RU2678240C2 - Двигатель для космического аппарата и космический аппарат, содержащий такой двигатель - Google Patents

Двигатель для космического аппарата и космический аппарат, содержащий такой двигатель Download PDF

Info

Publication number
RU2678240C2
RU2678240C2 RU2016150114A RU2016150114A RU2678240C2 RU 2678240 C2 RU2678240 C2 RU 2678240C2 RU 2016150114 A RU2016150114 A RU 2016150114A RU 2016150114 A RU2016150114 A RU 2016150114A RU 2678240 C2 RU2678240 C2 RU 2678240C2
Authority
RU
Russia
Prior art keywords
engine
nozzle
shunting
magnetic circuit
air gap
Prior art date
Application number
RU2016150114A
Other languages
English (en)
Other versions
RU2016150114A3 (ru
RU2016150114A (ru
Inventor
Стефан Жозеф ЗЮРБАШ
Фредерик Рафаэль Жан МАРШАНДИЗ
Original Assignee
Сафран Эркрафт Энджинз
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сафран Эркрафт Энджинз filed Critical Сафран Эркрафт Энджинз
Publication of RU2016150114A publication Critical patent/RU2016150114A/ru
Publication of RU2016150114A3 publication Critical patent/RU2016150114A3/ru
Application granted granted Critical
Publication of RU2678240C2 publication Critical patent/RU2678240C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/405Ion or plasma engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/24Guiding or controlling apparatus, e.g. for attitude control
    • B64G1/244Spacecraft control systems
    • B64G1/245Attitude control algorithms for spacecraft attitude control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/401Liquid propellant rocket engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/411Electric propulsion
    • B64G1/413Ion or plasma engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/42Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof using liquid or gaseous propellants
    • F02K9/60Constructional parts; Details not otherwise provided for
    • F02K9/62Combustion or thrust chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/74Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof combined with another jet-propulsion plant
    • F02K9/76Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof combined with another jet-propulsion plant with another rocket-engine plant; Multistage rocket-engine plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/97Rocket nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • F03H1/0075Electrostatic ion thrusters grid-less with an applied magnetic field with an annular channel; Hall-effect thrusters with closed electron drift

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Plasma Technology (AREA)

Abstract

Двигатель (10) космического аппарата, содержащий химический маневровый двигатель, имеющий сопло (30) для испускания газа сгорания, вместе с маневровым реактивным двигателем на основе эффекта Холла. Двигатель сконфигурирован таким образом, что сопло служит в качестве канала испускания для частиц, выбрасываемых реактивный двигателем на основе эффекта Холла, когда он работает. Двигатель может обеспечить высокую тягу с низким удельным импульсом или относительно низкую тягу с большим удельным импульсом. 2 н. и 10 з.п. ф-лы, 2 ил.

