RU2682554C1 - Способ получения поликристаллических сцинтилляционных материалов в форме порошков - Google Patents

Способ получения поликристаллических сцинтилляционных материалов в форме порошков Download PDF

Info

Publication number
RU2682554C1
RU2682554C1 RU2017146718A RU2017146718A RU2682554C1 RU 2682554 C1 RU2682554 C1 RU 2682554C1 RU 2017146718 A RU2017146718 A RU 2017146718A RU 2017146718 A RU2017146718 A RU 2017146718A RU 2682554 C1 RU2682554 C1 RU 2682554C1
Authority
RU
Russia
Prior art keywords
composition
heat treatment
scintillation
temperature
mixed solution
Prior art date
Application number
RU2017146718A
Other languages
English (en)
Inventor
Екатерина Сергеевна Ващенкова
Екатерина Вадимовна Гордиенко
Алексей Ефимович Досовицкий
Георгий Алексеевич Досовицкий
Михаил Васильевич Коржик
Дарья Евгеньевна Кузнецова
Виталий Александрович МЕЧИНСКИЙ
Александр Леонидович Михлин
Андрей Анатольевич Федоров
Original Assignee
Федеральное государственное унитарное предприятие "Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра "Курчатовский институт"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра "Курчатовский институт" filed Critical Федеральное государственное унитарное предприятие "Институт химических реактивов и особо чистых химических веществ Национального исследовательского центра "Курчатовский институт"
Priority to RU2017146718A priority Critical patent/RU2682554C1/ru
Application granted granted Critical
Publication of RU2682554C1 publication Critical patent/RU2682554C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • C01F7/027Treatment involving fusion or vaporisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7706Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7721Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/28Complex oxides with formula A3Me5O12 wherein A is a rare earth metal and Me is Fe, Ga, Sc, Cr, Co or Al, e.g. garnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • G01T1/2023Selection of materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • Metallurgy (AREA)
  • Structural Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)

Abstract

Изобретение относится к технологии получения поликристаллических сцинтилляционных материалов, применяемых в различных областях науки и техники, важнейшими из которых являются: медицинские и промышленные томографы, системы таможенного контроля и контроля распространения радиоактивных материалов, приборы дозиметрического контроля, различные детекторы для научных исследований, применяемые в физике высоких энергий и астрофизике, оборудование для геофизических исследований для нефте- и газоразведки. Способ получения сцинтилляционного порошка состава (Gd,Y)(Ga,Al)O:Ce включает приготовление водных растворов солей исходных компонентов - Gd, Y, Се, Ga, Al - с заданными концентрациями, смешение этих растворов в количестве, обеспечивающем требуемый состав компонентов в смесевом растворе, приготовление раствора щелочного осадителя, приливание смесевого раствора исходных компонентов в раствор щелочного осадителя, термообработку полученной реакционной смеси путем медленного упаривания при температуре до 100°С, термообработку на воздухе в открытой емкости при последовательном повышении температуры до 450°С, а затем до 600°С, с последующей термообработкой при температуре 1000-1600°С. Техническим результатом изобретения является возможность экспрессного получения сцинтилляционных порошков сложных оксидов со структурой граната, активированных церием с составом задаваемым обобщенной формулой (Gd,Y)(Ga,Al)O:Ce, с точно заданным составом. Частицы полученного порошка обладают плотной микроструктурой, выглядят прозрачными при наблюдении в оптическом микроскопе и демонстрируют высокий световыход сцинтилляций, характерный для этого класса соединений. 6 ил., 1 табл., 1 пр.

