RU2679156C1 - Способ модифицирования порошка алюминия - Google Patents

Способ модифицирования порошка алюминия Download PDF

Info

Publication number
RU2679156C1
RU2679156C1 RU2018114407A RU2018114407A RU2679156C1 RU 2679156 C1 RU2679156 C1 RU 2679156C1 RU 2018114407 A RU2018114407 A RU 2018114407A RU 2018114407 A RU2018114407 A RU 2018114407A RU 2679156 C1 RU2679156 C1 RU 2679156C1
Authority
RU
Russia
Prior art keywords
temperature
aluminum powder
gel
hcoo
ratio
Prior art date
Application number
RU2018114407A
Other languages
English (en)
Inventor
Владимир Григорьевич Шевченко
Владимир Николаевич Красильников
Данил Александрович Еселевич
Алла Вячеславовна Конюкова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук filed Critical Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук
Priority to RU2018114407A priority Critical patent/RU2679156C1/ru
Application granted granted Critical
Publication of RU2679156C1 publication Critical patent/RU2679156C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties

Landscapes

  • Compounds Of Iron (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

Изобретение относится к области порошковой металлургии, в частности к способам модифицирования порошков алюминия. Порошок алюминия пропитывают модификатором, представляющим собой гель, полученный растворением формиата железа состава Fe(HCOO)·2HO в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25, или основного формиата железа состава Fe(ОН)(HCOO)в монометиловом эфире этиленгликоля, при температуре 80С. Соотношение порошок алюминия (г):гель (мл) составляет 1,5-2,5:1. Полученную массу сушат при температуре 100-150С и прокаливают при температуре 300-350С. Обеспечивается повышение степень полноты сгорания и снижение температуры начала горения при нагревании на воздухе. 3 пр., 4 ил.