Description

Настоящее изобретение относится к области двигателей для космических летательных аппаратов, в частности, - для спутников.
В контексте некоторых приложений было бы желательно, чтобы космический аппарат обладал двумя режимами работы - и с высокой тягой, и с высоким удельным импульсом. Могут быть приведены два примера:
- запуск спутника на станцию и поддержание его орбиты: запуск спутника на станцию требует высокой тяги для того, чтобы как можно скорее перевести его на геостационарную орбиту, и спутнику для того, чтобы удерживать его в заданном положении в течение пятнадцати лет, требуется сообщение движения с высоким удельным импульсом;
- эксплуатация: было бы предпочтительно иметь маневровый реактивный двигатель, позволяющий снимать космический объект с орбиты, а находящемуся в космосе - обеспечивать реактивное движение с высокими удельными импульсами.
В известном способе сообщение спутнику реактивного движения осуществляется посредством двух способов: реактивное движение с использованием химического движителя и реактивное движение посредством электрического движителя. Эти два способа реактивного движения имеют соответствующие специфические области работы на графике зависимости удельного импульса (Isp) от тяги: в общих чертах - химическая тяга дает возможность достичь тягу высокой величины, а удельные импульсы остаются ограниченными 450 секундами. С другой стороны, - "электрическое" реактивное движение обеспечивает достижение высоких удельных импульсов (2000 с), но тяга остается относительно низкой.
Поэтому для придания движения спутникам в системах управления высоты и положения на орбите (СУВП) используются маневровые реактивные двигатели на основе эффекта Холла - они используются для космических аппаратов и особенно - в СУВП геостационарных спутников. Маневровые реактивные двигатели на основе эффекта Холла позволяют получить очень высокие удельные импульсы (Isp) порядка 1500 с, обуславливая, таким образом, возможность точного управления ориентацией и/или положением аппарата при использовании значительно меньшей массы топлива и значительно менее сложного управления, чем это было бы необходимо в обычных системах с использованием инерциальных устройств, таких как гироскопы, в комбинации с химическими маневровыми реактивными двигателями с целью вывода их из режима насыщения.
Тем не менее, присущий маневровому реактивному двигателю на основе эффекта Холла высокий удельный импульс обычно развивает лишь очень низкую тягу. Поэтому СУВП, содержащие в своем составе маневровые двигатели на основе эффекта Холла, для выполнения некоторых быстрых маневров, таких как изменение орбиты или вывод аппарата в заданное положение, обычно связаны с химическими маневровыми двигателями. Это, однако, имеет недостаток в виде увеличения общей стоимости и сложности космического аппарата в ущерб его надежности.
В заключение - ни одна из существующих технологий ("химическое" реактивное движение и "электрическое" реактивное движение) не позволяют обеспечить реактивное движение в обеих из этих целевых областей, то есть, сначала - с высокой тягой и с относительно малым удельным импульсом, а затем - с высоким удельным импульсом и с относительно малой тягой.
Таким образом, целью настоящего изобретения является предложить двигатель космического аппарата, способный обеспечивать тягу в обеих из этих рабочих областей, и обеспечивать это, не делая космический аппарат чрезвычайно тяжелым или сложным.
Для решения этой задачи настоящее изобретение предлагает двигатель космического аппарата, включающий в себя и химический маневровый двигатель, содержащий сопло для испускания сгорающего газа, а также маневровый двигатель на основе эффекта Холла, причем, двигатель сконфигурирован таким образом, что упомянутое сопло действует в качестве канала испускания частиц, выбрасываемых двигателем на основе эффекта Холла, когда он работает.
Таким образом, внутри одного двигателя совмещены обе технологии, то есть, "химическое" реактивное движение и "электрическое" реактивное движение. Посредством объединения некоторых средств, в частности сопла, появилась возможность сделать составленный таким образом двигатель относительно компактным. Следовательно, двигатель, будучи составлен таким образом, остается относительно простым и недорогим, имея в виду его рабочие возможности, которые расширены вследствие одновременного наличия обоих маневровых двигателей.
В одном варианте осуществления маневровый реактивный двигатель на основе эффекта Холла имеет магнитную цепь, и эта магнитная цепь в сечении или в меридиональной полуплоскости имеет подковообразную форму с воздушным зазором, открытым в сторону заднего конца сопла, таким образом, что эта магнитная цепь применима для создания магнитного поля в воздушном зазоре этой магнитной цепи.
Магнитное поле, созданное в воздушном зазоре, предпочтительно, по существу радиальное.
Термины "передний" и "задний" в настоящем контексте определены по отношению к обычному направлению истекания создающего реактивную тягу газа в направлении, определенном центральной осью сопла.
Магнитное поле не обязательно создается в воздушном зазоре, но оно создается по крайней мере в его части, как правило, расположенной в его заднем конце.
Меридиональная полуплоскость есть полуплоскость, определенная какой-либо осью, а именно, - осью сопла.
