RU2678959C1 - Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата - Google Patents

Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата Download PDF

Info

Publication number
RU2678959C1
RU2678959C1 RU2018105668A RU2018105668A RU2678959C1 RU 2678959 C1 RU2678959 C1 RU 2678959C1 RU 2018105668 A RU2018105668 A RU 2018105668A RU 2018105668 A RU2018105668 A RU 2018105668A RU 2678959 C1 RU2678959 C1 RU 2678959C1
Authority
RU
Russia
Prior art keywords
gyroscope
axes
values
inertial
calibrated
Prior art date
Application number
RU2018105668A
Other languages
English (en)
Inventor
Анатолий Николаевич Демидов
Станислав Соломонович Гуревич
Борис Ефимович Ландау
Сергей Львович Левин
Original Assignee
Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" filed Critical Акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор"
Priority to RU2018105668A priority Critical patent/RU2678959C1/ru
Application granted granted Critical
Publication of RU2678959C1 publication Critical patent/RU2678959C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/02Rotary gyroscopes
    • G01C19/04Details
    • G01C19/16Suspensions; Bearings
    • G01C19/24Suspensions; Bearings using magnetic or electrostatic fields

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)

Abstract

Изобретение относится к области космической техники и может быть использовано в бесплатформенных инерциальных системах ориентации (БИСО) для орбитальных космических аппаратов (КА), измерительный модуль (блок чувствительных элементов -БЧЭ) которых содержит электростатические гироскопы (ЭСГ). Способ калибровки погрешностей ЭСГ БИСО в условиях орбитального КА заключается в последовательном вращении КА вокруг осей, связанных с его корпусом, вычислении углового положения КА относительно инерциальных осей по данным измерений астровизирующего устройства (АВУ), вычислении на основе априорных значений коэффициентов модели дрейфа калибруемого гироскопа, расчетных значений направляющих косинусов орта его кинетического момента в инерциальных осях, формирование по данным списывающих устройств гироскопа измеренных значений направляющих косинусов орта его кинетического момента в корпусных осях, вычисление оценок ухода гироскопа в инерциальных осях и их коррекцию. При этом по данным измерений АВУ осуществляют формирование идеального (без дрейфа) гироскопа. По измеренным значениям направляющих косинусов орта кинетического момента калибруемого гироскопа и значениям направляющих косинусов орта кинетического момента идеального гироскопа формируют правый ортогональный гироскопический трехгранник, вычисляя значения матрицы ориентации осей гироскопического трехгранника относительно корпусных осей блока гироскопов, формируют измеренные значения косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, по расчетным значениям направляющих косинусов орта кинетического момента калибруемого и идеального гироскопов формируют правый ортогональный инерциальный трехгранник. Затем вычисляют значения матрицы ориентации гироскопического трехгранника относительно инерциального трехгранника, формируют расчетные значения косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, затем в моменты поступления данных от АВУ пересчитывают расчетные и измеренные значения направляющих косинусов орта кинетического момента калибруемого гироскопа на оси квазиинерциального трехгранника и формируют два скалярных измерения, первое измерение вычисляют как разность расчетного и измеренного значений косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, а второе измерение вычисляют как разность первых элементов расчетного и измеренного значений направляющих косинусов орта кинетического момента калибруемого гироскопа в осях квазиинерциального трехгранника, после чего осуществляют линеаризацию полученных скалярных измерений и с привлечением расчетной модели уходов гироскопа в осях квазиинерциального трехгранника вычисляют оценки погрешностей привязки измерительных осей калибруемого гироскопа относительно осей АВУ и оценки погрешностей априорных значений коэффициентов его модели дрейфов. Технический результат – повышение точности калибровки погрешностей ЭСГ БИСО. 2 ил.