Description

Изобретение относится к области порошковой металлургии, в частности к способам активации горения дисперсных порошков алюминия, которые могут найти применение в различных областях промышленности.
Известен способ активации порошка алюминия путем добавления к исходному порошку активатора на основе оксидного соединения ванадия, в котором в качестве активатора используют гель, содержащий 4,0-8,2 г/л ванадия и полученный путем плавления оксида ванадия (V) или оксида ванадия (V) и карбоната лития или натрия или оксида ванадия (V) и борной кислоты или их смеси с последующим добавлением расплава к дистиллированной воде при интенсивном перемешивании и выдержкой, которым пропитывают исходный порошок алюминия при соотношении гель(мл): алюминий(г) = 1÷2 : 1, а затем полученную массу фильтруют на вакуумном фильтре и просушивают при температуре 50-60оС в течение 0,5-1 ч.(Патент RU 2509790; МПК C09K 8/60, B22F 1/00, C01f 7/42; 2014 год).
Недостатками известного способа являются, во-первых, повышенная кислотность геля, что может быть причиной частичного взаимодействия с алюминием; во-вторых, низкая температура просушивания не исключает присутствие воды в модифицированном порошке, и, следовательно, не обеспечивается полное обезвоживание конечного продукта, в-третьих, используемый в известном способе оксид ванадия (V) токсичен.
Известен способ модифицирования порошков алюминия, включающий пропитку исходного порошка модификатором на основе оксидного соединения железа. В качестве модификатора используют железосодержащий ксерогель. Для приготовления композита состава Al/Fe-оксид используют золь-гель метод. Предварительно порошок алюминия погружают в горячий этанол с перемешиванием и затем вводят в раствор Fe(NO3)3·9H2O в этаноле. Суспензию диспергируют ультразвуком в течение нескольких минут, после чего вводят 1,2-эпоксипропан (C2H4O) – гелеобразователь и нейтрализатор для понижения кислотности геля. После выдержки в течение 3-5 дней влажный гель высушивают в вакууме и получают ксерогель, содержащий частицы алюминия. Ксерогель промывают в этаноле при 45°С и прокаливают до образования композита Al/Fe-оксид(Y. Wang, X.I. Song, W. Jiang, G.D. Deng, X.D. Guo, H.Y. Liu, F.S. Li, Mechanism for thermite reactions of aluminum/iron-oxide nanocomposites based on residue analysis // Trans. Nonferrous Met. Soc. China. 2014. V. 24. P. 263-270)(прототип).
К недостатком известного способа относятся, во-первых, сложность технологии, сопряженной с необходимостью обработки порошка алюминия в горячем этаноле и ультразвуковом диспергировании его смеси с раствором нитрата железа в этаноле; во-вторых, повышенная кислотность нитратного раствора и необходимость ее подавления путем введения 1,2-эпоксипропана, в-третьих, высокая токсичность 1,2-эпоксипропана; в четвертых, длительность выдержки влажного геля.
Таким образом, перед авторами стояла задача разработать технологически простой способ модифицирования порошка алюминия, обеспечивающий наряду с простотой высокую степень полноты сгорания и относительно невысокую температуру начала горения при нагревании на воздухе.
Поставленная задача решена в предлагаемом способе модифицирования порошка алюминия путем пропитки исходного порошка гелеобразным модификатором на основе кислородсодержащего соединения железа с последующей сушкой и прокаливанием, в котором в качестве модификатора используют гель, полученный растворением при температуре 80оС формиата железа состава Fe(HCOO)2∙2H2O в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25 , или основного формиата железа состава Fe(ОН)(HCOO)2 в монометиловом эфире этиленгликоля, при этом соотношение порошок алюминия (г):гель(мл), равно 1,5÷2,5:1; сушат полученную массу при температуре 100-150оС и прокаливают при температуре 300-350оС.
В настоящее время из патентной и научно-технической литературы не известен способе модифицирования порошка алюминия путем пропитки исходного порошка модификатором в виде геля, полученного растворением при температуре 80оС формиата железа состава Fe(HCOO)2∙2H2O в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25, или основного формиата железа состава Fe(ОН)(HCOO)2 в монометиловом эфире этиленгликоля, и обработкой полученной массы в предлагаемых температурных интервалах.
