RU2672882C1 - Способ риформинга бензиновых фракций - Google Patents

Способ риформинга бензиновых фракций Download PDF

Info

Publication number
RU2672882C1
RU2672882C1 RU2018128105A RU2018128105A RU2672882C1 RU 2672882 C1 RU2672882 C1 RU 2672882C1 RU 2018128105 A RU2018128105 A RU 2018128105A RU 2018128105 A RU2018128105 A RU 2018128105A RU 2672882 C1 RU2672882 C1 RU 2672882C1
Authority
RU
Russia
Prior art keywords
catalyst
zeolite
reforming
temperature
coke
Prior art date
Application number
RU2018128105A
Other languages
English (en)
Inventor
Виктор Георгиевич Степанов
Евгения Александровна Нуднова
Юрий Константинович Воробьев
Original Assignee
Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" filed Critical Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор"
Priority to RU2018128105A priority Critical patent/RU2672882C1/ru
Application granted granted Critical
Publication of RU2672882C1 publication Critical patent/RU2672882C1/ru
Priority to PCT/RU2019/000497 priority patent/WO2020027694A1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G59/00Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha
    • C10G59/02Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha plural serial stages only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Настоящее изобретение относится к способу риформинга бензиновых фракций путем их последовательного контактирования в присутствии водородсодержащего газа при повышенных температурах и избыточном давлении в нескольких реакционных зонах первоначально с металлоксидным катализатором риформинга, включающим оксид алюминия, платину или смесь платины с промотором, а затем с цеолитсодержащим катализатором, возможно модифицированным промотором. При этом цеолитсодержащий катализатор в качестве цеолита содержит кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита ZSM-5 или ZSM-11 в количестве 5-75% мас. Применение в составе цеолитсодержащего катализатора ферроалюмосиликата или феррогаллийалюмосиликата позволяет снизить температуру полного выжигания катализаторного кокса на стадии регенерации катализатора, а также повысить выход ароматических углеводородов и октановое число получаемой бензиновой фракции. 4 з.п. ф-лы, 3 ил., 2 табл., 16 пр.

