RU2674243C1 - Ультразвуковое педикулярное шило (2 варианта) - Google Patents

Ультразвуковое педикулярное шило (2 варианта) Download PDF

Info

Publication number
RU2674243C1
RU2674243C1 RU2017140578A RU2017140578A RU2674243C1 RU 2674243 C1 RU2674243 C1 RU 2674243C1 RU 2017140578 A RU2017140578 A RU 2017140578A RU 2017140578 A RU2017140578 A RU 2017140578A RU 2674243 C1 RU2674243 C1 RU 2674243C1
Authority
RU
Russia
Prior art keywords
stylet
handle
ultrasound
frequency
transducer
Prior art date
Application number
RU2017140578A
Other languages
English (en)
Inventor
Андрей Викторович Варивода
Дмитрий Игоревич Глухих
Сергей Васильевич Колесов
Original Assignee
Общество с ограниченной ответственностью "МедГранд"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "МедГранд" filed Critical Общество с ограниченной ответственностью "МедГранд"
Priority to RU2017140578A priority Critical patent/RU2674243C1/ru
Application granted granted Critical
Publication of RU2674243C1 publication Critical patent/RU2674243C1/ru

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1613Component parts
    • A61B17/1626Control means; Display units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7092Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for checking pedicle hole has correct depth or has an intact wall
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Neurology (AREA)
  • Remote Sensing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Acoustics & Sound (AREA)
  • Dentistry (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

Группа изобретений относится к медицинской технике, а именно к средствам для спинальной хирургии при транспедикулярной фиксации позвоночника. Ультразвуковое педикулярное шило по первому варианту выполнено в виде стилета, на острие которого размещен пьезоэлектрический приемопередатчик ультразвука, и рукояти стилета с размещенными внутри нее трансдьюсером, снабженным звуковым сигнализатором, и генератором электрических импульсов, подключенными к источнику питания, при этом фильтр низких частот установлен между пьезоэлектрическим приемопередатчиком ультразвука и генератором электрических импульсов, выполненным с возможностью регулирования частоты посредством ручного регулятора частоты, размещенного на рукояти стилета, а источник питания снабжен герморазъемом для подзарядки, размещенным на рукояти стилета. По второму варианту выполнения дополнительно на рукояти стилета размещен коннектор, связанный с трансдьюсером. Использование изобретений позволяет снизить число нежелательных повреждений позвонка при прокладке в нем каналов для педикулярных винтов. 2 н.п. ф-лы, 2 ил.