Description

Область техники
Изобретение относится к способам получения поликристаллических сцинтилляционных материалов. Сцинтилляторы находят широкое применение в различных областях науки и техники. Важнейшими из них являются: медицинские и промышленные томографы, системы таможенного контроля и контроля распространения радиоактивных материалов, приборы дозиметрического контроля, различные детекторы для научных исследований, применяемые в физике высоких энергий и астрофизике, оборудование для геофизических исследований для нефте- и газоразведки.
Уровень техники
Одним из наиболее перспективных групп сцинтилляционных материалов на сегодняшний день являются сложные оксиды со структурой граната с составом, выражаемым обобщенной формулой (Gd,Y)3(Ga,Al)5O12:Ce [P. Lecoq, М. Korzhik and A. Gektin, Inorganic Scintillators for Detecting Systems, Springer, 2017, 408 p.].
Эти материалы рассматриваются с точки зрения применений в форме монокристаллов, светопропускающей керамики или порошков. Порошки представляют интерес как сырье для керамических материалов, как самостоятельный материал для сцинтилляционных экранов с порошковым покрытием [Luminescent Materials. G. Blasse, B.C. Grabmaier. Springer-Verlag. Berlin, Heidelberg, 1994, 223 pp.] и как объекты для экспресс-исследований керамических и монокристаллических материалов.
Сцинтилляционные характеристики сложных оксидов со структурой граната существенно зависят от малых вариаций состава [К. Kamada, S. Kurosawa, P. Prusa, M. Nikl, V.V. Kochurikhin, T. Endo, K. Tsutumi, H. Sato, Y. Yokota, K. Sugiyama, A. Yoshikawa. Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Optical Materials (2014) 36(12), 1942-1945. Dosovitskiy, G., Fedorov, A., Mechinsky, V., Borisevich, A., Dosovitskiy, A.,
Figure 00000001
E., & Korjik, M. (2017, February). Persistent luminescence in powdered and ceramic polycrystalline Gd3Al2Ga3O12:Ce. In IOP Conference Series: Materials Science and Engineering (Vol. 169, No.1, p. 012014). IOP Publishing].
На данный момент большинство монокристаллических и поликристаллических сцинтилляционных материалов получают по методике роста из расплавов, твердофазного синтеза или по методике соосаждения из многокомпонентных растворов солей.
Для получения методом твердофазного синтеза порошков и керамики из сложных оксидов со структурой граната сцинтилляционного качества требуются исходные порошки, отвечающие высоким требованиям по составу и микроструктуре. Подбор плавня является нежелательным приемом, так как плавень привносит дополнительные компоненты и примеси в состав сцинтиллятора, и они могут существенно влиять на оптические, люминесцентные и сцинтилляционные характеристики поликристаллических сцинтилляционных материалов. Так же важную роль играет размер частиц исходных компонентов, так как при использовании слишком крупных исходных порошков при дальнейшем усреднении, смешении и спекании может быть получен неоднородный и/или неоднофазный материал.
При росте из расплава по методу Чохральского склонность галлия к улетучиванию из оксидных расплавов может привести к нарушению стехиометрии состава (Фиг. 1). К тому же метод роста из расплавов является энергоемким и связан с более сложной технической базой. Получение порошков методом роста монокристаллов с последующим дроблением может быть целесообразным только в ограниченном числе случаев при решении специфических задач или в особых технологических условиях.
Привлекательным сочетанием технологичности, масштабируемости и возможности получения высококачественных поликристаллических материалов обладает метод совместного осаждения (соосаждения), но он также имеет ряд недостатков применительно к составам (Gd,Y)3(Ga,Al)5O12:Ce. Растворимости гидроксидов Ga и Gd чувствительны к величине рН реакционной смеси, и в интервале рН от 6,5 до 9,0 не было найдено интервала, при котором обеспечивалось бы количественное осаждение каждого из этих компонентов (Фиг. 2). Кроме того, при промывке осадка, которая является стадией процесса получения порошка методом соосаждения, происходит вымывание компонентов, которое также приводит к нарушению состава. Количество компонентов, вымывание которых происходит при синтезе порошка состава Gd3Ga3Al2O12:Ce при двукратной промывке приведено в Таблице 1.
Figure 00000002