В этом варианте осуществления магнитное поле можно создать в сопле, в частности, потому что, вместо того, чтобы быть полым и пустым, как большинство сопел обычных химических реактивных маневровых двигателей, это сопло содержит участок магнитной цепи. Этот внутренний участок магнитной цепи, как правило, расположен по оси сопла, и он, обычно, осесимметричной формы или даже - в форме тела вращения вокруг этой оси.
Меридиональные полуплоскости, в которых сечение магнитного поля имеет форму подковы, предпочтительно, имеют равномерное угловое распределение вокруг оси сопла. В идеальном случае магнитное поле представляет такое сечении в каждой меридиональной полуплоскости, то есть, по всем 360° вокруг оси сопла.
На виде меридиональной полуплоскости камера сгорания химического реактивного маневрового двигателя расположена внутри магнитной цепи.
В одном варианте осуществления магнитная цепь имеет по меньшей мере один внешний магнитный сердечник, расположенный вокруг сопла, и внутренний магнитный сердечник, расположенный радиально внутри сопла, а в сечении по меридиональной полуплоскости секции упомянутого внутреннего сердечника и упомянутого по меньшей мере одного внешнего сердечника образуют ветви упомянутой подковообразной формы.
В одном варианте осуществления маневровый двигатель на основе эффекта Холла, дополнительно включает в себя электрическую цепь, выполненную с возможностью генерации в этом сопле электрического поля, а электрическая цепь включает в себя анод и катод, расположенные, соответственно, до и после упомянутого воздушного зазора.
Анод и катод могут быть сконфигурированы различными способами.
В одном варианте осуществления анод содержит участок сопла. Например, он может составлять собой участок стенки сопла.
В другом варианте осуществления анод расположен внутри сопла.
В одном варианте осуществления, в частности, в предыдущем варианте осуществления анод является электрически изолированным от сопла.
Анод может быть расположен вблизи форсунок для инжектирования компонентов топлива (топливные форсунки) в камеру сгорания химического маневрового двигателя и/или вблизи инжекторов частиц маневрового двигателя на основе эффекта Холла, то есть, как общее правило - полностью с передней стороны пути тока в двигатель текучей субстанции.
В одном варианте осуществления аксиально на уровне воздушного зазора внутренняя и внешняя стенки сопла выполнены из электрически изолирующего материала.
Эти внутренняя и внешняя стенки сопла могут быть, в частности, выполнены из керамического материала, который является особенно благоприятным вследствие его электрических, магнитных и коррозионностойких свойств. В качестве примера, - эти изолирующие стенки могут быть образованы двумя электрический изолирующими кольцами, которые определяют упомянутый воздушный зазор по его внутренней и внешней стороне.
В одном варианте осуществления сопло на переднем конце представляет камеру сгорания, которая на заднем конце соединена с расширяющейся частью.
Маневровый двигатель на основе эффекта Холла, кроме того, включает в себя по меньшей мере один инжектор частиц. В одном варианте осуществления инжектор частиц пригоден для инжекции частиц в упомянутую камеру сгорания.
Эти частицы могут быть инертным газом, например, ксеноном.
Настоящее изобретение, кроме того, обеспечивает космический аппарат, включающий в себя по меньшей мере один двигатель в том виде, как он описан выше.
Изобретение может стать более понятным, а его преимущества станут более очевидными по прочтении нижеследующего подробного описания двух его вариантов осуществления, приведенных в виде не ограничивающих примеров. Это описание дается со ссылками на прилагаемые чертежи, на которых:
- фиг. 1 представляет собой частичный схематичный вид по осевому сечению космического аппарата, включающего в себя первый вариант осуществления двигателя по настоящему изобретению, а
- фиг. 2 представляет собой частичный схематичный вид в перспективе первого варианта осуществления двигателя, показанного на фиг. 1.
Фиг. 1 и 2 показывает двигатель 10 по настоящему изобретению. Он составляет часть космического аппарата 100, в данном случае - спутника.
Двигатель представляет собой гибридный двигатель, который может работать или как химический маневровый реактивный двигатель, или как маневровый двигатель на основе эффекта Холла. Для того чтобы он мог работать как химический маневровый двигатель и как маневровый двигатель на основе эффекта Холла, двигатель 10 подсоединен к бакам с ракетным топливом (не показаны; это может быть одно ракетное топливо или два ракетных топлива), а кроме того, он подсоединен к баку с газом, создающим реактивную тягу.
Двигатель 10, как правило, выполнен в виде тела вращения относительно оси Х.
Он расположен внутри корпуса 20, который является по существу цилиндрическим относительно оси Х. Первый осевой торец 22 корпуса, то есть, его передний торец, закрыт по существу плоской торцевой стенкой 24, перпендикулярной оси Х, в то время как другой конец 26 (его задний торец) частично закрыт по существу плоской торцевой стенкой 25, которая аналогичным же образом, перпендикулярна оси Х. Эта торцевая стенка 25 имеет широкий проходящий через нее кольцевой проход 28 для испускания газа.
Торцевая стенка 25 обычно выполнена в виде диска, перпендикулярного оси Х. Из-за присутствия кольцевого прохода 28 эта торцевая стенка 25 составлена диском 56 и кольцевым кольцом 58, расположенным радиально вокруг кольцевого прохода 28. Кольцо 58 выполнено интегрально с корпусом 20.
Двигатель 10 включает в себя химический маневровый двигатель 11.
Химический маневровый двигатель 11 имеет сопло 30, расположенное внутри корпуса 20.