Исследования, проведенные авторами, позволили выявить условия модификации порошка алюминия, обеспечивающие смещение процесса горения в низкотемпературную область и полноту сгорания порошка. Экспериментальным путем было установлено, что пропитка порошка алюминия гелем, полученный растворением формиата железа состава Fe(HCOO)2∙2H2O при температуре 80оС в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25, или основного формиата железа состава Fe(ОН)(HCOO)2 при температуре 80оС в монометиловом эфире этиленгликоля, устраняет возможность агломерации частиц алюминия, отсутствие агломератов обусловливают значительное повышение полноты сгорания на всех этапах взаимодействия. При этом существенным является соблюдение при пропитке предлагаемого соотношения количества геля и порошка алюминия: увеличение соотношения более 2,5:1, ведет к образование густой массы, что ухудшает условия смешения. Уменьшение соотношения менее 1,5:1 ведет к ухудшению контакта между частицами смеси и, как следствие, к снижению полноты сгорания. Интервал температур прокаливания обусловлен следующими причинами: при температуре ниже 300оС не обеспечивается полная трансформация формиата железа в оксид железа, что, как следствие, не способствует в дальнейшем снижению температуры горения. При температуре выше 350оС наблюдается преждевременное снижение массы полученного композита, что оказывает отрицательное влияние на процесс воспламенения и горения топлива. Необходимо отметить, формиат железа(II) состава Fe(HCOO)2∙2H2O имеет низкую растворимость в воде при комнатной температуре (~4.5%), что затрудняет его использование для приготовления композитов Al-Fe2O3. Исследования, проведенные авторами, позволили повысить растворимость Fe(HCOO)2∙2H2O путем добавления глицерина, подавляющего кристаллизацию формиата при охлаждении, что значительно увеличивает его растворимость. Использование в качестве растворителя монометилового эфира этиленгликоля повышает растворимость основного формиата железа (III) Fe(OH)(HCOO)2 при комнатной температуре до ~20% и почти вдвое при нагревании до 80°С.
Предлагаемый способ может быть осуществлен следующим образом. Формиат железа состава Fe(HCOO)2·2H2O растворяют при температуре 80оС в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25 , или основной формиат железа состава Fe(ОН)(HCOO)2 растворяют в монометиловом эфире этиленгликоля. Затем полученный раствор выдерживают при температуре 80оС в течение 0,5 ч. с целью упаривания до минимально возможного объема, охлаждают до комнатной температуры. Полученным гелем пропитывают порошок алюминия при этом соотношение порошок алюминия (г):гель(мл), равно 1,5÷2,5:1, сушат полученную массу при температуре 100-150оС и прокаливают при температуре 300-350оС.
Эффективность полученного модифицированного порошка оценивают с помощью методов ДТА и ТГА по степени конверсии при 1300 oC (изменение массы по кривой ТГ - Δm) и по величине температуры начала горения (максимум на кривой ДТА - Tмакс) модифицированного порошка алюминия относительно исходного порошка марки АСД-4, которому соответствуют Δm = 43% и Tмакс = 1049 oC (фиг.1).
Предлагаемый способ иллюстрируется следующими примерами.
Пример 1. Навеску Fe(HCOO)2·2H2O, взятого в количестве 0.651 г, растворяют в 10 мл дистиллированной воде с добавлением 0.5 мл глицерина при 80oC при соотношении дистиллированная вода: глицерин, равном 1:25. Затем раствор выдерживают при температуре 80оС в течение 0,5 ч., охлаждают до комнатной температуры и полученной массой пропитывают 9.8 г порошка алюминия марки АСД-4 с содержанием активного металла 98.7 масс% при этом соотношение порошок алюминия(г):гель(мл), равно 2,5:1. Полученную массу просушивают при 150oC в течение 1 ч. и прокаливают в муфельной печи при температуре 350oC в течение 0,5 ч. Получают композит Al/Fe2O3 с содержанием 2 масс% Fe, Δm = 82% и Tмакс = 958 oC (фиг. 2).
Пример 2. Навеску Fe(OH)(HCOO)2, взятого в количестве 1.458 г, растворяют в 10 мл монометилового эфира этиленгликоля при 80oC. Затем раствор выдерживают при температуре 80оС в течение 0,5 ч., охлаждают до комнатной температуры и смешивают с 9.5 г порошка алюминия марки АСД-4 с содержанием активного металла 98.7 масс%, при этом соотношение порошок алюминия(г):гель(мл), равно 1,5:1. Полученную массу просушивают при 100oC в течение 0,5 ч. и прокаливают в муфельной печи при температуре 300oC в течение 1 ч. Получают композит Al/Fe2O3 с содержанием 5 масс% Fe,: Δm = 73% и Tмакс = 910 oC (фиг.3).
Пример 3. Навеску Fe(OH)(HCOO)2, взятого в количестве 2.915 г, растворяют в 10 мл монометиловом эфире этиленгликоля при 80oC. Затем раствор выдерживают при температуре 80оС в течение 0,5 ч., охлаждают до комнатной температуры и смешивают с 9.0 г порошка алюминия марки АСД-4 с содержанием активного металла 98.7 масс%, при этом соотношение порошок алюминия(г):гель(мл), равно 1,5:1 сушат при 100oC в течение 0,5 ч. и прокаливают в муфельной печи при температуре 350oC в течение 1 ч. Получают композит Al/Fe2O3 с содержанием 10 масс% Fe, Δm = 76% и Tмакс = 893 oC (фиг. 4).
Таким образом, авторами предлагается технологически простой способ модифицирования порошка алюминия, обеспечивающий наряду с простотой высокую степень полноты сгорания и относительно невысокую температуру начала горения при нагревании на воздухе.