Description

Изобретения относятся к спинальной хирургии и могут использоваться при транспедикулярной фиксации позвоночника. В таких операциях позвонки фиксируются с помощью титановых пластин, при этом пластины крепятся к позвонкам педикулярными винтами, которые фиксируются в теле позвонка («Импланты и инструменты для хирургического лечения позвоночника. Транспедикулярная фиксация», www.osteomed.ru). Одной из основных проблем при этом является риск перфорации кортикальной кости во внешней оболочке позвонка или спинномозгового канала. Это в свою очередь требует оптимального расположения винта в теле позвонка, для чего в позвонке под каждый винт предварительно прокладывается канал (пилот-канал).
Известны традиционно используемые специальные (педикулярные) шила, имеющее различные модификации, отличающиеся толщиной и формой стилета (например, www.deost.ru). Это позволяет в каждом конкретном случае оптимизировать положение канала внутри позвонка, однако при этом для корректировки направления стилета приходится периодически проводить рентгеновскую диагностику данного участка позвоночника (например, Вертебропластика травмированного тела позвонка - Youtube). Это позволяет снизить долю неудачных «прокалываний», однако даже в этом случае примерно 13% фиксаций педикулярных винтов остаются неудовлетворительными. При этом суммарная доза облучения пациента и персонала благодаря длительности подобных операций весьма значительна.
Помимо лучевых методов диагностики позвоночника известны ультразвуковые датчики, максимально контактирующие с позвоночником (ультрасонография позвоночника). Основным элементом такого датчика служит пьезоэлектрический передатчик звуковых импульсов с частотой порядка 1-10 МГц («Конструкция ультразвуковых датчиков», www.probefix.com.). Другой (или тот же) пьезоэлемент, установленный на датчике, служит приемником отраженных волн и (вместе с дополнительным электронным преобразователем) является трансдьюсером, превращающим акустические сигналы обратно в электрические импульсы. Последние в дальнейшем обрабатываются компьютером для получения картинки области, прилегающей к датчику. В процессе ультразвуковой (УЗ) диагностики обычно ведется 2Д или 3Д сканирование этой области («Принципы работы УЗИ аппарата. Ультразвуковой датчик», www.doctoroff.ru), но может использоваться и одномерная эхолокация, которая дает только расстояние до исследуемого объекта (Акопян Б.В., Ершов Ю.А. «Основы взаимодействия ультразвука с биологическими объектами», Изд. МГТУ им. Баумана, 2005 г., стр. 44). В последнем случае компьютерная система реконструкции изображения не нужна, и можно ограничиться простым сигнализатором (см. ниже описание прототипа). В обычных УЗ-системах выходной сигнал трансдьюсера поступает в согласующий коммутационный блок (коннектор), который после дополнительной обработки передает информацию в компьютерную систему (аппарат УЗИ), реконструирующую изображение исследуемой области. При одномерной локации изображение не строится.
По внешней архитектуре наиболее близкими аналогами являются внутриполостные датчики с повышенной (до 10 МГц) рабочей частотой:
- лапароскопический датчик EUP-OL334 (Hitachi Medical Systems) (Hitachi EUP-OL334 Probe-Endoscopy Superstore, www.endoscopysuperstore.com.);
- жесткий лапароскопический датчик 8836 (BK Ultrasonund) (Rigid Laparoscopic Transducer, www.instrusafe.com/ BK Ultrasound - Trays.)
Несмотря на высокую стоимость этих датчиков, их применение обычно оправдывается их высоким разрешением в прилегающей области. Недостатком этих аналогов является то, что такие датчики предназначены только для мягких тканей и не могут «самостоятельно» проникать в костную ткань. Для этого как минимум необходимо предварительно проделать в ней канал. Наружная же ультрасонография не позволяет судить о внутреннем строении позвонка из-за сильного акустического наслоения (отражение волн от внешней оболочки позвонка и прилегающих тканей), а также интерференции волн, обусловленной сложной внешней конфигурацией позвонка. Ультразвуковое исследование (УЗИ) позвоночника обычно позволяет оценивать лишь состояние прилегающих тканей (наличие протрузий, грыж, состояние корешков и пр.) (Кинзерский А.Ю.» Ультрасонография в диагностике дегенеративно-дистрофических заболеваний позвоночника». Автореферат диссертации, 1999 г., с. ?). При этом зачастую требуется «экспертная» аппаратура с большой разрешающей способностью («Что показывает УЗИ позвоночника, www.MoyaSpina.ru, а также «Ультрасонография как диагностика заболеваний позвоночника», www.spina.ru). В некоторых же случаях (например, для грудного или крестцового отделов позвоночника) ультрасонография практически невозможна из-за сильного окостенения.
Тем не менее, несмотря на проблематичность существующей методики ультрасонографии позвоночника, эффективная эхолокация в губчатой кости внутри позвонка вполне осуществима, что косвенно подтверждается успешным использованием УЗИ в геологии и материаловедении (в том числе при изучении пористых сред). Современный уровень развития аппаратуры УЗИ также вполне допускает «внутриполостную» диагностику позвонка. Известно например, что, при рабочей частоте 2 МГц вполне различимы детали размером ~1 мм. Если даже считать, что при прокладке канала в позвонке минимальная необходимая детализация составляет l=0.1 мм (что уже сравнимо с размером пор в губчатой кости)., то частота диагностики f должна быть не менее f=a/l, где а - скорость звука в губчатой кости. При а=1540 м/с (Кушнеров А.И. Курс лекций по специальности «Ультразвуковая диагностика», Минск БелМАПО, 2008 г., стр. 6) рабочая частота УЗИ аппаратуры (и генератора в рукояти ПШ) должна быть не менее f=~15 МГц (1540 м/с/ 0.1 мм). Такие частоты в настоящее время уже применяются в практике (например, при диагностике сосудов сердца).
