RU2671261C1 - Complex for acoustical protection of the operator - Google Patents

Complex for acoustical protection of the operator Download PDF

Info

Publication number
RU2671261C1
RU2671261C1 RU2017120711A RU2017120711A RU2671261C1 RU 2671261 C1 RU2671261 C1 RU 2671261C1 RU 2017120711 A RU2017120711 A RU 2017120711A RU 2017120711 A RU2017120711 A RU 2017120711A RU 2671261 C1 RU2671261 C1 RU 2671261C1
Authority
RU
Russia
Prior art keywords
sound
absorbing
perforated
operator
layers
Prior art date
Application number
RU2017120711A
Other languages
Russian (ru)
Inventor
Олег Савельевич Кочетов
Original Assignee
Олег Савельевич Кочетов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Олег Савельевич Кочетов filed Critical Олег Савельевич Кочетов
Priority to RU2017120711A priority Critical patent/RU2671261C1/en
Application granted granted Critical
Publication of RU2671261C1 publication Critical patent/RU2671261C1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/82Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only
    • E04B1/8209Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to sound only sound absorbing devices
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Architecture (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Abstract

FIELD: security facilities.SUBSTANCE: invention relates to means of safety of operation of operators in emergency situations, particularly at high levels of noise. Technical result is achieved by the fact that the complex for acoustic protection of the operator contains the operator’s workplace, equipped with noise reduction means, the operator’s workplace is located between acoustic screens, and an acoustic suspended ceiling is installed above the working area, and to reduce sound vibrations, the operator’s workplace is equipped with a floor on an elastic base, and also provides a rocker absorber, which consists of a rigid frame suspended from hooks on cables to the building’s ceiling, with a sound-absorbing material located inside the frame, wrapped with mesh nylon cloth, and an expanded steel sheet is attached to the frame, while the sound-absorbing element is used in the construction of the wall sound-absorbing panel, containing smooth and perforated surfaces, between which a multi-layer sound-absorbing structure is placed, which is made in the form of rigid and perforated walls, between which there are layers of sound-reflecting and sound-absorbing materials of different density, arranged in two layers, with the layers of sound-reflecting material made of a complex profile consisting of uniformly distributed hollow tetrahedra, and located respectively at the rigid and perforated walls, and the layers of sound-reflecting material made of insulating material, and as a sound-absorbing material, slabs of mineral wool on a basalt basis, or mineral wool, or basalt wool are used, or glass wool with glass cladding, the sound-absorbing element is lined with an acoustically transparent material over its entire surface, the sound-absorbing element containing smooth and perforated surfaces, between which there is a layer of sound-absorbing material of complex shape, and the edges of the prismatic surfaces are fixed respectively on the smooth and perforated walls, the cavities of the hollow sections formed by the prismatic surfaces being filled with a sound absorber, and between the smooth surface and the solid sections of the layer of sound-absorbing material of complex shape, as well as between the perforated surface and the solid sections there are resonant plates with resonant inserts, however, the sound-absorbing element is made in the form of a rigid and perforated walls, between which is a multi-layer sound-absorbing element, which is made in the form of two layers: one of which being adjacent to the rigid wall, is sound-absorbing, and the other being adjacent to the perforated wall, is made with the perforation from the sound-reflecting material of complex profile, in this case, a material based on aluminum-containing alloys was applied as a sound reflecting material, followed by filling them with titanium hydride or air.EFFECT: technical result is the improvement in the efficiency of acoustic suppression.1 cl, 9 dwg, 2 tbl

Description

Изобретение относится к средствам безопасности работы операторов в условиях чрезвычайных ситуаций, в частности при повышенных уровнях шума.The invention relates to safety equipment for operators in emergency situations, in particular at elevated noise levels.

Наиболее близким техническим решением по технической сущности и достигаемому результату является акустическая защита по патенту РФ №2366785, 2007 г. [прототип], как способ акустической защиты оператора, заключающийся в том, что рабочее место оператора оснащают средствами снижения шума.The closest technical solution to the technical nature and the achieved result is acoustic protection according to the patent of the Russian Federation No. 2366785, 2007 [prototype], as a way of acoustic protection for the operator, namely that the operator’s workplace is equipped with noise reduction means.

Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет сравнительно невысокого коэффициента звукопоглощения.The disadvantage of the technical solution adopted as a prototype is the relatively low efficiency of sound attenuation due to the relatively low coefficient of sound absorption.

Технический результат - повышение эффективности шумоглушения.The technical result is an increase in the efficiency of sound attenuation.