Description

Изобретение относится к способам получения ароматических углеводородов и/или высокооктановых бензиновых фракций с применением процесса риформинга низкооктановых бензиновых фракций и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.
Основным процессом получения высокооктановых бензиновых фракций и ароматических углеводородов C6-C10 является процесс каталитического риформинга низкооктановых бензиновых фракций [Гуреев А.А., Жоров Ю.М., Смидович Е.В. Производство высокооктановых бензинов. - М., Химия, 1981, - 224 с.; Маслянский Г.Н., Шапиро Р.Н. Каталитический риформинг бензинов. - Л., Химия, 1985, - 222 с.]. Для повышения эффективности каталитического риформинга постоянно совершенствуются как применяемые в процессе катализаторы, так и сама технология процесса. Одним из приемов повышения эффективности процесса является одновременное применение катализаторов разного состава или типа, находящихся в разных реакционных зонах.
Так, например, известен способ риформинга углеводородного сырья, согласно которому углеводородное сырье подвергают последовательному контактированию с катализаторами двух различных типов [Пат. США №4645586, кл. C10G 59/02, 1987]. Первым по ходу подачи сырья является бифункциональный катализатор риформинга на основе носителя из оксида алюминия с нанесенным на него платиной или платиной и рением, возможно содержащий промоторы металлов VIII группы, такие как рений, олово, германий, кобальт, никель, иридий, родий, рутений и их комбинации. Вторым по ходу подачи сырья применяют модифицированный платиной катализатор на основе широкопористого цеолита L в некислой форме. Риформинг сырья осуществляют при следующих предпочтительных условиях процесса: давление - 0,34-3,4 МПа, температура - 430-550°С, объемная скорость подачи сырья - 0,3-5 ч-1 и мольное отношение водород к углеводородам - Н2/СН = 2-6.
Известен способ каталитического риформинга нафты [Пат. РФ №2180346, кл. C10G 59/02, 2002]. Согласно данному способу исходную нафту (бензиновую фракцию) подвергают контактированию первоначально в зоне непрерывного риформинга с движущемся слоем бифункционального катализатора риформинга, а затем, без отделения водорода из продуктов зоны непрерывного риформинга, подвергают контактированию в зоне цеолитного риформинга с неподвижным слоем цеолитсодержащего катализатора. Бифункциональный катализатор непрерывного риформинга содержит неорганический оксид с нанесенным на него металлическим компонентом платиновой группы, предпочтительно - платиной. Процесс в зоне непрерывного риформинга осуществляют при давлении 0,1-1 МПа, температуре 400-560°С, скорости подачи жидкого сырья 0,2-10 ч-1 и мольном отношении Н2/СН в интервале 0,1-10. Зона цеолитного риформинга может включать один или несколько параллельно или последовательно с промежуточным подогревом работающих реакторов с цеолитсодержащим катализатором. Цеолитсодержащий катализатор содержит цеолит L в некислой, калиевой форме и металлический компонент платиновой группы, предпочтительно - платину. Процесс в зоне цеолитного риформинга осуществляют при давлении 0,1-6 МПа, температуре 260-560°С и скорости подачи жидкого сырья 1-40 ч-1.
Известен способ каталитического риформинга бензиновых фракций [Пат. РФ №2471855, кл. C10G 59/02, 35/085; B01J 29/50, 23/42, 27/10, 27/12, 2011]. Согласно данному способу процесс осуществляют в блоке из пяти последовательно расположенных реакторов. В первый по ходу подачи сырья реакторе загружают катализатор на основе оксида алюминия с нанесенными на него платиной и смеси фтора и хлора, во второй-пятый реакторы загружают катализатор, содержащий кроме оксида алюминия и платины эрионит, причем содержание этого цеолита в катализаторе от второго реактора к пятому повышается от 0,5 до 3,7% мас. В первом реакторе процесс проводят при давлении 2,0 МПа, температуре 410°С, объемной скорости подачи сырья 20 ч-1 и кратности циркуляции водородсодержащего газа (ВСГ) 1200 нм33. В последующих реакторах процесс риформинга проводят при давлении 2,0 МПа, температуре сырья на входе в реактор 490°С, объемной скорости подачи сырья 5 ч-1 и кратность циркуляции ВСГ 1200 нм33.
Применение в составе катализаторов риформинга узкопористых цеолитов, к которым относятся эрионит, ферьерит, филлипсит и др., приводит к дополнительной переработке непрореагировавших на металлоксидном катализаторе н-парафинов, однако при этом не затрагиваются слаборазветвленные монометилпарафины, имеющие невысокие октановые числа, что приводит к получению бензиновых фракций с относительно низкими октановыми числами. В случае применения в составе катализаторов риформинга широкопористых цеолитов, таких как цеолиты L, бета, омега и пр., в переработку вовлекаются высокооктановые сильноразветвленные изопарафины, что в результате протекания побочных реакций гидрокрекинга приводит к снижению выхода бензиновых фракций. Таких недостатков лишены катализаторы, содержащие среднепористые цеолиты со структурой ZSM-5 и ZSM-11, вовлекающие в переработку монометил- и н-парафины, и не затрагивающие вследствие молекулярно-ситового эффекта сильноразветвленные изопарафины.