Второй проблемой при внутриполостной диагностике позвонка может оказаться сильное затухание УЗ излучения в губчатой кости, обусловленное ее пористой структурой. Однако поры в данном случае заполнены не воздухом, а кровью, что делает такую структуру достаточно «прозрачной». Кроме того, кровь, находящаяся у поверхности пьезоэлемента, будет играть роль смазки для акустического сопряжения датчика со средой. Если при обычном УЗИ мягких тканей (с частотой 2 МГц) глубина половинного затухания излучения достигает 5 см, то для твердой (кортикальной) кости ультразвук (2 МГц) ослабевает в 2 раза уже на глубине около 5 мм (Кушнеров А.И.» История вопроса использования ультразвука в медицине», Минск БелМАПО, 2008 г. стр. 7-8). Для губчатой кости, насыщенной кровью (глубина половинного затухания для которой составляет 15 см), эта величина будет находиться в промежуточном диапазоне, т.е. будет составлять несколько сантиметров, а этого вполне достаточно даже для наиболее крупных позвонков поясничного отдела. Кроме того, увеличить глубину проникновения излучения в кость можно, снижая частоту излучения.
В качестве прототипа выбран спинальный инструмент «Pediguard» - педикулярное шило (ПШ), в котором внутриполостная диагностика костной ткани позвонка проводится электрическим током («Pediguard - A Solution for the Challenges of Pedicle Screw Placement», Temple University Journal of Orthopaedic Surgery & Sports Medicine, Vol. 3, 2008, p. 2-6). ПШ состоит из стилета, на заостренном конце которого находится биполярный электрощуп (сенсор) и рукояти, внутри которой размещен электронный преобразователь тока (трансдьюсер),подключенный к сенсору. Диагностика позвонка ведется при этом по величине тока, который идет между контактами щупа, когда тот погружен в костную ткань позвонка. Поскольку никакого излучения при этом не генерируется, внутренняя архитектура позвонка в этом случае не воспроизводится, контролируется лишь тип ткани, в которой находится щуп («Pediguard - полный контроль введения транспедикулярных винтов)), www.mstsibir.ru). Возможность такой «контактной)) диагностики обусловлена существенной разницей в проводимости тканей, из которых состоит позвонок (кортикальная кость, губчатая кость и кровь). В зависимости от того, в какой из этих тканей находится щуп (сенсор), существенно меняется ток во входной цепи преобразователя тока, который в свою очередь выдает различные выходные сигналы. Эти сигналы (импульсы с различной частотой) воспроизводятся звуковым сигнализатором, который размещен в рукояти шила. Ориентируясь на частоту этого звука, хирург методом проб и ошибок прокладывает канал в губчатой кости, стараясь не задеть кортикальную.
Недостатком прототипа является необходимость непосредственного контакта острия стилета (щупа) с кортикальной костью. Пока щуп находится в губчатой кости, ток между его контактами определяется только ее проводимостью и не дает представления о расстоянии до твердой кортикальной границы. Заметно ток (и, соответственно, частота звукового сигнала) меняется только, если щуп уже коснулся кортикальной кости («PediGuard short 3D animation», www.youtube.com). Это естественно повышает вероятность повреждения кортикальной кости позвонка. Кроме того, это вынуждает хирурга действовать методом «проб и ошибок», с возвратным движением стилета, что ухудшает форму канала (приводит к образованию в нем лишних пазух).
Задача настоящего предложения - исключить необходимость непосредственного контакта острия ПШ с кортикальной костью. Техническим результатом изобретений является снижение числа нежелательных повреждений позвонка при прокладке в нем каналов для педикулярных винтов.
Технический результат изобретений достигается тем, что в (ультразвуковое) педикулярное шило, состоящее из стилета с электрическим сенсором на острие и рукояти стилета с размещенными внутри нее трансдьюсером, подключенным к упомянутому сенсору и снабженным звуковым сигнализатором и источником питания с герморазъемом для подзарядки, размещенным на рукояти стилета, введены фильтр низких частот и генератор электрических импульсов с регулируемой частотой, размещенные в рукояти стилета, при этом электрический сенсор стилета выполнен в виде пьезоэлектрического приемопередатчика ультразвука и подключен через фильтр низких частот к трансдьюсеру и к генератору электрических импульсов с регулируемой частотой, подключенному, в свою очередь, к источнику питания трансдьюсера и снабженному ручным регулятором частоты, размещенным на рукояти стилета.
Технический результат изобретений досттигается также и тем, что в ультразвуковое педикулярное шило, состоящее из стилета с электрическим сенсором на острие и рукояти стилета с размещенными внутри нее трансдьюсером, подключенным к упомянутому сенсору и снабженным звуковым сигнализатором и источником питания с герморазъемом для подзарядки, размещенным на рукояти стилета, введены фильтр низких частот, генератор электрических импульсов с регулируемой частотой, размещенные в рукояти и коннектор аппарата ультразвукового исследования, подключенный к выходу трансдьюсера и установленный на рукояти стилета, при этом электрический сенсор стилета выполнен в виде, по крайней мере, двух пьезоэлектрических приемопередатчиков ультразвука, подключенных через фильтр низких частот к трансдьюсеру и к генератору электрических импульсов с регулируемой частотой, подключенному, в свою очередь, к источнику питания трансдьюсера и снабженному ручным регулятором частоты, размещенным на рукояти стилета.
Суть предложения в том, что контактная диагностика позвонка заменяется на дистанционную ультразвуковую, для чего на острие стилета устанавливается «внутриполостной микрорадар». Это позволяет хирургу ориентировать ПШ по направлению еще до того, как его острие коснется кортикальной кости. Тем самым практически исключается вероятность ее повреждения, тем более - перфорации. Особенно полезна такая методика при прохождении стилета через узкую ножку позвонка. И если работоспособность прототипа обеспечивается существенным различием в проводимости тканей, составляющих позвонок, то работоспособность ультразвукового педикулярного шила гарантируется значительным различием этих тканей по плотности (и отражательной способности соответственно). Именно кортикальная кость благодаря своей твердости будет давать хорошее отражение ультразвука. При этом кровь, выделяющаяся из губчатой кости при ее прокалывании, будет служить естественным средством акустического сопряжения между этой средой и ультразвуковыми излучателем и приемниками (т.е. играть роль смазки). Меняя частоту излучения (скважность импульсов) с помощью регулятора, размещенного на рукояти, можно изменять глубину проникновения волн в губчатую кость, которая, благодаря своей пористой структуре, будет существенно ослаблять отраженный сигнал. Кроме того, такая регулировка дает возможность подбирать оптимальную частоту излучения для конкретного положения острия стилета, а также индивидуальных параметров губчатой кости (пористости, содержания солей и др.)