Это достигается тем, что в комплексе для акустической защиты оператора, содержащем рабочее место оператора оснащенное средствами снижения шума, рабочее место оператора расположено между акустическими экранами, которые защищают оператора от прямого звука, распространяющегося от виброактивного оборудования, а над рабочей зоной установлен акустический подвесной потолок, размещенный в верхней зоне помещения, а для снижения звуковой вибрации рабочее место оператора оснащено полом на упругом основании, осуществляющем двухкаскадную виброзащиту оператора, а также предусмотрен кулисный звукопоглотитель, который состоит из жесткого каркаса, подвешиваемого за крючья на тросах к потолку здания с расположенным внутри каркаса звукопоглощающим материалом, обернутым сетчатой капроновой тканью, а к каркасу прикреплен просечно-вытяжной стальной лист, а в качестве звукопоглощающего материала используют плиты ШУМАНЕТ-БМ в качестве эффективного среднего слоя в конструкциях звукоизолирующих каркасных перегородок или облицовок из листов ГКЛ/ГВЛ, ДСП, фанеры, а также в системах акустических перфорированных экранов или подвесных потолков, при монтаже сэндвич-панелей используют ленточную прокладку ВИБРОСТЕК-М, которую укладывают в два слоя в местах их опоры на пол, а также в местах соприкосновения панелей с боковыми стенами и потолком, при монтаже используют герметик типа Вибросил: однокомпонентный виброизолирующий силиконовый герметик для герметизации стыков и соединений в специальных звукоизолирующих конструкциях, а в качестве виброизолирующих стеновых креплений - ВИБРОФЛЕКС-амортизирующее устройство для решения задач по снижению уровня шума и передачи вибраций в помещениях любого типа и назначения, а для монтажа к вертикальным ограждающим конструкциям используют стеновые варианты креплений типа ЕР -микропористый полиуретановый эластомер, специально для решения задач звуко- и виброизоляции, в конструкции стеновой шумопоглощающей панели применен звукопоглощающий элемент, содержащий гладкую и перфорированную поверхности, между которыми размещена многослойная звукопоглощающая конструкция, который выполнен в виде жестких и перфорированных стенок, между которыми расположены слои звукоотражающего, а также звукопоглощающего материалов разной плотности, расположенные в два слоя, причем слои звукоотражающего материала выполнены сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и которые расположены соответственно у жесткой и перфорированной стенок, а слои звукоотражающего материала выполнены из теплоизоляционного материала, способного поддерживать заданный микроклимат в помещении, а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», а перфорированная стенка имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.This is achieved by the fact that in the complex for acoustic protection of the operator containing the operator’s workstation equipped with noise reduction means, the operator’s workplace is located between the acoustic screens that protect the operator from direct sound propagating from the vibroactive equipment, and an acoustic suspended ceiling is installed above the working area, located in the upper zone of the room, and to reduce sound vibration, the operator’s workplace is equipped with a floor on an elastic base, performing two-stage vibration operator protection, as well as a rocker absorber is provided, which consists of a rigid frame suspended by hooks on cables to the building ceiling with sound-absorbing material inside the frame wrapped in mesh nylon fabric, and expanded metal sheet is attached to the frame, and as a sound-absorbing material use SHUMANET-BM boards as an effective middle layer in the design of soundproofing frame partitions or claddings of sheets GKL / GVL, chipboard, plywood, as well as in acus systems perforated screens or suspended ceilings, when installing sandwich panels, use the VIBROSTEK-M strip gasket, which is laid in two layers at the places of their support on the floor, as well as at the places where the panels come into contact with the side walls and the ceiling, use Vibrosil sealant during installation: one-component vibration-isolating silicone sealant for sealing joints and joints in special sound-insulating structures, and as vibration-isolating wall mounts - VIBROFLEX-shock-absorbing device for res tasks for reducing noise and transmitting vibrations in rooms of any type and purpose, and for mounting to vertical enclosing structures, wall mounts of the EP type are used - microporous polyurethane elastomer, specially for solving problems of sound and vibration isolation, sound-absorbing panels are used in the design of the wall sound-absorbing panel an element containing smooth and perforated surfaces, between which a multilayer sound-absorbing structure is placed, which is made in the form of rigid and perforated walls between which are layers of sound-reflecting, as well as sound-absorbing materials of different densities, arranged in two layers, and the layers of sound-reflecting material are made of a complex profile, consisting of uniformly distributed hollow tetrahedrons, which allow reflecting sound waves incident in all directions, and which are respectively located at the rigid and perforated walls, and the layers of sound-reflecting material are made of heat-insulating material that can maintain a given microclimate in indoors, and as sound-absorbing material, slabs made of rockwool basalt-based mineral wool or URSA-type mineral wool or P-75 basalt wool or glass wool cladding are used, and the sound-absorbing element is lined over its entire surface by an acoustically transparent material, for example, EZ-100 fiberglass or “visible” polymer, and the perforated wall has the following perforation parameters: hole diameter - 3 ÷ 7 mm, perforation percentage 10% ÷ 15%, and the shape of the hole is m Gut be formed as round holes, triangular, square, rectangular or rhombic profile, wherein in the case of non-circular holes as the nominal size should be regarded as the maximum diameter of the polygon circumference fits into.