Description

Изобретение относится к области космической техники и может быть использовано в бесплатформенных инерциальных системах ориентации (БИСО) для орбитальных космических аппаратов (КА), блок чувствительных элементов (БЧЭ) которых содержит гироинерциальные измерители, например, электростатические гироскопы (ЭСГ).
Известен способ калибровки гироинерциальных измерителей (датчиков угловой скорости) бесплатформенной инерциальной системы ориентации для орбитальных КА [1] в условиях последовательных разворотов КА вокруг его осей рыскания, тангажа и крена с визированием и фиксацией параметров заданных астроориентиров с помощью астровизирующего устройства (АВУ) перед началом и после окончания каждого из калибровочных разворотов; расчета по результатам измерений коэффициентов примененной модели погрешности гироинерциальных измерителей и их корректировки.
Недостатком способа является низкая точность калибровки. Указанный недостаток обусловлен нестабильностью масштабных коэффициентов гироинерциальных измерителей во времени, погрешностями ориентации осей БЧЭ относительно корпусных осей КА, погрешностями ориентации корпусных осей АВУ относительно корпусных осей КА.
Известен также способ калибровки гироинерциальных измерителей (электростатических гироскопов) бесплатформенной инерциальной системы ориентации для орбитальных КА [2], который принят за прототип. При реализации способа калибруют составляющие суммарного вектора погрешностей углов привязки положения осей блока БЧЭ БИСО на ЭСГ, относительно опорных осей АВУ. Для этого осуществляют последовательные калибровочные развороты КА вокруг осей, связанных с корпусом КА, с визированием и фиксацией параметров заданных астроориентиров с помощью АВУ перед началом и после окончания каждого из разворотов. Осуществляют расчет погрешностей. Для расчета используют данные измерений полученные:
1) от АВУ:
- значения эталонного кватерниона
Figure 00000001
характеризующего угловое положение корпусных осей xcyczc КА относительно инерциальной системы координат, моделируемой в алгоритмах АВУ;
2) от БИСО:
- значения приборного кватерниона
Figure 00000002
характеризующего угловое положение корпусных осей xcyczc КА относительно инерциальной системы координат in1in2in3, моделируемой в алгоритмах БИСО и периодически корректируемой по данным АВУ.
Погрешности БИСО на ЭСГ с коррекцией по данным АВУ содержат погрешности привязки, как углового положения корпусных осей БЧЭ БИСО относительно корпусных осей КА, так и положения корпусных осей АВУ относительно корпусных осей КА. Для оценивания погрешностей формируют вектор измерений:
Figure 00000003
где
Figure 00000004
- кватернион, сопряженный по отношению к кватерниону
Figure 00000005
Производят расчет погрешностей с использованием метода наименьших квадратов.
По результатам расчета корректируют коэффициенты примененной модели погрешности.
Недостатком способа является низкая точность калибровки погрешностей БЧЭ БИСО Указанный недостаток обусловлен тем, что:
- в процессе калибровки не учитывается дрейф ЭСГ;
- не учитываются погрешности углов привязки положения измерительных осей каждого ЭСГ относительно корпуса БЧЭ БИСО, что приводит к появлению составляющей погрешности от неортогональности измерительных осей БЧЭ.
В предлагаемом изобретении решается техническая проблема - совершенствование способа калибровки погрешностей ЭСГ БИСО в условиях орбитального КА.
Достигаемый технический результат - повышение точности калибровки погрешностей ЭСГ БИСО.
Поставленная задача изобретения решается тем, что в известном способе калибровки погрешностей ЭСГ БИСО в условиях орбитального КА, заключающегося в последовательном вращении КА вокруг осей, связанных с его корпусом; вычислении углового положения КА относительно инерциальных осей по данным измерений АВУ; вычислении на основе априорных значений коэффициентов модели дрейфа калибруемого гироскопа, расчетных значений направляющих косинусов орта его кинетического момента в инерциальных осях; формировании по данным списывающих устройств гироскопа измеренных значений направляющих косинусов орта его кинетического момента в корпусных осях, вычислении оценок ухода гироскопа в инерциальных осях и их коррекцию,
дополнительно по данным измерений АВУ осуществляют формирование идеального (без дрейфа) гироскопа; вычисляют текущие значения направляющих косинусов орта кинетического момента идеального гироскопа относительно инерциальных и относительно его корпусных осей, совпадающих с корпусными осями КА, при этом в начальный момент времени направление орта кинетического момента идеального гироскопа задают по одной из корпусных осей КА, ортогональной направлению орта кинетического момента калибруемого гироскопа;
по измеренным (с помощью списывающих устройств) значениям направляющих косинусов орта кинетического момента калибруемого гироскопа и значениям направляющих косинусов орта кинетического момента идеального гироскопа формируют правый ортогональный гироскопический трехгранник, вычисляя значения матрицы ориентации осей гироскопического трехгранника относительно корпусных осей блока гироскопов, при этом направление орта кинетического момента идеального гироскопа задают в условиях ортогонализации гироскопического трехгранника в качестве опорного направления;