Сопло 30 обычно имеет круговую форму относительно оси Х. В более общем смысле, сопло 30 может быть также и асимметричным. Тем не менее, в качестве альтернативы предусмотреть формы, которые не являются осесимметричными, то есть, являются овальными или имеют форму беговой дорожки.
Независимо от того, является или не является сопло 30 по форме телом вращения или осесимметричным, это сопло 30, как правило, является по своей форме кольцевым и поэтому имеет не только радиально внешнюю стенку 34, но также и радиально внутреннюю стенку 32.
Эти стенки являются концентричными относительно оси Х.
Сопло 30 по своему переднему концу (с левой стороны на фиг. 1) является закрытым, а по своему заднему концу является открытым.
От переднего конца до заднего сопло 30 представляет собой сначала камеру 36 сгорания, затем наименьшее сечение 38, за которым следует расширяющаяся часть 40. Эти элементы сконфигурированы таким образом, что обеспечивают работу двигателя 10 как химического маневрового двигателя 11.
Этот химический маневровый двигатель 11 имеет также инжекторы 42 для впрыска компонентов реактивного топлива. Они расположены таким образом, чтобы обуславливать впрыск компонентов реактивного топлива в переднем конце камеры 36 сгорания. С этой целью они соединены с источниками компонентов топлива (не показаны) посредством канала 44 подачи.
Двигатель 10 имеет также маневровый двигатель 50 на основе эффекта Холла. Этот маневровый двигатель, прежде всего, содержит магнитную цепь 52.
Магнитная цепь 52 содержит сам корпус 20, который выполнен из ферромагнитного материала и, таким образом, образует внешний магнитный сердечник, торцевые стенки 24 и 25, выполненные из ферромагнитного материала, и центральный магнитный сердечник 54 в виде стержня, продолжающийся вдоль оси X. Диск 56, составляющий участок торцевой стенки 25, образует задний конец стержня 54.
Вышеперечисленные элементы магнитной цепи 52 собраны вместе, чтобы обусловить прохождение магнитного поля без потерь по магнитному контуру.
Для того чтобы защитить заднюю часть сопла от износа и для того чтобы удерживать электронное облако, образованное в воздушном зазоре магнитной цепи, образованные кольцами задние осевые участки стенок 32 и 34 (им даны соответствующие ссылочные позиции 82 и 84) выполнены из керамического материала. Эти кольца расположены на уровне воздушного зазора магнитной цепи 52.
Эта магнитная цепь 52 тоже имеет внутреннюю кольцевую катушку 70 и внешнюю кольцевую катушку 71, которые предназначены для создания магнитного поля, необходимого для обеспечения работы маневрового двигателя на основе эффекта Холла. Эти две катушки сформированы концентрично относительно оси Х. Катушка 70 образована (радиально) вокруг стержня 54 внутри стенки 32 (то есть, между стержнем 54 и стенкой 32). Катушка 72 образована на внутренней поверхности цилиндрического корпуса 20, а более точно - между этой внутренней поверхностью и внешней стенкой 34 сопла 30.
Вдоль оси катушки 70 и 72 расположены немного дальше от горловины 38 сопла 30. В более общих словах, аксиально эти катушки могут быть расположены на любом расстоянии вдоль оси Х от камеры сгорания на переднем конце до места, непосредственно перед керамическими кольцами 82, 84 на заднем конце.
Катушки 70 и 72 запитываются от источника электроэнергии (не показан).
В магнитной цепи 52 центральный магнитный сердечник 54 и внешний магнитный сердечник (корпус 20) расположены таким образом, что имеют противоположные полярности.
Цепь 52 сконфигурирована таким образом, чтобы в кольцевом проходе 28 создавать по существу радиальное магнитное поле, образуя таким образом, воздушный проход магнитной цепи 52.
В других вариантах осуществления магнитная цепь может быть такой конфигурации, которая отлична от конфигурации магнитной цепи 52. Важным моментов является то, что эта является магнитная цепь подходящей для создания радиального магнитного поля в кольцевом проходе (более конкретно, - в проходе 28) маневрового двигателя на основе эффекта Холла.
Интенсивность магнитного поля от кольцевого прохода 28 до наименьшего сечения 38 сопла постепенно уменьшается. В показанном варианте осуществления магнитное поле (которое достигает своего максимума по осевому направлению в проходе 28) ослаблено внутренним и внешним магнитными экранами 77, с тем, чтобы уменьшить интенсивность магнитного поля вблизи анода 62)
Эти экраны образованы, соответственно, на внутренней поверхности корпуса 20 и на внешней поверхности сердечника 54, и они механически удерживают катушки 70 и 72.
Катушки 70 и 72 является катушками по существу цилиндрической формы, в которых каждый из витков имеет по существу форму окружности вокруг оси Х. В другом варианте осуществления катушка 72 могла бы быть заменена множеством одинаковых катушек 72, каждая - вокруг соответствующей оси, параллельной оси Х, причем, катушки намотаны асимметричным образом вокруг внешней стенки 34 сопла 30.
Задняя часть сопла 30 проходит через воздушный зазор 28 цепи 52 или продолжается в него.
Таким образом, в сечении или в меридиональной полуплоскости (см. фиг. 1) магнитная цепь имеет подковообразную форму с воздушным зазором 28, который открыт в сторону заднего конца сопла 30. Перемещаясь от торцевой стенки 24, эта подковообразная форма образована, соответственно, сечением корпуса 20 с внешней стороны и сечением центрального сердечника 54 изнутри, что составляет две ветви подковы.