В качестве прототипа был выбран способ, описанный в заявке на патент [CN101113333], «Method for preparing cerium-activated yttrium aluminum garnet fluorescent powder». Описанный в патенте способ получения люминофора, активированного церием, с общей формулой Y3-x-y-zRyAl5-mGamO12:Cex,R'z, где 0,01≤х≤0,12, R=Gd, Sm и другие редкоземельные элементы, 0≤у≤1,20, R'=Pr, Dy, 0≤z≤0.04,0≤m≤2.00, включает стадии: получение растворов ионов металлов, получение раствора осадителя, получение осадка, добавление флюса для последующей твердофазной реакции, спекание, измельчение порошков, спеченных при высокой температуре, травление, щелочную промывку, промывку водой и сушку. Целевым продуктом является Се-активированный люминофор на основе оксида со структурой граната имеет высокую светимость, низкую степень агломерации, узкое распределение частиц по размерам.
Раскрытие изобретения
Техническим результатом заявленного изобретения является возможность экспрессного получения сцинтилляционных порошков сложных оксидов со структурой граната, активированных церием с составом задаваемым обобщенной формулой (Gd,Y)3(Ga,Al)5O12:Ce, с точно заданным составом. Частицы полученного порошка обладают плотной микроструктурой и выглядят прозрачными при наблюдении в оптическом микроскопе.
Для достижения данного технического результата предложен способ получения сцинтилляционного порошка состава (Gd,Y)3(Ga,Al)5O12:Ce, включающий следующие последовательные стадии процесса: приготовление водных растворов солей исходных компонентов - Gd, Y, Се, Ga, Al - с точно известными концентрациями, смешение этих растворов в необходимом количестве для обеспечения требуемого состава компонентов в смесевом растворе, приготовление раствора щелочного осадителя, приливание смесевого раствора исходных компонентов в раствор щелочного осадителя, термообработку полученной реакционной смеси, и отличающийся тем, что проводят медленное упаривание реакционной смеси при температуре до 100°С, термообработку на воздухе в открытой емкости при последовательном повышении температуры до 450°С, а затем до 600°С, с последующей термообработкой при температуре 1000-1600°С.
Совокупность приведенных выше существенных признаков позволяет получить порошок с точно заданным составом и плотной микроструктурой, который может быть использован как объект для экспресс-тестов сцинтилляционных характеристик различных составов, а также как самостоятельный сцинтилляционных материал.
При помощи заявляемого способа получения поликристаллических сцинтилляционных материалов все компоненты входят в состав в заданном количестве. Это обеспечивается отсутствием стадий фильтрации и промывки в комбинации с длительной низкотемпературной термообработкой.
По сравнению с прототипом отсутствие дополнительных компонентов (плавня), медленная низкотемпературная термообработка и отсутствие стадии промывки позволяет обеспечить отсутствие вымывания или испарения компонентов.
Краткое описание чертежей
На фиг. 1 представлены температурные зависимости скорости испарения соединений галлия из оксидного расплава по данным [R.H. Lamoreaux et al, J Phys Chem Ref Data, Vol. 16 No.3 1987].
На фиг. 2 представлены зависимости остаточного содержания солей галлия и гадолиния в маточном растворе от избытка аммиака, используемого при осаждении их гидроксидов.
На фиг. 3 представлена дифрактограмма порошка, полученного в соответствии с заявляемым способом и прошедшего термообработку при 1500°С в сравнении с данными карточки PDF 46-0448 (соединение Gd3Al3Ga2O12 со структурой граната).
На фиг. 4 представлено изображение частицы этого порошка, полученное методом электронной микроскопии.
На фиг. 5 представлено изображение частицы этого порошка, полученное методом оптической микроскопии в проходящем свете.
На фиг. 6 представлены амплитудные спектры, зарегистрированные при возбуждении источником альфа-частиц образца сравнения - монокристалла алюмоиттриевого граната, активированного церием (1) и порошка, полученного в примере 1 (2).
Осуществление и примеры реализации изобретения
Способ получения сцинтилляционного порошка включает в себя следующие операции:
1) Приготовление водных растворов солей исходных компонентов - Gd, Y, Се, Ga, Al - с точно известными концентрациями. В качестве исходных солей могут быть использованы, предпочтительно, нитраты. Концентрации растворов могут быть определены любым из известных способов - например, растворением точно известной навески, гравиметрическим анализом, титриметрическим анализом.
2) Смешение растворов исходных компонентов в необходимом количестве для обеспечения требуемого состава компонентов в смесевом растворе, отвечающего одному из вариантов обобщенной формулы (Gd,Y)3(Ga,Al)5O12:Ce.
3) Приготовление раствора щелочного осадителя, в качестве которого могут быть использованы, например, водный раствор аммиака (предпочтительно - с концентрацией не ниже 20%), водный раствор мочевины, моноэтаноламин.