формируют измеренные значения косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, по расчетным (на основе априорных значений коэффициентов модели дрейфов) значениям направляющих косинусов орта кинетического момента калибруемого гироскопа и значениям направляющих косинусов орта кинетического момента идеального гироскопа формируют правый ортогональный инерциальный трехгранник, вычисляют значения матрицы ориентации гироскопического трехгранника относительно инерциального трехгранника, при этом направление орта кинетического момента идеального гироскопа задают в условиях ортогонализации инерциального трехгранника в качестве опорного направления;
формируют расчетные значения косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, при этом после коррекции положения орта кинетического момента калибруемого гироскопа в инерциальных осях по данным АВУ формируют правый ортогональный квазиинерциальный трехгранник, вычисляют значения матрицы ориентации квазиинерциального трехгранника относительно инерциального трехгранника, которые в этот момент времени приравнивают значениям матрицы ориентации гироскопического трехгранника относительно инерциального трехгранника;
затем в моменты поступления данных от АВУ пересчитывают расчетные и измеренные значения направляющих косинусов орта кинетического момента калибруемого гироскопа на оси квазиинерциального трехгранника и формируют два скалярных измерения, первое измерение вычисляют как разность расчетного и измеренного значений косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, а второе измерение вычисляют как разность первых элементов расчетного и измеренного значений направляющих косинусов орта кинетического момента калибруемого гироскопа в осях квазиинерциального трехгранника;
после чего осуществляют линеаризацию полученных скалярных измерений и с привлечением расчетной модели уходов гироскопа в осях квазиинерциального трехгранника вычисляют оценки погрешностей углов привязки осей калибруемого гироскопа относительно осей АВУ и оценки погрешностей априорных значений коэффициентов его модели дрейфов.
Предлагаемый способ предусматривает калибровку по данным АВУ погрешностей индивидуально каждого из ЭСГ, входящих в состав БЧЭ БИСО.
Сущность предлагаемого технического решения поясняется чертежами фиг. 1 и 2. На фиг. 1 приведена ориентация осей орбитальной системы координат (ОСК) xoyozo относительно осей инерциальной системы координат (ИСК) in1in2in3.
На фиг. 2 приведена ориентация осей связанной с КА системы координат (ССК) xcyczc относительно осей ОСК.
На чертежах приняты следующие обозначения:
ИСК - инерциальная система координат (in1in2in3), правый ортогональный трехгранник с началом в центре масс Земли. Ось in3 направлена по оси суточного вращения Земли, ось in1 - в точку весеннего равноденствия;
Ое - центр масс Земли;
ОСК - орбитальная система координат (xoyozo), правый ортогональный трехгранник с началом в центре масс КА. Ось yo направлена по радиус-вектору r, ось xo - лежит в плоскости орбиты по направлению движения;
ССК - связанная с КА система координат (xcyczc), правый ортогональный трехгранник с началом в центре масс КА. Ось хс - продольная ось КА, ось ус совпадает с осью yo при нулевых значениях углов тангажа и крена КА;
М - центр масс КА;
ψ,θ,γ - углы Эйлера-Крылова (рыскание, тангаж и крен), определяющие угловую ориентацию осей КА xcyczc относительно ОСК xoyozo;
Figure 00000006
- производные углов Эйлера-Крылова;
Figure 00000007
- радиус-вектор и вектор линейной скорости центра масс КА относительно инерциального пространства;
Vr, Vϑ - радиальная и трансверсальная составляющие вектора линейной скорости КА;
Ω - долгота восходящего узла;
i - наклонение орбиты;
u - аргумент широты или фаза КА.
Предлагаемый способ реализуется при выполнении следующих технологических операций:
1. По результатам измерений параметров угловой ориентации КА, проводимых АВУ и БИСО, формируют исходные данные:
- значения эталонного кватерниона
Figure 00000008
или матрицы
Figure 00000009
ориентации, характеризующих угловое положение корпусных осей xcyczc КА (далее - оси КА) относительно ИСК, моделируемой в алгоритмах АВУ;
- значения направляющих косинусов
Figure 00000010
орта кинетического момента калибруемого ЭСГi где: (i=1, 2, 3…), в его корпусных осях;
- априорные значения матрицы Ckn_i,c ориентации измерительных осей калибруемого ЭСГi относительно осей КА;
- априорные значения коэффициентов модели дрейфа (КМД) калибруемого ЭСГi;
- расчетные значения направляющих косинусов
Figure 00000011
орта кинетического момента калибруемого ЭСГi в инерциальных осях.
2. По данным эталонной матрицы
Figure 00000012
ориентации осуществляют формирование идеального (без дрейфа) гироскопа (далее ЭСГ-И). Для чего:
- задают направление орта кинетического момента ЭСГ-И по одной из корпусных осей КА, ортогональной направлению орта кинетического момента калибруемого ЭСГi;
- определяют текущие значения направляющих косинусов
Figure 00000013
где: t0 - начальный момент времени, орта кинетического момента ЭСГ-И в его корпусных осях, совпадающих с осями КА;
- осуществляют расчет направляющих косинусов
Figure 00000014
орта кинетического момента ЭСГ-И в инерциальных осях.
3. Производят прогнозирование уходов калибруемого ЭСГi в ИСК, вычисляют расчетные значения направляющих косинусов орта кинетического момента ЭСГi в инерциальных осях
Figure 00000015
здесь:
Figure 00000016
Figure 00000017
- расчетные значения дрейфов ЭСГi в корпусных осях, как функции от априорных значений КМД [3] и текущих значений
Figure 00000018
4. По значениям направляющих косинусов
Figure 00000019