Claims (1)

  1. Способ модифицирования порошка алюминия, включающий пропитку исходного порошка гелеобразным модификатором на основе кислородсодержащего соединения железа и последующую сушку с прокаливанием, отличающийся тем, что в качестве модификатора используют гель, полученный растворением при температуре 80оС формиата железа состава Fe(HCOO)2·2H2O в смеси дистиллированной воды и глицерина, взятых в соотношении 1:25, или основного формиата железа состава Fe(ОН)(HCOO)2 в монометиловом эфире этиленгликоля, при этом соотношение порошок алюминия (г):гель(мл) составляет 1,5-2,5:1, а полученную массу сушат при температуре 100-150оС и прокаливают при температуре 300-350оС.
RU2018114407A 2018-04-19 2018-04-19 Способ модифицирования порошка алюминия RU2679156C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018114407A RU2679156C1 (ru) 2018-04-19 2018-04-19 Способ модифицирования порошка алюминия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018114407A RU2679156C1 (ru) 2018-04-19 2018-04-19 Способ модифицирования порошка алюминия

Publications (1)

Publication Number Publication Date
RU2679156C1 true RU2679156C1 (ru) 2019-02-06

Family

ID=65273736

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018114407A RU2679156C1 (ru) 2018-04-19 2018-04-19 Способ модифицирования порошка алюминия

Country Status (1)

Country Link
RU (1) RU2679156C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2259232C2 (ru) * 1999-12-21 2005-08-27 В.Р.Грейс Энд Ко.-Конн. Полученные из тригидрата оксида алюминия композиты оксида алюминия с большим объемом пор и большой площадью поверхности, способы их получения и применения
RU2325973C2 (ru) * 2006-07-20 2008-06-10 Федеральное государственное научное учреждение "Научно-исследовательский институт высоких напряжений" Способ получения алюминиевого порошка
RU2344040C2 (ru) * 2003-04-15 2009-01-20 Хексион Спешелти Кемикалс, Инк. Частицы материала, содержащие термопластичный эластомер, и способы их получения и использование
RU2392227C1 (ru) * 2009-03-16 2010-06-20 Меграбян Казарос Аршалуйсович Способ получения модифицированного ультрадисперсного порошка оксида алюминия
RU2509790C1 (ru) * 2012-12-05 2014-03-20 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ активации порошка алюминия
US20170028475A1 (en) * 2013-07-11 2017-02-02 Tundra Composites, LLC Surface modified particulate and sintered or injection molded products

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2259232C2 (ru) * 1999-12-21 2005-08-27 В.Р.Грейс Энд Ко.-Конн. Полученные из тригидрата оксида алюминия композиты оксида алюминия с большим объемом пор и большой площадью поверхности, способы их получения и применения
RU2344040C2 (ru) * 2003-04-15 2009-01-20 Хексион Спешелти Кемикалс, Инк. Частицы материала, содержащие термопластичный эластомер, и способы их получения и использование
RU2325973C2 (ru) * 2006-07-20 2008-06-10 Федеральное государственное научное учреждение "Научно-исследовательский институт высоких напряжений" Способ получения алюминиевого порошка
RU2392227C1 (ru) * 2009-03-16 2010-06-20 Меграбян Казарос Аршалуйсович Способ получения модифицированного ультрадисперсного порошка оксида алюминия
RU2509790C1 (ru) * 2012-12-05 2014-03-20 Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук Способ активации порошка алюминия
US20170028475A1 (en) * 2013-07-11 2017-02-02 Tundra Composites, LLC Surface modified particulate and sintered or injection molded products

Similar Documents

Publication Publication Date Title
CN102838140B (zh) 用锂辉石直接生产环保型LiOH.H2O的方法
RU2679156C1 (ru) Способ модифицирования порошка алюминия
GB1358094A (en) Method of treating used carbon lining from an aluminium reduction cell
CN110483219B (zh) 立方结构复合含能材料及其制备方法
CN104130821A (zh) 一种含锰钴基复合载氧体及其制备方法
CN108840349B (zh) 一种超细无定形硼粉的制备方法
CN104119983A (zh) 一种含铁铜基复合载氧体及其制备方法
WO2012055323A1 (zh) 一种Na-β"-Al2O3粉体的制备方法
GB2211512A (en) Briquetting process
RU2509790C1 (ru) Способ активации порошка алюминия
GB520829A (en) Manufacture of sintered calcium oxide
US2384008A (en) Method for converting hydrous magnesian silicates into basic products
CN111747825B (zh) 一种乙醇铝的制备方法
US2419255A (en) Process of making a carbon monoxide oxidation catalyst
RU2198940C1 (ru) Способ получения брикетов из мелкодисперсных оксидов металлов
US3937740A (en) Process for the manufacture of 2,3,6-trimethylphenol
US2390016A (en) Charge preparation
CN113929129B (zh) 一种提高氧化亚铜稳定性的处理方法
SU996485A1 (ru) Св зующее дл окомковани железорудных материалов
US2563367A (en) Manufacture of lead silicate
US1373854A (en) Refractory brick
US2492986A (en) Composition for producing carbon dioxide from hydrogen and carbon containing compounds, and the process for producing the same
RU2116276C1 (ru) Способ изготовления периклазошпинельных огнеупорных изделий
RU2643164C1 (ru) Способ получения катодного материала для литий-ионных аккумуляторов
JP2001170480A (ja) 炭酸ガス吸収材、炭酸ガス吸収材の製造方法および燃焼装置