диаметром 2,1 мм. Их размеры близки к размерам проводников, использованных в аналоге (Гартнянски Р. и др. «Измерение длины проводника в электромагнитном поле». Статья в журнале «Интеллектуальные системы в производстве» Издательство: Ижевский государственный технический университет им. М.Т. Калашникова (Ижевск), ISSN: 1813-7911). Был использован противовес диаметром 80 см. При таком диаметре противовеса в соответствии с условием D>0,35λ частота измерений должна быть не менее ƒ>0,35c/D)=0,35⋅3⋅108/0,8=131 МГц. При возбуждении антенны на частоте первого последовательного резонанса ее длина должна быть не более l≤Ac/ƒ=0,23⋅3⋅108/131⋅106=0,5 м.
В качестве измерителя частотных характеристик был использован прибор типа X1-47. Оператор, измерительные приборы и другие проводящие объекты были удалены от измеряемого объекта на расстояние не менее 3 м. Результаты измерений показаны на фиг.4 пунктирной линией. Для сравнения на фиг. 4 сплошной линией показаны результаты расчета по формуле l=Ac/ƒ=0,23 c/ƒ. Как видно из фиг. 4, расчетные и экспериментальные результаты хорошо соответствуют друг другу.
На фиг. 3,а показан вид частотной характеристики при точной настройке LC-контура на резонансную частоту антенны, а на фиг. 3,b и 3,с при небольших расстройках в сторону верхних и нижних частот. Чем больше величина расстройки частоты, тем сильней частотная характеристика отличается от симметричной.
Таким образом, теоретически и экспериментально доказано, что предлагаемый способ измерения длины объекта обеспечивает высокую точность измерения при небольших затратах времени на проведение измерений с использованием простых в эксплуатации измерительных приборов. Предлагаемый способ особенно удобен при измерении длины объектов малого диаметра, то есть объектов с малой площадью поперечного сечения (трубы, прутки, провода и т.п.), когда использование известных методов затруднено.
Актуальность поиска новых способов измерения длины объектов подтверждается, в частности, данными аналога. Разработкой способа измерения, основанного на регистрации изменений электромагнитных характеристик в зависимости от геометрических размеров измеряемого объекта, занимались ученые Словацкого технического университета, Братислава (Словакия) и Ижевского государственного технического университета. Их работа выполнена при финансовой поддержке проекта VEGA 1/0963/12 и VEGA 2/0006/10. Статья в журнале «Интеллектуальные системы в производстве» профинансирована в рамках проекта №2010-218-02-259 за счет субсидий Минобрнауки России по договору №13.G25.31.0094 от 22.10.2010 г.

Claims (1)

  1. Способ измерения длины электропроводного объекта, основанный на возбуждении в объекте электромагнитного колебания, измерении резонансной частоты этого колебания и вычислении длины объекта по величине этой частоты, отличающийся тем, что при измерении объект используют в качестве четвертьволновой штыревой антенны и измеряют частоту первого последовательного резонанса этой антенны, причем при измерении резонансной частоты используют измерительный параллельный LC-контур в цепи питания антенны, который настраивают на резонансную частоту антенны таким образом, чтобы частотная характеристика колебательной системы, образованной этим контуром и антенной, имела симметричный вид, а длину объекта определяют по формуле
    Figure 00000003
    где
    Figure 00000004
    - резонансная частота антенны, с - скорость света, а А=0,22-0,24 - коэффициент, величина которого зависит от диаметра антенны, площади противовеса и электропроводных объектов, находящихся вблизи антенны.
RU2017146112A 2017-12-26 2017-12-26 Способ измерения длины электропроводного объекта RU2682565C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017146112A RU2682565C1 (ru) 2017-12-26 2017-12-26 Способ измерения длины электропроводного объекта

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146112A RU2682565C1 (ru) 2017-12-26 2017-12-26 Способ измерения длины электропроводного объекта

Publications (1)

Publication Number Publication Date
RU2682565C1 true RU2682565C1 (ru) 2019-03-19

Family

ID=65805912

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146112A RU2682565C1 (ru) 2017-12-26 2017-12-26 Способ измерения длины электропроводного объекта