орта кинетического момента идеального ЭСГ-И и измеренным значениям направляющих косинусов
Figure 00000020
орта кинетического момента калибруемого ЭСГi в корпусных осях, приведенным к корпусным осям БЧЭ, формируют правый ортогональный трехгранник q1q2q3, положение которого относительно корпусных осей БЧЭ характеризуется матрицей Cq,b, орты-столбцы которой согласно принятому условию ортогонализации равны:
Figure 00000021
где θS - «измеренное» значение угла между ортами ЭСГ.
5. По значениям направляющих косинусов орта
Figure 00000022
кинетического момента идеального ЭСГ-И и расчетным значениям направляющих косинусов орта
Figure 00000023
кинетического момента калибруемого ЭСГi в инерциальных осях формируют инерциальный приборный трехгранник in1in2in3, положение которого относительно трехгранника q1q2q3 характеризуется матрицей Cq,in, орты-столбцы которой согласно принятому условию ортогонализации равны
Figure 00000024
где θR - расчетное значение угла между ортами ЭСГ, причем
Figure 00000025
Знак
Figure 00000026
- означает скалярное произведение векторов.
При этом, как известно [3], значения орта
Figure 00000027
вычисляют как
Figure 00000028
Здесь
Figure 00000029
где
Figure 00000030
- расчетные значения дрейфа ЭСГi в корпусных осях, как функции от априорных значений КМД и текущих значений
Figure 00000031
6. Формируют квазиинерциальную int1int2int3 систему координат (квази-ИСК), дискретно учитывающую прецессию гироскопического трехгранника q1q2q3 вследствие дрейфов ЭСГi, положение которой относительно ИСК определяется матрицей Cin,int, равной значениям матрицы (Cq,in)T в моменты после коррекции положения ЭСГi по данным АВУ.
Пересчитывают на оси квази-ИСК расчетные
Figure 00000032
и измеренные
Figure 00000033
значения орта кинетического момента ЭСГi в моменты прихода данных от АВУ:
Figure 00000034
Figure 00000035
Введение квази-ИСК int1int2int3 позволяет осуществить линеаризацию расчетной модели уходов ЭСГi (погрешностей
Figure 00000036
вычисления направляющих косинусов ортов
Figure 00000037
их кинетических моментов) и соответствующих измерений в точках пространства состояния, дискретно движущихся вместе с прецессией векторов кинетических моментов ЭСГi.
7. В моменты времени прихода данных от АВУ формируют разностные скалярные измерения:
Figure 00000038
где:
Figure 00000039
- первые элементы соответствующих векторов
Figure 00000040
Учитывая, что погрешности
Figure 00000041
формирования значений орта кинетического момента ЭСГ-И, соответственно в инерциальных осях и осях БЧЭ, определяются уровнем погрешностей АВУ, измерения (1), линеаризованные в точках пространства состояния, дискретно движущихся вместе с прецессией вектора кинетического момента ЭСГi, будут равны:
Figure 00000042
где:
Figure 00000043
- соответственно первый и второй элементы вектора
Figure 00000044
уходов ЭСГi в квази-ИСК, которые описывают линеаризованной расчетной моделью вида:
Figure 00000045
здесь
Figure 00000046
- погрешности прогнозирования дрейфов ЭСГi в осях квази-ИСК, обусловленные погрешностями априорных значений КМД ЭСГi;
- Ckn_i,int(1стр.), Ckn_i,int(2стр.) - соответственно первая и вторая строки матрицы ориентации корпусных осей ЭСГi относительно квази-ИСК;
- δΛ - погрешность углов привязки измерительной оси калибруемого ЭСГi относительно его корпусных осей и соответственно корпусных осей АВУ, приведенных к осям КА;
ν1, v2 -шумы измерений, включающие погрешности списывающих устройств АВУ и погрешности списывающих устройств ЭСГi.
Разностные скалярные измерения (1) формируют с дискретностью поступления данных от АВУ в течение всего времени калибровочного вращения КА.
Обработку измерений (1) с учетом расчетной модели уходов ЭСГi (3) осуществляют с помощью алгоритма фильтра Калмана, на выходе которого вычисляют оценки уходов ЭСГi сначала в осях квази-ИСК, затем - в осях ИСК, а также вычисляют оценки погрешностей δΛ углов привязки измерительной оси калибруемого ЭСГi и оценки погрешностей ΔКМД априорных значений коэффициентов его модели дрейфов. Для линеаризации измерений и расчетной модели уходов ЭСГi оценки всех погрешностей поступают в обратную связь для коррекции уходов ЭСГi после обработки каждого поступившего измерения.
По сравнению со способом прототипом точность калибровки погрешностей ЭСГ бескарданной инерциальной системы ориентации в условиях орбитального КА повышается за счет:
- учета и исключения из результатов измерений составляющей погрешности, обусловленной дрейфом ЭСГ;
- учета и исключения составляющей погрешности, обусловленной - погрешностью углов привязки δΛ измерительной оси калибруемого ЭСГi относительно его корпусных осей.
Таким образом, поставленная цель достигнута.
На предприятии АО «Концерн «ЦНИИ «Электроприбор» предлагаемый способ проверен при проведении летных испытаний бескарданной инерциальной системы ориентации с ЭСГ на орбитальном КА «Ресурс». Получены положительные результаты.
Используемая литература:
1. Патент РФ №2092402.
2. Дюмин А.Ф., Корабельщиков В.В., Платонов С.Н., Суринский Д.М. Повышение точности астрокоррекции бесплатформенной инерциальной системы ориентации на электростатических гироскопах // Гироскопия и навигация, 2005, №1(48), С. 76-83.
3. Гуревич С.С., Гусинский В.З., Ландау Б.Е. и др. Система ориентации орбитального КА на базе бескарданных электростатических гироскопов со сплошным ротором. // VIII Санкт-Петербургская международная конференция по интегрированным системам, 2001, с. 52-59.