Наиболее близким по своей технической сущности является способ переработки бензиновых фракций [Пат. РФ №2024581, кл. C10G 35/095, 1994]. Согласно выбранному прототипу риформинг бензиновых фракций осуществляют при температуре 440-530°С и давлении 1-4 МПа путем последовательного контактирования сырья в присутствии водородсодержащего газа первоначально с металлоксидным катализатором, а затем с цеолитсодержащим катализатором при массовом соотношении первого и второго катализаторов (0,33-10):1. Металлоксидный катализатор содержит оксид алюминия, 0,5-2,5% мас. хлора, 0,3-1,2% платины или смеси платины с промотором в соотношении (0,5-12):1, а в качестве промотора возможно применение Re, Ir, Cd или Sn. В составе цеолитсодержащего катализатор применяют некислотный среднепористый цеолит со средним размером пор 0,58-0,60 нм, с модулем 25-1000 и величиной десорбции аммиака 0,05-0,30 ммоль/г в интервале температур 300-500°С (после его предварительной адсорбции из потока при температуре 100°С), что соответствует свойствам цеолитов ZSM-5 и ZSM-11. Применяемый цеолитсодержащий катализатор содержит 0,2-1,2% мас. платины или смеси платины с промотором, 40-75% цеолита и оксид алюминия - остальное; в качестве промотора возможно применение Re, Ir, Rh, W или Mo. Перед осуществлением процесса оба катализатора восстанавливают в токе водорода при температуре 450°С.
Основными недостатками прототипа и аналогов являются относительно высокая температуры выгорания кокса, образующегося на цеолитсодержащем катализаторе в ходе переработки бензиновых фракций и неполная глубина выгорания кокса при умеренных температурах регенерации катализатора.
В ходе превращения углеводородного сырья происходит постепенное закоксование катализаторов, приводящее к снижению их каталитической активности. Снижение каталитической активности катализаторов в свою очередь приводит к падению выхода ароматических углеводородов и к снижению октанового числа получаемых бензиновых фракций. Для восстановления начального уровня активности катализатора осуществляют его регенерацию, заключающуюся в регулируемом выжигании коксовых отложений с поверхности катализатора регенерирующим газом с определенным содержанием кислорода. Закоксование цеолитсодержащего катализатора происходит гораздо быстрее, чем закоксование полиметаллического катализатора риформинга для стационарного слоя катализатора (в случае применения системы реакторов с движущемся слоем катализатора риформинга часть катализатора постоянно выводится на регенерацию).
По сравнению с алюмосиликатной системой введение в кристаллический каркас цеолита на стадии его гидротермального синтеза атомов железа или железа и галлия, при синтезе ферроалюмосиликата или феррогаллийалюмосиликата, приводит к образованию в объеме их кристаллов активных центров, ускоряющих реакции выгорания катализаторного кокса, что при регенерации катализатора приводит к снижению температуры и увеличению глубины выжигания кокса. Введение в цеолитсодержащий катализатор модифицирующих металлов (Pt, Re, Pd и пр.) путем пропитки или ионного обмена не приводит к аналогичному эффекту, т.к. первые не внедряются внутрь кристаллов цеолитов типа ZSM-5 и ZSM-11 и поэтому не влияют на процесс выжигания катализаторного кокса, образовавшегося внутри цеолитных каналов. Вследствие этого коксовые отложения, находящиеся внутри цеолитных кристаллов, могут не выгорать полностью при умеренных температурах регенерации и постепенно накапливаться от регенерации к регенерации приводя к снижению уровня активности и/или к сокращению времени межрегенерационного пробега катализатора, чего не происходит в случае применения ферроалюмосиликата и феррогаллийалюмо силиката.
Целью настоящего изобретения является снижение температуры полного выгорания кокса, образующегося на цеолитсодержащем катализаторе в условиях процесса.
Поставленная цель достигается тем, что риформинг бензиновых фракций осуществляют путем их последовательного контактирования в присутствии водородсодержащего газа при повышенных температурах и избыточном давлении в нескольких реакционных зонах первоначально с металлоксидным катализатором, включающим оксид алюминия, платину или смесь платины с промотором, а затем с катализатором, содержащим 5-75% мас. кристаллического ферроалюмосиликата или феррогаллийалюмосиликата со структурой цеолита ZSM-5 или ZSM-11.
Поставленная задача достигается так же тем, что ферроалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 38-310 и содержит 0,1-1,5% мас. железа, а феррогаллийалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 61-320 и содержит 0,1-1,2% железа и 0,1-1,5% галлия.