Country Status (1)

Country Link
RU (1) RU2682565C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787070C1 (ru) * 2022-08-12 2022-12-28 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения длины металлической трубы

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2185095A6 (ru) * 1972-05-16 1973-12-28 Commissariat Energie Atomique
SU442361A1 (ru) * 1972-08-07 1974-09-05 Днепропетровский Трубопрокатный Завод Им.Ленина Способ измерени длины прот жных изделий
SU1298538A1 (ru) * 1985-04-19 1987-03-23 Институт Проблем Управления (Автоматики И Телемеханики) Способ измерени внутреннего диаметра металлической трубы
RU2037141C1 (ru) * 1989-01-16 1995-06-09 Инж. Армин В.Грдличка Способ бесконтактного определения длины волновода и устройство для его осуществления
WO2014085000A1 (en) * 2012-11-30 2014-06-05 Illinois Tool Works Inc. System and method for determining welding wire diameter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2185095A6 (ru) * 1972-05-16 1973-12-28 Commissariat Energie Atomique
SU442361A1 (ru) * 1972-08-07 1974-09-05 Днепропетровский Трубопрокатный Завод Им.Ленина Способ измерени длины прот жных изделий
SU1298538A1 (ru) * 1985-04-19 1987-03-23 Институт Проблем Управления (Автоматики И Телемеханики) Способ измерени внутреннего диаметра металлической трубы
RU2037141C1 (ru) * 1989-01-16 1995-06-09 Инж. Армин В.Грдличка Способ бесконтактного определения длины волновода и устройство для его осуществления
WO2014085000A1 (en) * 2012-11-30 2014-06-05 Illinois Tool Works Inc. System and method for determining welding wire diameter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2787070C1 (ru) * 2022-08-12 2022-12-28 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ измерения длины металлической трубы

Similar Documents

Publication Publication Date Title
US7315173B2 (en) Method of measuring electric field distribution and electric field distribution measuring instrument
JP3616627B2 (ja) 電磁波探査機における媒体中誘電率の測定方法、並びに、電磁波探査機
KR100741432B1 (ko) 비흡수율 측정 장치
KR101756325B1 (ko) 평면형 플라즈마 진단 장치
EP1916531A1 (en) Specific absorption rate measurement system and method
US10180342B2 (en) Level finding using multiple search steps
US6879167B2 (en) Noncontact measuring system for electrical conductivity
US9151720B2 (en) Device for testing a surface including an extraction unit for extracting a shifted frequency component and associated method
RU2682565C1 (ru) Способ измерения длины электропроводного объекта
Kim et al. Non-contact crack detection in metals using a cutoff-cavity probe
Migliore et al. Far-field antenna pattern estimation from near-field data using a low-cost amplitude-only measurement setup
Wensink et al. MEASURED UNDERWATER NEAR‐FIELD E‐PATTERNS OF A PULSED, HORIZONTAL DIPOLE ANTENNA IN AIR: COMPARISON WITH THE THEORY OF THE CONTINUOUS WAVE, INFINITESIMAL ELECTRIC DIPOLE1
JP2004354362A (ja) アンテナの遠方界放射パターン測定法
Nesterova et al. Analytical study of 5G beamforming in the reactive near-field zone
JP3860824B2 (ja) 媒体中誘電率の測定方法、並びに、電磁波探査機
RU2677113C1 (ru) Способ контроля длины электропроводного объекта
JPH02112716A (ja) 細長い素子の位置測定方法およびその装置
RU2063641C1 (ru) Способ измерения эффективной площади рассеяния и устройство для его осуществления
Baskakova et al. Investigation of waveguide sensors for ultra-short-distance measurements
JP2011017535A (ja) 遠方電磁界ノイズ測定方法および装置
SU1357880A1 (ru) Способ определени диаграммы направленности антенны
Barbano Phase center distributions of spiral antennas
Cao et al. Multiple reflection error analysis for planar near field measurement in time domain
RU2564454C1 (ru) Способ получения радиоголограмм подповерхностных проводящих объектов цилиндрической формы
Drobakhin et al. Multifrequency radar images of electrodynamics objects located behind dielectric layer in millimeter wave range

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201227