На фиг. 1 изображен общий вид комплекса для акустической защиты оператора, на фиг. 2 - конструкция пола помещения на упругом основании, на фиг. 3 - амортизирующая конструкция для установки стеновой панели, на фиг. 4 - конструкция стеновой шумопоглощающей панели, установленной на перекрытии, на фиг. 5 - конструкция кулисных звукопоглотителей, на фиг. 6 - график эффективности звукопоглощения применяемых панелей, на фиг. 7, 8, 9 - варианты выполнения звукопоглощающего элемента в конструкции стеновой шумопоглощающей панели.In FIG. 1 shows a general view of a complex for acoustic protection of an operator; FIG. 2 - floor structure of the premises on an elastic base, in FIG. 3 shows a shock-absorbing structure for installing a wall panel; FIG. 4 shows a structure of a wall sound-absorbing panel mounted on a floor, in FIG. 5 is a design of the rocker sound absorbers, in FIG. 6 is a graph of sound absorption efficiency of applied panels; FIG. 7, 8, 9 - embodiments of a sound-absorbing element in the construction of a wall sound-absorbing panel.

Комплекс для акустической защиты оператора (фиг. 1) содержит каркас здания, выполненный в виде упругого основания 1, являющегося полом помещения (фиг. 2), теплозвукоизолирующих ограждений 2, жестко связанных с колоннами 3, которые в свою очередь соединены с металлоконструкцией 4, например в виде фермы. Акустический подвесной потолок 5 размещен в зоне ферм 4, и выполнен в виде установленных с определенным шагом кулисных звукопоглотителей, нижняя часть которых выступает за нижнюю часть ферм 4 в сторону основания 1. На ограждениях 2 закреплены акустические стеновые панели 6 (фиг. 3). На упругом основании 1 помещения установлено виброакустическое оборудование 7 и 8 с различными спектральными характеристиками уровней звуковой мощности. Рабочее место оператора 15, включающее в себя пульты управления 16 и 17 оборудованием 7 и 8, расположено между акустическими экранами 9 и 11, причем в одно из них, например 9-ом выполнен смотровой звукоизолирующий люк 10 для контроля визуализации наблюдения за технологическим процессом. Каркас здания сверху закрыт звукоизолирующим покрытием 12, выполняющим также функцию кровли, в котором расположены вертикальные 13 и наклонные 14 оконные проемы в виде вакуумных звукоизолирующих стеклопакетов.The complex for acoustic protection of the operator (Fig. 1) contains the building frame made in the form of an elastic base 1, which is the floor of the room (Fig. 2), heat and sound insulating barriers 2, rigidly connected to the columns 3, which in turn are connected to the metal structure 4, for example in the form of a farm. An acoustic suspended ceiling 5 is located in the zone of the trusses 4, and is made in the form of rocker sound absorbers installed with a certain pitch, the lower part of which protrudes from the bottom of the trusses 4 towards the base 1. Acoustic wall panels 6 are fixed to the fences 2 (Fig. 3). On the elastic base 1 of the room installed vibroacoustic equipment 7 and 8 with different spectral characteristics of sound power levels. The operator’s workstation 15, including control panels 16 and 17 of equipment 7 and 8, is located between the acoustic screens 9 and 11, and in one of them, for example, on the 9th, a soundproof inspection hatch 10 is made to control visualization of observation of the process. The building frame is closed from above with a soundproof coating 12, which also functions as a roof, in which there are vertical 13 and inclined 14 window openings in the form of vacuum soundproof glass packets.