Применяемый цеолитсодержащий катализатор может содержать в количестве 0,05-1,7% мас. по меньшей мере один из введенных известными методами модификаторов, выбранных из группы Pt, Pd, Re, Ni, Cr, Zr, Sn, La.
Поставленная цель достигается так же тем, что риформинг бензиновых фракций осуществляют в присутствии водородсодержащего газа при избыточном давлении 0,3-4,0 МПа, объемной скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 1-10 путем контактирования с металлоксидным катализатором при температуре 440-550°С и с цеолитсодержащим катализатором при температуре 320-520°С, а соотношение количества работающего металлоксидного катализатора риформинга к количеству работающего цеолитсодержащего катализатора может находиться в интервале 1-10.
Основным отличительным признаком предлагаемого способа является применение катализатора, в качестве цеолита содержащего кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита ZSM-5 или ZSM-11.
Данный вариант риформинга осуществляют следующим образом. Переработку бензиновых фракций осуществляют путем последовательного контактирования в присутствии водородсодержащего газа при повышенных температурах и избыточном давлении в нескольких реакционных зонах первоначально с металлоксидным катализатором риформинга, а затем с цеолитсодержащим катализатором. Металлоксидный катализатор риформинга может находиться в нескольких последовательно работающих реакторах со стационарным слоем катализатора или в системе реакторов с движущемся слоем катализатора по известным схемам, а цеолитсодержащий катализатор может находиться в одном или в двух параллельно расположенных реакторах со стационарным слоем. При применении одного реактора с цеолитсодержащим катализатором последний периодически отключают от работающих реакторов с металлоксидным катализатором риформинга, а в случае параллельно расположенных реакторов один из реакторов находится в работе, а другой - на стадии регенерации с последующим чередованием стадий в реакторах. Процесс в целом осуществляют при избыточном давлении 0,3-4,0 МПа, объемной скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 1-10 путем контактирования сырья с металлоксидным катализатором при температуре 440-550°С и с цеолитсодержащим катализатором при температуре 320-520°С. Соотношение объема работающего металлоксидного катализатора риформинга к объему работающего цеолитсодержащего катализатора (т.е. без учета объемов катализаторов, находящихся на стадии регенерации) может находиться в интервале 1-10.
В качестве металлоксидного катализатора применяют известные катализаторы риформинга, в т.ч. на основе гамма оксида алюминия содержащие платину и, возможно, содержащие олово или рений.
Перед осуществлением процесса металлоксидный катализатор риформинга восстанавливают в водороде при температуре 450-550°С и после восстановления водородом катализатор может быть предварительно осернен с добавлением H2S или сераорганических соединений из расчета 0,01-0,07% мас. серы на катализатор.
Сущность предлагаемого способа и его практическая применимость иллюстрируется нижеприведенными примерами. Для иллюстрации достижимости поставленной цели - снижения температуры выгорания кокса, образующегося на цеолитсодержащем катализаторе и увеличение полноты его выгорания, приведены примеры №№1-3 и Фиг. 1-3. Пример №1 и Фиг. 1 показывают глубину выгорания кокса, образующегося на цеолитсодержащем катализаторе, приготовленного подобно прототипу, а примеры №№2-3 и Фиг. 2-3 иллюстрируют выгорание кокса на цеолитсодержащем катализаторе предлагаемого способа. Примеры №№5-16 иллюстрируют предлагаемый способ риформинга бензиновых фракций, пример №4 аналогичен прототипу и приведен для сравнения с предлагаемым способом. Составы применяемых металлоксидных и цеолитсодержащих катализаторов приведены в таблице 1, условия и результаты испытаний катализаторов в риформинге модельной бензиновой фракции - в таблице 2.
Пример 1 (для сравнения).
Изучение процесса выжигания катализаторного кокса катализатора осуществляют по контролю изменения массы 0,2 г закоксованного образца катализатора в реакторе, близком к изотермическому. Выжигание кокса проводят путем контактирования с катализатором регенерирующего газа, содержащего 1,3% об. кислорода в смеси с азотом, которое осуществляют при атмосферном давлении, температуре 500-600°С и скорости подачи газа 50 л/ч.
Исходный катализатор №1 содержит 30% мас. γ-Al2O3 и 70% декатионированного цеолита ZSM-5 в Н-форме с мольным отношением SiO2/Al2O3 = 91. Выжиганию кокса подвергают катализатор, содержащий 5,1% мас. кокса, образовавшегося за 15 ч переработки углеводородной фракции С68.