Маневровый двигатель 50 имеет также электрическую цепь 60. Эта цепь содержит анод 62, расположенный на полпути по оси вдоль расширяющейся части 40, катод 64, расположенный дальше от конца 26 сопла 30, и источник 66 электрического напряжения, соединяющий анод 62 с катодом 64.
В более общем смысле, анод 62 может быть расположен по оси на любом расстоянии вдоль оси Х при перемещении от переднего конца камеры сгорания до положения непосредственно перед керамическими кольцами 82, 84 на заднем конце.
Анод 62 образован главным образом внутренней стенкой 34 сопла 30, то есть, он, таким образом, встроен в сопло 30, будучи электрически изолирован от него.
Катод 64 прикреплен снаружи к диску 56, то есть, с задней стороны стержня 54. На фиг. 2 катод 64 изображен пунктирными линиями.
Катод 64 подсоединен к источнику 66 электрического напряжения посредством провода, проходящего внутри внутренней стенки 32 сопла 30.
Этот провод, предпочтительно, проходит внутри стержня 54.
Наконец, на переднем конце сопла 30 маневровый двигатель содержит инжекторы 75 создающего реактивную тягу газа. Они расположены таким образом, чтобы обуславливать инжектирование создающего реактивную тягу газа со стороны переднего конца камеры 36 сгорания. С этой целью они подсоединены к источнику создающего реактивную тягу газа (не показан) посредством цепи 76 инжекции. Создающим реактивную тягу газом может быть ксенон, преимущества которого заключаются в его высоком молекулярном весе и в относительно низком потенциале ионизации. Тем не менее, как и в других маневровых двигателях на основе эффекта Холла, может быть использовано широкое разнообразие создающих реактивную тягу газов.
Двигатель 10 представляет два режима работы, а именно, - создающие "электрическое" реактивное движение и "химическое" реактивное движение.
Для создания "химического" реактивного движения компоненты реактивного топлива через инжекторы 42 инжектируются в камеру 36 сгорания. Они сгорают в камере, при этом газ как продукт сгорания ускоряется горловиной 38 сопла и расширяющейся частью 40 и с большой скоростью испускается через заднее отверстие 28 сопла 30.
Для создания реактивного движения на основе эффекта Холла двигатель 10 работает нижеописанным образом.
Если в качестве создающего реактивную тягу газа используется ксенон, то между катодом 64 за задним концом сопла 30 и анодом 32 создается электрическое напряжение порядка от 150 вольт (В) до 800 В. Затем катод 64 начинает испускать электроны, бóльшая часть которых захватывается в магнитном замкнутом пространстве, образованном магнитным полем, созданным магнитной цепью 52, которое создано с требуемыми характеристиками и с учетом используемого создающего реактивную тягу газа, и которое, когда в качестве создающего реактивную тягу газа используется ксенон, обычно имеет величину порядка от 100 гаусс (Гс) до 300 Гс. Таким образом, захваченные в этом магнитном замкнутом пространстве электроны, образуют виртуальную катодную сетку.
До тех пор, пока создающий реактивную тягу газ продолжает через инжекторы 75 инжектироваться в сопло 30, высокоэнергетичные электроны (обычно с энергией от 10 электрон-вольт (эВ) до 40 эВ) выходят из этого магнитного замкнутого пространства в направлении анода 62. Соударения между этими электронами и атомами создающего реактивную тягу газа ионизируют этот создающий реактивную тягу газ, который затем ускоряется в сторону заднего конца сопла 30 электрическим полем Е, созданным катушками 70 и 72. Поскольку масса ионов создающего реактивную тягу газа составляет величину, в несколько порядков большую, чем масса электронов, то магнитное поле не удерживает ионы тем же самым образом, которым оно удерживает электроны. Таким образом, маневровый двигатель 50 создает плазменную реактивную струю, которая истекает с чрезвычайно высокой скоростью через задний конец сопла 30, тем самым создавая реактивную тягу, которая по существу центрирована с центральной осью Х.
Работа этого маневрового двигателя 50 аналогична работе маневрового двигателя, описанного в документе US 2003/0046921 A1.
Как вариант, двигатель 10 мог бы также включать в себя дополнительный сегмент сопла за кольцами 82 и 84 с целью обеспечения дополнительного расширения создающего реактивную тягу газа, когда работает химический маневровый двигатель.
Кольцевая форма сопла 30, таким образом, делает возможным его использование не только в качестве канала для сжигания компонентов реактивного топлива и выброса создающего реактивную тягу газа при химическом реактивном движении, но и в качестве канала ускорения ионов во время его "электрической" работы. В частности, конфигурация магнитного сердечника 54 в виде стержня по оси сопла никоим образом не препятствует работе химического маневрового двигателя 11. Кроме того, положение катода за концевой стенкой 25 и защищенного концом сердечника 54 (катод 64 находится в прямом контакте с центром диска 56) делает возможным обеспечение того, что катод не входит в контакт с потоком сгорающего газа, в котором он не может находиться длительное время.
Хотя настоящее изобретение описано со ссылкой на конкретный вариант осуществления, ясно, что в этот вариант осуществления могут быть внесены различные модификации и изменения, не выходя за рамки общего объема изобретения в том виде, как он определен пунктами формулы изобретения. Кроме того, отдельные характеристики упомянутого варианта осуществления могут быть объединены в дополнительных вариантах осуществления. Следовательно, описание и чертежи следует рассматривать в том смысле, что они являются скорее иллюстративными, чем ограничивающими.