4) Приливание смесевого раствора исходных компонентов в раствор щелочного осадителя, которое осуществляется при интенсивном перемешивании любым из известных способов, например - вручную, с использованием магнитной мешалки, с использованием верхнеприводной мешалки. Приливание может вестись при помощи капельной воронки, перистальтического насоса или любым другим известным способом.
5) Термообработка полученной реакционной смеси при температуре до 100°С для медленного упаривания, и затем термообработка на воздухе в открытой емкости при последовательном повышении температуры до 450°С, а затем до 600°С.
6) В качестве опциональной стадии может быть проведено измельчение и просев полупродукта любым из известных способов с использованием материалов, не привносящих загрязнения в продукт.
7) Высокотемпературная термообработка при температуре 1200-1600°С.
В качестве исходных продуктов в предлагаемом способе на всех стадиях используются высокочистое химическое сырье квалификации не ниже «4N» или «ос.ч.», например нитраты галлия, алюминия и церия, оксид гадолиния, гидроксид алюминия, металлический галлий, азотная кислота и водный раствор аммиака.
Основными преимуществами описанного способа являются возможность контроля состава получаемого порошка, экспрессность методики синтеза, отсутствие необходимости подбирать отдельные условия для получения различных составов из группы (Gd,Y)3(Ga,Al)5O12:Ce.
Пример 1.
Процесс получения поликристаллического сцинтилляционного материала массой 10 грамм проводили следующим образом: расчетный объем 25% аммиака переносили в кварцевую чашку для выпаривания, в которой и проводили осаждение. Для этого смесевой раствор нитратов основных компонентов в количестве 117 г с соотношением основных компонентов, отвечающим формуле Gd2,97Се0,03Ga3Al2O12 при постоянном интенсивном перемешивании на магнитной мешалке вводили в аммиак при помощи капельной воронки. Полученную таким образом суспензию перемешивали еще 10 минут после осаждения. Полученную пульпу аккуратно выпаривали на плитке до уменьшения ее объема примерно вдвое, после чего поднимали температуру до 100°С и упаривали досуха. Затем постепенно повышали температуру для разложения осадка и солевого фона нитрата аммония. Ориентиром окончания разложения солей аммония служило отсутствие бурого дыма над сухим осадком. Осадок прокаливали на плитке при 450°С в течение 10 минут. Полученный порошок перетирали в агатовой ступке и просеивали через полиамидную сетку с размером ячеек 100 мкм.
После измельчения порошок прокаливали при температуре 600°С в течении 1 часа для окончательного разложения осадка, а затем проводили термообработку при температуре 1500°С в течение 2 часов. Полученный продукт был исследован методом рентгеновской дифракции (экспериментальная дифрактограмма сопоставлена с рефлексами граната состава Gd3Al3Ga2O12), полученная рентгенограмма представлена на Фиг. 3. Полученные образцы порошков были исследованы методом оптической микроскопии и сканирующей электронной микроскопии. Полученные данные приведены на Фиг. 4, 5. Так же для полученного материала был измерен световыход сцинтилляции. Для этого из порошкового образца приготовили пробу в форме круглой таблетки, насыпав его в цилиндрическую форму и добавив в качестве связующего каплю оптического клея. Затем записали амплитудный спектр, полученный при облучении полученной керамики альфа-частицами с энергией ~5,5 МэВ. Съемку вели в геометрии измерений «на отражение» (облучение пробы и регистрация светового сигнала проводятся с одной и той же стороны образца) с использованием типичного сцинтилляционного спектрометра в составе фотоэлектронного умножителя с диапазоном спектральной чувствительности 290-650 нм, высоковольтного источника напряжения, спектрометрического усилителя и многоканального амплитудного анализатора. Для оценки световыхода образца керамики сопоставляли положение максимума пика в записанном амплитудном спектре с положением максимума в спектре эталонного монокристалла YAG:Ce с размерами ∅12×1 мм. Записанные спектры приведены на Фиг. 6. Световыход сцинтилляций порошка можно оценить как 44000 фотонов / МэВ.
Таким образом, заявляемый способ позволяет осуществить экспрессное получение сцинтилляционных порошков сложных оксидов со структурой граната составов (Gd,Y)3(Ga,Al)5O12:Ce с точно заданным составом. Частицы полученного порошка обладают плотной микроструктурой и выглядят прозрачными при наблюдении в оптическом микроскопе. Порошки демонстрируют высокий световыход сцинтилляций, характерный для этого класса соединений.