Описанные два варианта ультразвукового ПШ предназначены для работы в различных условиях:
- ультразвуковое ПШ по первому варианту (фиг. 1), как и прототип, работает автономно, в режиме с одномерной эхолокацией. На выходе (аналогично Pediguard) он выдает только звуковой сигнал, по которому можно судить о расстоянии острия стилета до ближайшей кортикальной кости, находящейся на оси последнего. Сразу после того, как острие стилета введено в позвонок, слегка меняя направление стилета, по характеру звука, хирург может выбрать оптимальное (среднее) направление стилета (соответствующее максимальному интервалу между излученным и отраженным сигналами) еще до прокола губчатой кости. После этого канал можно проложить за один прием, без возвратного движения стилета, что естественно повысит качество крепления винта.
- для работы по второму варианту ультразвукового ПШ требуется аппарат УЗИ и соответствующее программное обеспечение (ПО). В этом случае (фиг. 2) ПШ с двумя разнонаправленными приемопередатчиками ультразвука позволяет проводить традиционное секторальное (2Д) сканирование области перед острием стилета. В принципе, если вручную вращать ПШ вокруг его оси, можно получить и 3Д - картинку этой области. Глубину сканирования и разрешение можно при этом регулировать, меняя частоту ультразвука (чем выше частота, тем лучше разрешение, но меньше глубина проникновения).
Сущность изобретений поясняется чертежами (фиг. 1-2), на которых представлена принципиальная конструкция ультразвукового шила (на фиг. 1 - по первому варианту; на фиг. 2 - по второму варианту), где обозначено: 1 - стилет; 2 - электрический сенсор (пьезоэлектрический приемопередатчик ультразвука); 3 - рукоять; 4 - трансдьюсер; 5 - звуковой сигнализатор; 6 - источник питания (аккумулятор); 7 - герморазъем для подзарядки аккумулятора; 8 - фильтр низких частот; 9 - генератор электрических импульсов с регулируемой частотой; 10 - ручной регулятор частоты; 11 - коннектор для аппарата УЗИ.
В «автономном» первом варианте ультразвукового педикулярного шила (фиг. 1) роль сенсора выполняет один и тот же пьезоэлектрический приемопередатчик (2), размещенный на острие стилета (1), поэтому электрически он через фильтр низких частот (8) связан как с трансдьюсером (4), так и с генератором электрических импульсов (9). Связь осуществляется через фильтр низких частот (8), который отсекает от этих электронных блоков низкочастотные наводки, обусловленные давлением, которое испытывает пьезоэлемент при прохождении через губчатую кость. Источником питания для трансдьюсера (4) и генератора (9) служит подключенный к ним аккумулятор (6), который соединен также с герморазъемом (7) для подзарядки, расположенным на рукояти (3). Выход трансдьюсера (4) подключен к звуковому сигнализатору (5), а генератор (9) связан с ручным регулятором частоты (10) (например, потенциометром), размещенным на рукояти. Благодаря этому хирург может в процессе прокладки канала регулировать разрешающую способность ПШ и глубину «визуализации».
Во втором варианте ультразвукового ПШ, предназначенном для работы с аппаратом УЗИ (фиг. 2), сохраняются те же связи между перечисленными выше элементами, отличие состоит в том, что к трансдьюсеру (4) через фильтр (8) подключаются несколько приемопередатчиков (2), размещенных на острие стилета (1) (на фиг. 2 показаны два). Трансдьюсер (4), кроме звукового сигнализатора (5) связан с коннектором (11) аппарата УЗИ, размещенным на рукояти (3).
Работа ультразвукового ПШ по первому варианту осуществляется следующим образом.
Перед операцией производят зарядку аккумулятора (6) через герморазъем (7), размещенный на рукояти (3). Первоначально стилет (1) вводят в позвонок на минимальную глубину, так, чтобы приемопередатчик (2) оказался внутри позвонка, за его внешней кортикальной оболочкой. В дальнейшем прокладку канала осуществляют пошагово, каждый раз на глубину сканирования. Последнюю можно менять регулятором (10) рабочей частоты генератора (9). Отраженный от кортикальной кости сигнал принимается приемопередатчиком (2) и трансдьюсером (4) преобразуется в сигнал звуковой частоты для сигнализатора (5). Следует отметить, что в процессе прокладки канала губчатая кость оказывает давление на пьезоэлектрический приемопередатчик (2). Соответственно этому давлению последний будет генерировать низкочастотный сигнал-помеху, которая демпфируется фильтром низких частот (8), установленным между приемопередатчиком (2) и электронными блоками (4) и (9).
На каждом шаге процесса, по результатам сканирования прилегающей к острию стилета (1) области, возможна корректировка направления следующего шага (прокола). Сканирование ведут при различных частотах, начиная с максимальной (при наибольшей разрешающей способности) и заканчивая минимальной (при наибольшей глубине проникновения излучения). Оптимальным направлением следующего шага при этом считается направление, на котором отклик сигнализатора (5) минимален или вообще отсутствует (если преграда далеко, и отраженный сигнал полностью поглощен губчатой костью). Пошаговая прокладка канала производится до получения его необходимой глубины.
Работа ультразвукового ПШ по второму варианту осуществляется следующим образом.
Если на острие шила установлено два или более приемопередатчиков (фиг. 2), можно получить визуальную 2Д (или даже 3Д) картину области, прилегающей к острию (как при обычном УЗИ мягких тканей). Для этого достаточно провести механическое сканирование, например, слегка меняя направление стилета или вращая шило вокруг его оси. При этом коннектор (11) должен быть подключен к аппарату УЗИ с соответствующим программным обеспечением (софтом). В остальном работа ПШ и его элементов будет в этом случае такой же, как и для ПШ по первому варианту исполнения.
В целом предлагаемое ультразвуковое педикулярное шило позволит повысить качество фиксации позвонков, а также снизит вероятность повреждений кортикальной кости при таких операциях, т.е. уменьшит число нежелательных послеоперационных последствий.