Claims (14)

1. Двигатель космического аппарата, содержащий химический маневровый двигатель, имеющий сопло для испускания газа сгорания, причем двигатель отличается тем, что он включает в себя маневровый реактивный двигатель на основе эффекта Холла, сконфигурированный таким образом, что упомянутое сопло действует как канал испускания частиц, выбрасываемых реактивным двигателем на основе эффекта Холла, когда он работает.
2. Двигатель по п. 1, в котором
- маневровый реактивный двигатель на основе эффекта Холла имеет магнитную цепь, и
- в сечении или в меридиональной полуплоскости магнитная цепь имеет подковообразную форму с воздушным зазором, открытым в сторону заднего конца сопла таким образом, что эта магнитная цепь применима для создания магнитного поля в воздушном зазоре этой магнитной цепи.
3. Двигатель по п. 2, отличающийся тем, что сопло имеет поперечное осевое сечение кольцевой формы и проходит через воздушный зазор этой магнитной цепи.
4. Двигатель по п. 3, отличающийся тем, что магнитная цепь имеет по меньшей мере один внешний магнитный сердечник, расположенный вокруг сопла, и внутренний магнитный сердечник, расположенный радиально внутри сопла, а в сечении по меридиональной полуплоскости секции упомянутого внутреннего сердечника и упомянутого по меньшей мере одного внешнего сердечника образуют ветви подковообразной формы.
5. Двигатель по .2, в котором маневровый двигатель на основе эффекта Холла дополнительно включает в себя электрическую цепь, выполненную с возможностью генерации в этом сопле электрического поля, а электрическая цепь включает в себя анод и катод, расположенные соответственно до и после упомянутого воздушного зазора.
6. Двигатель по п. 5, в котором анод содержит участок сопла.
7. Двигатель по п. 5, в котором анод расположен в сопле и является от него электрически изолированным.
8. Двигатель по п. 2, отличающийся тем, что аксиально на уровне воздушного зазора внутренняя и внешняя стенки сопла выполнены из электрически изолирующего материала.
9. Двигатель по п. 2, отличающийся тем, что аксиально на уровне воздушного зазора внутренняя и внешняя стенки сопла выполнены из керамики.
10. Двигатель по п. 1, отличающийся тем, что сопло на переднем конце представляет камеру сгорания, которая на заднем конце соединена с расширяющейся частью.
11. Двигатель по п. 10, в котором маневровый двигатель на основе эффекта Холла дополнительно включает в себя по меньшей мере один инжектор частиц, пригодный для инжекции частиц в упомянутую камеру сгорания.
12. Космический аппарат, включающий в себя по меньшей мере один двигатель по любому из пп. 1-11.
RU2016150114A 2014-05-21 2015-05-13 Двигатель для космического аппарата и космический аппарат, содержащий такой двигатель RU2678240C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1454553A FR3021301B1 (fr) 2014-05-21 2014-05-21 Moteur pour engin spatial, et engin spatial comprenant un tel moteur
FR1454553 2014-05-21
PCT/FR2015/051258 WO2015177438A1 (fr) 2014-05-21 2015-05-13 Moteur pour engin spatial, et engin spatial comprenant un tel moteur