Claims (1)

  1. Способ получения сцинтилляционного порошка состава (Gd,Y)3(Ga,Al)5O12:Ce, включающий следующие последовательные стадии процесса: приготовление водных растворов солей исходных компонентов - Gd, Y, Се, Ga, Аl - с точно известными концентрациями, смешение этих растворов в необходимом количестве для обеспечения требуемого состава компонентов в смесевом растворе, приготовление раствора щелочного осадителя, приливание смесевого раствора исходных компонентов в раствор щелочного осадителя, термообработку полученной реакционной смеси, отличающийся тем, что проводят медленное упаривание реакционной смеси при температуре до 100°С, термообработку на воздухе в открытой емкости при последовательном повышении температуры до 450°С, а затем до 600°С, с последующей термообработкой при температуре 1000-1600°С.
RU2017146718A 2017-12-28 2017-12-28 Способ получения поликристаллических сцинтилляционных материалов в форме порошков RU2682554C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017146718A RU2682554C1 (ru) 2017-12-28 2017-12-28 Способ получения поликристаллических сцинтилляционных материалов в форме порошков

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146718A RU2682554C1 (ru) 2017-12-28 2017-12-28 Способ получения поликристаллических сцинтилляционных материалов в форме порошков

Publications (1)

Publication Number Publication Date
RU2682554C1 true RU2682554C1 (ru) 2019-03-19

Family

ID=65805939

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146718A RU2682554C1 (ru) 2017-12-28 2017-12-28 Способ получения поликристаллических сцинтилляционных материалов в форме порошков

Country Status (1)

Country Link
RU (1) RU2682554C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115991601A (zh) * 2022-11-18 2023-04-21 上海御光新材料科技股份有限公司 一种复相透明闪烁陶瓷的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101113333A (zh) * 2007-08-28 2008-01-30 厦门大学 铈激活的钇铝石榴石荧光粉的制备方法
EP2474590A2 (en) * 2011-01-06 2012-07-11 Shin-Etsu Chemical Co., Ltd. Phosphor particles and making method
RU2613994C1 (ru) * 2015-10-01 2017-03-22 Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Способ получения легированного алюмоиттриевого граната
EP1829950B1 (en) * 2004-12-21 2017-04-05 Hitachi Metals, Ltd. Fluorescent material and method for preparation thereof, radiation detector using fluorescent material, and x-ray ct device
US20170153335A1 (en) * 2015-12-01 2017-06-01 Siemens Medical Solutions Usa, Inc. Method For Controlling Gallium Content in Gadolinium-Gallium Garnet Scintillators
RU2622124C2 (ru) * 2011-01-31 2017-06-13 Фурукава Ко., Лтд. Кристалл со структурой граната для сцинтиллятора и использующий его детектор излучения

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1829950B1 (en) * 2004-12-21 2017-04-05 Hitachi Metals, Ltd. Fluorescent material and method for preparation thereof, radiation detector using fluorescent material, and x-ray ct device
CN101113333A (zh) * 2007-08-28 2008-01-30 厦门大学 铈激活的钇铝石榴石荧光粉的制备方法
EP2474590A2 (en) * 2011-01-06 2012-07-11 Shin-Etsu Chemical Co., Ltd. Phosphor particles and making method
RU2622124C2 (ru) * 2011-01-31 2017-06-13 Фурукава Ко., Лтд. Кристалл со структурой граната для сцинтиллятора и использующий его детектор излучения
RU2613994C1 (ru) * 2015-10-01 2017-03-22 Федеральное Государственное Унитарное Предприятие "Государственный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Химических Реактивов И Особо Чистых Химических Веществ" Способ получения легированного алюмоиттриевого граната
US20170153335A1 (en) * 2015-12-01 2017-06-01 Siemens Medical Solutions Usa, Inc. Method For Controlling Gallium Content in Gadolinium-Gallium Garnet Scintillators