Claims (2)

1. Ультразвуковое педикулярное шило, выполненное в виде стилета, на острие которого размещен пьезоэлектрический приемопередатчик ультразвука, и рукояти стилета с размещенными внутри нее трансдьюсером, снабженным звуковым сигнализатором, и генератором электрических импульсов, подключенными к источнику питания, отличающееся тем, что фильтр низких частот установлен между пьезоэлектрическим приемопередатчиком ультразвука и генератором электрических импульсов, выполненным с возможностью регулирования частоты посредством ручного регулятора частоты, размещенного на рукояти стилета, а источник питания снабжен герморазъемом для подзарядки, размещенным на рукояти стилета.
2. Ультразвуковое педикулярное шило, выполненное в виде стилета, на острие которого размещены по меньшей мере два разнонаправленных пьезоэлектрических приемопередатчика ультразвука, и рукояти стилета с размещенными внутри нее трансдьюсером, снабженным звуковым сигнализатором, и генератором электрических импульсов, подключенными к источнику питания, отличающееся тем, что фильтр низких частот установлен между пьезоэлектрическим приемопередатчиком ультразвука и генератором электрических импульсов, выполненным с возможностью регулирования частоты посредством ручного регулятора частоты, размещенного на рукояти стилета, а источник питания снабжен герморазъемом для подзарядки, размещенным на рукояти стилета, на которой дополнительно размещен коннектор, связанный с трансдьюсером.
RU2017140578A 2017-11-21 2017-11-21 Ультразвуковое педикулярное шило (2 варианта) RU2674243C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017140578A RU2674243C1 (ru) 2017-11-21 2017-11-21 Ультразвуковое педикулярное шило (2 варианта)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017140578A RU2674243C1 (ru) 2017-11-21 2017-11-21 Ультразвуковое педикулярное шило (2 варианта)