Publications (3)

Publication Number Publication Date
RU2016150114A RU2016150114A (ru) 2018-06-22
RU2016150114A3 RU2016150114A3 (ru) 2018-11-22
RU2678240C2 true RU2678240C2 (ru) 2019-01-24

Family

ID=51862375

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016150114A RU2678240C2 (ru) 2014-05-21 2015-05-13 Двигатель для космического аппарата и космический аппарат, содержащий такой двигатель

Country Status (8)

Country Link
US (1) US10023328B2 (ru)
EP (1) EP3146205B1 (ru)
JP (1) JP6645987B2 (ru)
CN (1) CN106662041B (ru)
FR (1) FR3021301B1 (ru)
IL (1) IL249063B (ru)
RU (1) RU2678240C2 (ru)
WO (1) WO2015177438A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195043U1 (ru) * 2019-01-25 2020-01-14 Ольгерт Петрович Забак Плазменный реактивный двигатель для дисколета

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105822515B (zh) * 2016-04-14 2019-03-29 哈尔滨工业大学 空间碎片等离子体推进器
US10723489B2 (en) * 2017-12-06 2020-07-28 California Institute Of Technology Low-power hall thruster with an internally mounted low-current hollow cathode
CN111971543B (zh) 2018-04-05 2023-12-22 密歇根理工大学 机载推进测试设备
US11021273B1 (en) 2018-05-03 2021-06-01 Space Systems/Loral, Llc Unified spacecraft propellant management system for chemical and electric propulsion
ES2733773B2 (es) * 2018-05-31 2021-10-01 Univ Madrid Carlos Iii Motor espacial de plasma sin electrodos con geometría en U y uso de dicho motor
KR102137202B1 (ko) * 2018-12-10 2020-07-23 조선대학교산학협력단 우주비행체용 추력기
US20230058724A1 (en) * 2019-05-20 2023-02-23 Stephen Richmond Cummings DEMON quantum mehanical (H/C)/propulsion system
CN110439770B (zh) * 2019-07-24 2020-06-19 北京航空航天大学 深度集成空心阴极的阳极层霍尔推力器
RU2733076C1 (ru) * 2019-12-16 2020-09-29 Николай Борисович Болотин Плазменно-ракетный двигатель
RU2738136C1 (ru) * 2019-12-23 2020-12-08 Николай Борисович Болотин Ионный ракетный двигатель и способ его работы
US11598321B2 (en) 2020-04-02 2023-03-07 Orbion Space Technology, Inc. Hall-effect thruster
WO2021225622A1 (en) * 2020-05-08 2021-11-11 Orbion Space Technology, Inc. Propulsion system for spacecraft
RU2735043C1 (ru) * 2020-05-20 2020-10-27 Николай Борисович Болотин Плазменно-ионный ракетный двигатель
RU2747067C1 (ru) * 2020-06-03 2021-04-23 Николай Борисович Болотин Ионный ракетный двигатель, способ его работы и коронирующий электрод
RU2761693C1 (ru) * 2020-08-04 2021-12-13 Николай Борисович Болотин Ионный ракетный двигатель, способ его работы и коронирующий электрод
CN114412739A (zh) * 2022-02-24 2022-04-29 兰州空间技术物理研究所 一种大功率霍尔推力器磁路组件
CN115946876A (zh) * 2022-04-13 2023-04-11 国科大杭州高等研究院 一种微牛级宝石基双气容变推力闭环冷气推力器的运行方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2176748C2 (ru) * 1999-11-01 2001-12-10 Военный инженерно-космический университет им. А.Ф. Можайского Жидкостный ракетный двигатель малой тяги
US20090139206A1 (en) * 2002-11-01 2009-06-04 Spanjers Gregory G Dual-mode chemical-electric thrusters for spacecraft
FR2986213A1 (fr) * 2012-02-01 2013-08-02 Snecma Engin spatial a propulsion electrique et chimique a propergol solide
FR2986577A1 (fr) * 2012-02-06 2013-08-09 Snecma Propulseur a effet hall