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115991601A (zh) * 2022-11-18 2023-04-21 上海御光新材料科技股份有限公司 一种复相透明闪烁陶瓷的制备方法
CN115991601B (zh) * 2022-11-18 2024-04-12 上海御光新材料科技股份有限公司 一种复相透明闪烁陶瓷的制备方法

Similar Documents

Publication Publication Date Title
Xu et al. A solution-processed zero-dimensional all-inorganic perovskite scintillator for high resolution gamma-ray spectroscopy detection
Nazarov New generation of europium-and terbium-activated phosphors: from syntheses to applications
Laguta et al. Aluminum and gallium substitution in yttrium and lutetium aluminum–gallium garnets: investigation by single-crystal NMR and TSL methods
Isik et al. Gd-doped ZnO nanoparticles: synthesis, structural and thermoluminescence properties
JP2018503706A (ja) 新規なタリウムをドープしたヨウ化ナトリウム、ヨウ化セシウムまたはヨウ化リチウムのシンチレーター
Gordienko et al. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield
Altunal et al. A calcination study on BeO ceramics for radiation dosimetry
Lian et al. Controllable synthesis and photoluminescence properties of Gd2O2S: x% Pr3+ microspheres using an urea-ammonium sulfate (UAS) system
Zheng et al. Novel synthetic strategy towards BaFCl and BaFCl: Eu2+ nanofibers with photoluminescence properties
Li et al. Luminescent and magnetic properties of the afterglow phosphors GdSr 2 AlO 5: RE 3+(RE 3+= Eu 3+, Sm 3+, Pr 3+ and Dy 3+)
WO2006033663A2 (en) Compositions comprising high light-output yellow phosphors and their methods of preparation
RU2682554C1 (ru) Способ получения поликристаллических сцинтилляционных материалов в форме порошков
Shlegel et al. Purification of molybdenum oxide, growth and characterization of medium size zinc molybdate crystals for the LUMINEU program
Onishi et al. Synthesis and properties of Tb3Al5O12: Eu3+ garnet phosphor
Dosovitskiy et al. Persistent luminescence in powdered and ceramic polycrystalline Gd3Al2Ga3O12: Ce
CN113235158A (zh) 一种大尺寸金属卤化物闪烁晶体及其制备方法
Yazdanmehr et al. Effects of nanostructuring on luminescence properties of SrS: Ce, Sm phosphor: an experimental and phenomenological study
Tseng et al. Synthesis and luminescent characteristics of one-dimensional europium doped Gd 2 O 3 phosphors
CN113667469B (zh) 一种提高闪烁体x射线探测性能的制备方法
Gaitko et al. Synthesis of fine-particle bismuth orthogermanate in a NaCl/KCl melt
Veselova et al. Microwave-assisted self-propagating high-temperature synthesis of fine-particle Bi 4 Ge 3 O 12
Xu et al. Co-precipitation synthesis of La 2 O 2 SO 4: Tb 3+ phosphor and its conversion to La 2 O 2 S: Tb 3+ ceramic scintillator via pressureless sintering in hydrogen
RU2711318C2 (ru) Способ получения люминесцентной керамики на основе сложных оксидов со структурой граната
Vargas et al. Luminescent and scintillating properties of lanthanum fluoride nanocrystals in response to gamma/neutron irradiation: codoping with Ce activator, Yb wavelength shifter, and Gd neutron captor
Chen et al. Self-surfactant room-temperature synthesis of morphology-controlled K 0.3 Bi 0.7 F 2.4 nanoscintillators

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20190617

Effective date: 20190617