Publications (1)

Publication Number Publication Date
RU2674243C1 true RU2674243C1 (ru) 2018-12-05

Family

ID=64603884

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017140578A RU2674243C1 (ru) 2017-11-21 2017-11-21 Ультразвуковое педикулярное шило (2 варианта)

Country Status (1)

Country Link
RU (1) RU2674243C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030013936A1 (en) * 2001-07-11 2003-01-16 Jackson Avery M. Endoscopic pedicle probe
US20090221922A1 (en) * 2008-03-03 2009-09-03 Biospinex, Llc Methods and devices for in situ tissue navigation
RU107039U1 (ru) * 2011-02-24 2011-08-10 Федеральное государственное учреждение "Саратовский научно-исследовательский институт травматологии и ортопедии" Министерства здравоохранения и социального развития Российской Федерации (ФГУ "СарНИИТО" Минздравсоцразвития России) Устройство для проведения спиц-направителей при вертебропластике и транспедикулярном остеосинтезе
DE102011083360A1 (de) * 2011-09-23 2013-03-28 Aces Gmbh Instrument zur Pedikelpräparation mit Ultraschallsonde
CN203122516U (zh) * 2013-02-06 2013-08-14 曾忠友 椎弓根超声探测仪
KR101586977B1 (ko) * 2015-06-30 2016-01-21 (의료)길의료재단 척추경 관통 시술의 안전을 위한 초음파를 이용한 척추경 시야 유도 기구