Выжигание кокса из катализатора начинают при постоянной температуре 500°С и ведут 60 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 39% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 60 мин до стабилизации массы образца катализатора было удалено еще 22% от начального содержания кокса. При температуре 550°С было удалено еще 8% кокса. Остаточный кокс в количестве 31% от начального его содержания выгорел при температуре 600°С за 70 мин. Общее время выжигания кокса составило ~250 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на Фиг. 1.
Пример 2.
Аналогичен примеру 1 с тем отличием, что применяют катализатор №2, содержащий 30% мас. γ-Al2O3 и 70% ферросиликата со структурой цеолита ZSM-5 с мольным отношением SiO2/Al2O3 = 96 и с содержанием железа 0,5% мас.
Выжиганию кокса подвергают проработавший в течение 15 ч катализатор, содержащий 5,2% мас. кокса. Выжигание кокса начинают при постоянной температуре 500°С и ведут 85 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 62% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 75 мин до стабилизации массы образца катализатора было удалено еще 28% от начального содержания кокса. Остаточный кокс в количестве 10% от начального его содержания выгорел при температуре 550°С за 20 мин. Контрольное повышение температуры до 600°С не привело к дальнейшему изменению массы образца, что подтверждает полное удаление кокса при температуре 550°С. Общее время выжигания кокса составило ~180 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на Фиг. 2.
Пример 3.
Аналогичен примеру 1 с тем отличием, что применяют катализатор №3, содержащий 25% мас. γ-Al2O3 и 75% феррогаллийалюмосиликата со структурой цеолита ZSM-11 с мольным отношением SiO2/Al2O3 = 105 и с содержанием железа - 0,4% мас. и галлия - 0,1%.
Выжиганию кокса подвергают проработавший в течение 100 ч катализатор, содержащий 10,2% мас. кокса. Выжигание кокса начинают при постоянной температуре 500°С и ведут 80 мин до стабилизации массы образца катализатора; в результате окислительной обработки катализатора было удалено 81% от начального содержания кокса. После повышения температуры регенерации до 520°С и последующего выжигания кокса в течение 60 мин до стабилизации массы образца катализатора было удалено еще 13% от начального содержания кокса. Остаточный кокс в количестве 6% от начального его содержания выгорел при температуре 550°С за 20 мин. Контрольное повышение температуры до 600°С не привело к дальнейшему изменению массы образца, что говорит о полном выгорании кокса при температуре 550°С. Общее время выжигания кокса составило ~160 мин. Кривые потери массы образца во времени, за счет выгорания кокса в закоксованном катализаторе, представлены на Фиг. 3.
Пример 4 (для сравнения).
В качестве сырья процесса риформинга применяют модельную фракцию углеводородов С68, содержащую нафтены, н-парафины и изопарафины в массовом соотношении 1:1:1. Испытание катализаторов проводят на лабораторной установке с двумя последовательно работающими трубчатыми изотермическими реакторами. В первом по ходу подачи сырья находится металлоксидный катализатор на основе γ-Al2O3 с нанесенными 0,3% мас. платиной и 0,3% олова. Во втором реакторе находится катализатор, содержащий 30% мас. γ-Al2O3 и 70% цеолита ZSM-5 с мольным отношением SiO2/Al2O3 = 91. Соотношение масс первого катализатора к массе второго равно 3.
Перед испытанием катализаторы активируют в токе воздуха в течение 1 часа при температуре 450°С, затем продувают азотом. Металлоксидный катализатор дополнительно восстанавливают в токе водорода при температуре 450°С в течение 4 часов. Риформинг углеводородной фракции С68 осуществляют при избыточном давлении 1,0 МПа, объемной скорости подачи жидкого сырья 2,0 ч-1, и мольном отношении водорода к углеводородам Н2/СН = 5, температура реакции в первом реакторе - 480°С, во втором - 400°С. При этих условиях получаемая бензиновая фракция С5+ содержит, % мас.: н-парафины - 12,1; изопарафины - 23,0; нафтены - 3,2; ароматические углеводороды - 61,2; и имеет октановое число 85,1 ММ.
Примеры 5-16.
Аналогичны примеру 4. Составы применяемых катализаторов приведены в таблице 1, условия и результаты процесса риформинга - в таблице 2,
Как видно из приведенных примеров №№1-3 и Фиг. 1-3 предлагаемый цеолитсодержащий катализатор обладает способностью проводить удаление коксовых отложений с поверхности цеолитного компонента регенерируемого катализатора в более мягких условиях, заключающихся в уменьшении температуры полного выжигания кокса с 600°С до 550°С и сокращении общего времени регенерации. При этом его применение в комбинированном процессе риформинга бензиновых фракций позволяет за счет дополнительного превращения парафинов в получаемых риформатах - фракции С5+ - повысить содержание ароматических углеводородов и октановое число (см. примеры 4 и 5 в таблице 2).
Figure 00000001
Figure 00000002