Claims (1)

  1. Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата, заключающийся в последовательном вращении космического аппарата вокруг осей, связанных с его корпусом, вычислении углового положения космического аппарата относительно инерциальных осей по данным измерений астровизирующего устройства, вычислении на основе априорных значений коэффициентов модели дрейфа калибруемого гироскопа, расчетных значений направляющих косинусов орта его кинетического момента в инерциальных осях, формирование по данным списывающих устройств гироскопа измеренных значений направляющих косинусов орта его кинетического момента в корпусных осях, вычисление оценок ухода гироскопа в инерциальных осях и их коррекцию, отличающийся тем, что дополнительно по данным измерений астровизирующего устройства осуществляют формирование идеального (без дрейфа) гироскопа; вычисляют текущие значения направляющих косинусов орта кинетического момента идеального гироскопа относительно инерциальных и относительно его корпусных осей, совпадающих с корпусными осями космического аппарата, при этом в начальный момент времени направление орта кинетического момента идеального гироскопа задают по одной из корпусных осей космического аппарата, ортогональной направлению орта кинетического момента калибруемого гироскопа, по измеренным (с помощью списывающих устройств) значениям направляющих косинусов орта кинетического момента калибруемого гироскопа и значениям направляющих косинусов орта кинетического момента идеального гироскопа формируют правый ортогональный гироскопический трехгранник, вычисляя значения матрицы ориентации осей гироскопического трехгранника относительно корпусных осей блока гироскопов, при этом направление орта кинетического момента идеального гироскопа задают в условиях ортогонализации гироскопического трехгранника в качестве опорного направления, формируют измеренные значения косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, по расчетным (на основе априорных значений коэффициентов модели дрейфов) значениям направляющих косинусов орта кинетического момента калибруемого гироскопа и значениям направляющих косинусов орта кинетического момента идеального гироскопа формируют правый ортогональный инерциальный трехгранник, вычисляют значения матрицы ориентации гироскопического трехгранника относительно инерциального трехгранника, при этом направление орта кинетического момента идеального гироскопа задают в условиях ортогонализации инерциального трехгранника в качестве опорного направления, формируют расчетные значения косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, при этом после коррекции положения орта кинетического момента калибруемого гироскопа в инерциальных осях по данным астровизирующего устройства формируют правый ортогональный квазиинерциальный трехгранник, вычисляют значения матрицы ориентации квазиинерциального трехгранника относительно инерциального трехгранника, которые в этот момент времени приравнивают значениям матрицы ориентации гироскопического трехгранника относительно инерциального трехгранника, затем в моменты поступления данных от астровизирующего устройства пересчитывают расчетные и измеренные значения направляющих косинусов орта кинетического момента калибруемого гироскопа на оси квазиинерциального трехгранника и формируют два скалярных измерения, первое измерение вычисляют как разность расчетного и измеренного значений косинуса угла между ортами кинетических моментов идеального и калибруемого гироскопов, а второе измерение вычисляют как разность первых элементов расчетного и измеренного значений направляющих косинусов орта кинетического момента калибруемого гироскопа в осях квазиинерциального трехгранника, после чего осуществляют линеаризацию полученных скалярных измерений и с привлечением расчетной модели ухода гироскопа в осях квазиинерциального трехгранника вычисляют оценки погрешностей углов привязки измерительной оси калибруемого гироскопа относительно осей астровизирующего устройства и оценки погрешностей априорных значений коэффициентов его модели дрейфов.
RU2018105668A 2018-02-14 2018-02-14 Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата RU2678959C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018105668A RU2678959C1 (ru) 2018-02-14 2018-02-14 Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018105668A RU2678959C1 (ru) 2018-02-14 2018-02-14 Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата

Publications (1)

Publication Number Publication Date
RU2678959C1 true RU2678959C1 (ru) 2019-02-04

Family

ID=65273508

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018105668A RU2678959C1 (ru) 2018-02-14 2018-02-14 Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата

Country Status (1)

Country Link
RU (1) RU2678959C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780752A (zh) * 2020-06-10 2020-10-16 北京航天控制仪器研究所 一种姿态误差可观测的提高惯性制导精度方法
CN111780751A (zh) * 2020-06-10 2020-10-16 北京航天控制仪器研究所 一种信息冗余的提高惯性制导精度方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2092402C1 (ru) * 1992-05-27 1997-10-10 Центральное специализированное конструкторское бюро Способ калибровки гироинерциальных измерителей бесплатформенной инерционной навигационной системы ориентации космического аппарата
RU2269813C2 (ru) * 2004-03-10 2006-02-10 ЗАО "Газприборавтоматикасервис" Способ калибровки параметров бесплатформенного инерциального измерительного модуля
RU2375680C1 (ru) * 2008-07-03 2009-12-10 Открытое акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Интегрированная инерциально-спутниковая система ориентации и навигации для объектов, движущихся по баллистической траектории с вращением вокруг продольной оси
RU2509981C2 (ru) * 2008-11-28 2014-03-20 Сажем Дефанс Секюрите Калибровка гироскопических систем с вибрационными гироскопами
US9671248B2 (en) * 2012-11-28 2017-06-06 Sagem Defense Securite Method for calibrating an inertial navigation system with a limited mechanical turning range