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4577461A (en) * 1983-06-22 1986-03-25 Cann Gordon L Spacecraft optimized arc rocket
IT1262495B (it) * 1993-08-06 1996-06-28 Proel Tecnologie Spa Rivestimento conduttivo termico per ceramiche dei motori ionici
JPH0771361A (ja) * 1993-09-02 1995-03-14 Mitsubishi Heavy Ind Ltd 宇宙航行機用推進装置
US6834492B2 (en) 2001-06-21 2004-12-28 Busek Company, Inc. Air breathing electrically powered hall effect thruster

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2176748C2 (ru) * 1999-11-01 2001-12-10 Военный инженерно-космический университет им. А.Ф. Можайского Жидкостный ракетный двигатель малой тяги
US20090139206A1 (en) * 2002-11-01 2009-06-04 Spanjers Gregory G Dual-mode chemical-electric thrusters for spacecraft
FR2986213A1 (fr) * 2012-02-01 2013-08-02 Snecma Engin spatial a propulsion electrique et chimique a propergol solide
FR2986577A1 (fr) * 2012-02-06 2013-08-09 Snecma Propulseur a effet hall

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU195043U1 (ru) * 2019-01-25 2020-01-14 Ольгерт Петрович Забак Плазменный реактивный двигатель для дисколета

Also Published As

Publication number Publication date
RU2016150114A3 (ru) 2018-11-22
RU2016150114A (ru) 2018-06-22
IL249063B (en) 2021-09-30
FR3021301B1 (fr) 2017-12-29
EP3146205B1 (fr) 2020-07-15
FR3021301A1 (fr) 2015-11-27
US20170088293A1 (en) 2017-03-30
EP3146205A1 (fr) 2017-03-29
CN106662041B (zh) 2019-06-04
IL249063A0 (en) 2017-01-31
JP6645987B2 (ja) 2020-02-14
US10023328B2 (en) 2018-07-17
WO2015177438A1 (fr) 2015-11-26
JP2017516021A (ja) 2017-06-15
CN106662041A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
RU2678240C2 (ru) Двигатель для космического аппарата и космический аппарат, содержащий такой двигатель
RU2620880C2 (ru) Двигатель на эффекте холла
RU2619389C2 (ru) Двигатель на эффекте холла
US6834492B2 (en) Air breathing electrically powered hall effect thruster
US5475354A (en) Plasma accelerator of short length with closed electron drift
RU2330181C2 (ru) Двигатель малой тяги для космического летательного аппарата
US10184460B2 (en) Cusped-field thruster
CN107850055B (zh) 可用于高海拔的霍尔效应推进器
JP6935284B2 (ja) ホールスラスタ
CA2142607A1 (en) A plasma accelerator of short length with closed electron drift
CN115681052A (zh) 霍尔推力器、具有其的设备及其使用方法
US6568362B2 (en) Rotating arc spark plug
US10961989B2 (en) Ion thruster with external plasma discharge
US10131453B2 (en) Hall effect thruster and a space vehicle including such a thruster
JP2018503774A5 (ru)
US7825601B2 (en) Axial Hall accelerator with solenoid field
US20090273284A1 (en) Radial hall effect ion injector with a split solenoid field
JPH0842444A (ja) 電磁界型推進機関