Claims (5)

1. Способ риформинга бензиновых фракций путем их последовательного контактирования в присутствии водородсодержащего газа при повышенных температурах и избыточном давлении в нескольких реакционных зонах первоначально с металлоксидным катализатором риформинга, включающим оксид алюминия, платину или смесь платины с промотором, а затем с цеолитсодержащим катализатором, возможно модифицированным промотором, отличающийся тем, что цеолитсодержащий катализатор в качестве цеолита содержит кристаллический ферроалюмосиликат или феррогаллийалюмосиликат со структурой цеолита ZSM-5 или ZSM-11 в количестве 5-75% мас.
2. Способ по п. 1, отличающийся тем, что ферроалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 38-310 и содержит 0,1-1,5% мас. железа.
3. Способ по п. 1, отличающийся тем, что феррогаллийалюмосиликат имеет мольное отношение SiO2/Al2O3 в интервале 61-320 и содержит 0,1-1,2% мас. железа и 0,1-1,5% галлия.
4. Способ по любому из пп. 1-3, отличающийся тем, что цеолитсодержащий катализатор содержит по меньшей мере один из промоторов, выбранных из группы Pt, Pd, Re, Ni, Cr, Zr, Sn, La, в количестве 0,05-1,7% мас.
5. Способ по любому из пп. 1-4, отличающийся тем, что риформинг бензиновых фракций осуществляют в присутствии водородсодержащего газа при давлении 0,3-4,0 МПа, массовой скорости подачи жидкого сырья 0,5-10 ч-1 и мольном отношении водорода к углеводородам 1-10 путем контактирования с металлоксидным катализатором при температуре 440-550°С и с цеолитсодержащим катализатором при температуре 320-520°С, а соотношение объема или массы работающего металлоксидного катализатора риформинга соответственно к объему или массе работающего цеолитсодержащего катализатора в интервале 1-10.
RU2018128105A 2018-07-30 2018-07-30 Способ риформинга бензиновых фракций RU2672882C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2018128105A RU2672882C1 (ru) 2018-07-30 2018-07-30 Способ риформинга бензиновых фракций
PCT/RU2019/000497 WO2020027694A1 (ru) 2018-07-30 2019-07-15 Способ риформинга бензиновых фракций