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2092402C1 (ru) * 1992-05-27 1997-10-10 Центральное специализированное конструкторское бюро Способ калибровки гироинерциальных измерителей бесплатформенной инерционной навигационной системы ориентации космического аппарата
RU2269813C2 (ru) * 2004-03-10 2006-02-10 ЗАО "Газприборавтоматикасервис" Способ калибровки параметров бесплатформенного инерциального измерительного модуля
RU2375680C1 (ru) * 2008-07-03 2009-12-10 Открытое акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Интегрированная инерциально-спутниковая система ориентации и навигации для объектов, движущихся по баллистической траектории с вращением вокруг продольной оси
RU2509981C2 (ru) * 2008-11-28 2014-03-20 Сажем Дефанс Секюрите Калибровка гироскопических систем с вибрационными гироскопами
US9671248B2 (en) * 2012-11-28 2017-06-06 Sagem Defense Securite Method for calibrating an inertial navigation system with a limited mechanical turning range

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780752A (zh) * 2020-06-10 2020-10-16 北京航天控制仪器研究所 一种姿态误差可观测的提高惯性制导精度方法
CN111780751A (zh) * 2020-06-10 2020-10-16 北京航天控制仪器研究所 一种信息冗余的提高惯性制导精度方法
CN111780751B (zh) * 2020-06-10 2021-12-07 北京航天控制仪器研究所 一种信息冗余的提高惯性制导精度方法
CN111780752B (zh) * 2020-06-10 2022-01-04 北京航天控制仪器研究所 一种姿态误差可观测的提高惯性制导精度方法

Similar Documents

Publication Publication Date Title
JP3027734B2 (ja) 衛星の位置を機内で自主的に求める方法と装置
US6285927B1 (en) Spacecraft attitude determination system and method
Soken et al. UKF-based reconfigurable attitude parameters estimation and magnetometer calibration
US11325726B2 (en) Method and apparatus for spacecraft gyroscope scale factor calibration
CN104567819B (zh) 一种星载相机全视场偏流角确定与补偿方法
JP3850796B2 (ja) スレーブ慣性測定システムの姿勢アライメント
US20140231589A1 (en) Gyroless Three-Axis Sun Acquisition Using Sun Sensor and Unscented Kalman Filter
Burton et al. Online attitude determination of a passively magnetically stabilized spacecraft
CN108375383B (zh) 多相机辅助的机载分布式pos柔性基线测量方法和装置
CN102506893A (zh) 一种基于地标信息的星敏感器低频误差补偿方法
CN112325886A (zh) 一种基于重力梯度仪和陀螺仪组合的航天器自主定姿系统
CN110285815A (zh) 一种可在轨全程应用的微纳卫星多源信息姿态确定方法
RU2318188C1 (ru) Способ автономной навигации и ориентации космических аппаратов
RU2678959C1 (ru) Способ калибровки погрешностей электростатических гироскопов бескарданной инерциальной системы ориентации в условиях орбитального космического аппарата
CN108627152A (zh) 一种微型无人机基于多传感器数据融合的导航方法
US6863244B2 (en) Mitigation of angular acceleration effects on optical sensor data
Huang et al. Theoretical research on full attitude determination using geomagnetic gradient tensor
Choukroun et al. Quaternion estimation from vector observations using a matrix Kalman filter
Cheng et al. A novel polar rapid transfer alignment for shipborne SINS under arbitrary misalignments
CN113252029B (zh) 一种基于光学陀螺量测信息的天文导航姿态传递方法
Abrashkin et al. A simplified technique for determining the rotational motion of a satellite based on the onboard measurements of the angular velocity and magnetic field of the Earth
Tie et al. The impact of initial alignment on compensation for deflection of vertical in inertial navigation
Rao et al. Incremental-angle and angular velocity estimation using a star sensor
RU2615032C1 (ru) Бесплатформенная инерциальная курсовертикаль на чувствительных элементах высокой точности
RU2793977C1 (ru) Способ астроориентации орбитального космического аппарата (варианты)