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030013936A1 (en) * 2001-07-11 2003-01-16 Jackson Avery M. Endoscopic pedicle probe
US20090221922A1 (en) * 2008-03-03 2009-09-03 Biospinex, Llc Methods and devices for in situ tissue navigation
RU107039U1 (ru) * 2011-02-24 2011-08-10 Федеральное государственное учреждение "Саратовский научно-исследовательский институт травматологии и ортопедии" Министерства здравоохранения и социального развития Российской Федерации (ФГУ "СарНИИТО" Минздравсоцразвития России) Устройство для проведения спиц-направителей при вертебропластике и транспедикулярном остеосинтезе
DE102011083360A1 (de) * 2011-09-23 2013-03-28 Aces Gmbh Instrument zur Pedikelpräparation mit Ultraschallsonde
CN203122516U (zh) * 2013-02-06 2013-08-14 曾忠友 椎弓根超声探测仪
KR101586977B1 (ko) * 2015-06-30 2016-01-21 (의료)길의료재단 척추경 관통 시술의 안전을 위한 초음파를 이용한 척추경 시야 유도 기구

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Randal R. Betz et al. PediGuard™: A Solution for the Challenges of Pedicle Screw Placement, Temple University Journal of Orthopaedic Surgery & Sports Medicine, v.3, 2008, pp.2-6. *

Similar Documents

Publication Publication Date Title
US6579244B2 (en) Intraosteal ultrasound during surgical implantation
US20160106392A1 (en) Ultrasonic array for bone sonography
KR20190041460A (ko) 피부의 미용적 초음파 치료를 위한 시스템 및 방법
US20080228231A1 (en) Acoustic Back-Scattering Sensing Screw for Preventing Spine Surgery Complications
JP5702365B2 (ja) 整形外科用途の超音波システム
US20110144545A1 (en) Methods And System For Delivering Treatment To A Region Of Interest Using Ultrasound
KR20190132787A (ko) 체외 충격파 치료 장치
CN107106871B (zh) 用于投射聚焦超声的手持设备以及相关方法
JP5978434B2 (ja) 整形外科用途の超音波システム
US20090163808A1 (en) Echographic imaging device, and apparatus for detecting and destroying solid concretions, which apparatus incorporates such a device
JP4434668B2 (ja) 治療システム及び治療支援システム
MXPA03000448A (es) Dispositivo para el tratamiento no invasor con ultrasonido de la enfermedad de los discos.
CN202027702U (zh) 一种利用超声进行脊柱椎弓根螺钉置钉的辅助定位导航和钉道验证装置
RU2674243C1 (ru) Ультразвуковое педикулярное шило (2 варианта)
JP5779027B2 (ja) 超音波治療装置
KR20190082161A (ko) 피부 특성에 따라 에너지를 조사하는 시술장치
KR101861842B1 (ko) 복수의 주파수를 이용한 고강도 집속 초음파 제어방법과 그를 위한 고강도 집속 초음파 치료 장치
CN102614011A (zh) 一种脊柱手术椎弓根螺钉植入的超声定位导航及钉道验证装置
KR20170095612A (ko) 십자형 또는 t자형 초음파 프로브 및 이를 이용한 초음파 진단장치
JP2015146952A (ja) 超音波治療装置及び超音波治療システム
JP2015116201A (ja) 超音波画像撮像装置及び超音波画像撮像方法
KR102244287B1 (ko) 신경을 감지하여 에너지를 조사하는 시술장치
CN110035796A (zh) 模块化超声波设备与方法
US20240307089A1 (en) Ultrasound imaging multi-array probe apparatus and system
WO2008089429A2 (en) Acoustic back-scattering sensing screw for preventing spine surgery complications

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201122