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018128105A RU2672882C1 (ru) 2018-07-30 2018-07-30 Способ риформинга бензиновых фракций

Publications (1)

Publication Number Publication Date
RU2672882C1 true RU2672882C1 (ru) 2018-11-20

Family

ID=64327902

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018128105A RU2672882C1 (ru) 2018-07-30 2018-07-30 Способ риформинга бензиновых фракций

Country Status (2)

Country Link
RU (1) RU2672882C1 (ru)
WO (1) WO2020027694A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2704006C1 (ru) * 2019-08-09 2019-10-23 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Способ получения высокооктановых бензиновых фракций и ароматических углеводородов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950385A (en) * 1989-02-17 1990-08-21 Council Of Scientific & Industrial Research Reforming process for the catalytic conversion of petroleum fractions to a mixture of hydrocarbons rich in aromatics
RU2024581C1 (ru) * 1992-02-11 1994-12-15 Арендное предприятие "Уфимский нефтеперерабатывающий завод" Способ переработки бензиновых фракций
US5880051A (en) * 1996-10-23 1999-03-09 Uop Llc Reforming catalyst system with differentiated acid properties

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950385A (en) * 1989-02-17 1990-08-21 Council Of Scientific & Industrial Research Reforming process for the catalytic conversion of petroleum fractions to a mixture of hydrocarbons rich in aromatics
RU2024581C1 (ru) * 1992-02-11 1994-12-15 Арендное предприятие "Уфимский нефтеперерабатывающий завод" Способ переработки бензиновых фракций
US5880051A (en) * 1996-10-23 1999-03-09 Uop Llc Reforming catalyst system with differentiated acid properties
US6066251A (en) * 1996-10-23 2000-05-23 Uop Llc Reforming process using a catalyst system with differentiated acid properties

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2704006C1 (ru) * 2019-08-09 2019-10-23 Акционерное общество "Специальное конструкторско-технологическое бюро "Катализатор" Способ получения высокооктановых бензиновых фракций и ароматических углеводородов

Also Published As

Publication number Publication date
WO2020027694A1 (ru) 2020-02-06

Similar Documents

Publication Publication Date Title
US8668824B2 (en) Rapid cycle reforming process
US6652737B2 (en) Production of naphtha and light olefins
JP2923690B2 (ja) 硫黄含有原料油の品質向上方法
JPH0660312B2 (ja) クラツキング済みガソリン類のオクタン価向上方法
JPH021131B2 (ru)
JPH0631335B2 (ja) 接触脱蝋法
EP0323132B1 (en) Method for suppressing hydrogenolysis of noble metal/low acidity zeolites used in aromatizing paraffins
US4134823A (en) Catalyst and hydrocarbon conversion process
AU2009255498A1 (en) Catalytic reforming process to produce high octane gasoline
US5270272A (en) Sulfur removal from molecular-sieve catalyst
JPS62250093A (ja) 接触リホ−ミング方法
US4992158A (en) Catalytic reforming process using noble metal alkaline zeolites
EP0186447B1 (en) Catalytic cracking of paraffinic feedstocks with zeolite beta
US20120024754A1 (en) Multi-stage reforming process with final stage catalyst regeneration
RU2672882C1 (ru) Способ риформинга бензиновых фракций
WO2017074641A1 (en) Upgrading olefin-containing feeds to diesel boiling range compounds
US5043057A (en) Removal of sulfur from recycle gas streams in catalytic reforming
US20160145507A1 (en) Two-stage reforming process configured for increased feed rate to manufacture reformate and benzene
US4255250A (en) Extended cycle regenerative reforming
RU2208624C2 (ru) Способ получения высокооктановых бензиновых фракций и ароматических углеводородов (варианты)
RU2704006C1 (ru) Способ получения высокооктановых бензиновых фракций и ароматических углеводородов
RU2675629C1 (ru) Катализатор для риформинга бензиновых фракций, способ его получения и применение катализатора
US5620937A (en) Pretreatment method for increasing conversion of reforming catalyst
RU2667920C1 (ru) Катализатор для гидроизомеризации углеводородных фракций и способ его применения
JP2004504477A (ja) 炭化水素のアップグレード方法