Конструкция пола на упругом основании (фиг. 2) содержит установочную плиту 18, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 19 межэтажного перекрытия с полостями 20 через слои вибродемпфирующего материала 21 и гидроизоляционного материала 22, установленных с зазором относительно несущих стен 23 производственного помещения. Чтобы обеспечить эффективную виброизоляцию установочной плиты 18 по всем направлениям слои вибродемпфирующего материала 21 и гидроизоляционного материала 22 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 7 и базовой несущей плите 19 перекрытия. Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием полости 20 заполнены вибродемпфирующим материалом, например вспененным полимером, или полиэтиленом, или полипропиленом.The floor structure on an elastic foundation (Fig. 2) contains a mounting plate 18 made of concrete reinforced with vibration damping material, which is installed on the base plate 19 of the floor with cavities 20 through layers of vibration damping material 21 and waterproofing material 22 installed with a gap relative to the bearing walls 23 production premises. In order to ensure effective vibration isolation of the mounting plate 18 in all directions, the layers of the vibration damping material 21 and the waterproofing material 22 are made with a flange that is closely adjacent to the supporting structures of the walls 7 and the base supporting plate 19 of the floor. To increase the efficiency of sound insulation and sound absorption in the workshops located under the floor, the cavities 20 are filled with vibration damping material, for example, foamed polymer, or polyethylene, or polypropylene.

Конструкция пола на упругом основании работает следующим образом. При установке виброактивного оборудования 7 и 8 на плиту 18, происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 18, а также за счет слоя вибродемпфирующего материала 21, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например, пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.The floor structure on an elastic base works as follows. When installing the vibroactive equipment 7 and 8 on the plate 18, a two-stage vibration protection occurs due to vibration damping inclusions in the mass of the plate 18, as well as due to the layer of vibration damping material 21, which can be used: needle-punched mats of the type “Vibrosil” based on silica or aluminoborosilicate fiber, a material made of solid vibration-damping materials, for example, plastic, from soundproofing plates based on glass staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 .

Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглощающего материала, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор шумопоглощающего материала. Причем иглопробивные маты состоят из волокон, имеющих диаметр не ниже предельно допустимого гигиенического значения, не содержат канцерогенных асбестовых и керамических волокон, а в их состав не входят такие вредные связующие, как фенол. Поэтому с уверенностью их можно отнести к классу тепло-звукоизоляционных материалов, соответствующих высоким гигиеническим и противопожарным требованиям. Добавим, что стекловолокнистые материалы имеют низкую теплопроводность, не поддаются влиянию пара, масла, воды, обладают высокой температурной стабильностью.The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of sound-absorbing material, which is a Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the excitation frequency against the walls of the mouth itself, having the form branched pore network of sound-absorbing material. Moreover, needle-punched mats consist of fibers having a diameter not lower than the maximum permissible hygienic value, do not contain carcinogenic asbestos and ceramic fibers, and such harmful binders as phenol are not included in their composition. Therefore, with confidence they can be attributed to the class of heat and sound insulating materials that meet high hygienic and fire safety requirements. We add that fiberglass materials have low thermal conductivity, are not influenced by steam, oil, water, and have high temperature stability.

Акустические стеновые панели 6 могут быть выполнены в виде плит из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».Acoustic wall panels 6 can be made in the form of slabs of rockwool basalt mineral wool, or URSA mineral wool, or P-75 basalt wool, or glass wool lined with glass wool, or foamed polymer, such as polyethylene or polypropylene, and the sound-absorbing element over its entire surface is lined with an acoustically transparent material, such as fiberglass type EZ-100 or polymer type "Poviden."

Комплекс для акустической защиты оператора работает следующим образом.The complex for acoustic protection of the operator works as follows.

Рабочее место оператора 15 располагают между акустическими экранами 9 и 11, и защищают оператора от прямого звука, который распространяется от виброактивного оборудования 7 и 8. Для того, чтобы повысить эффективность защиты от отраженных звуковых волн над рабочей зоной (рабочим местом) устанавливают акустический подвесной потолок 5, размещенный в верхней зоне помещения (зоне ферм 4). Он снижает уровни звуковых волн, исходящих от оборудования 7 и 8 за счет многократного отражения звуковых волн от кулисных звукопоглотителей. Для снижения звуковой вибрации рабочее место оператора оснащают полом на упругом основании. При установке виброактивного оборудования 7 и 8 на плиту 18, происходит двухкаскадная виброзащита, за счет вибродемпфирующих вкраплений в саму массу плиты 18, а также за счет слоя вибродемпфирующего материала 21, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например, пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.The operator’s workplace 15 is placed between the acoustic screens 9 and 11, and protects the operator from direct sound that is spreading from the vibroactive equipment 7 and 8. In order to increase the effectiveness of protection from reflected sound waves above the work area (workplace), an acoustic suspended ceiling is installed 5, located in the upper zone of the room (farm zone 4). It reduces the levels of sound waves emanating from equipment 7 and 8 due to the multiple reflection of sound waves from the rocker sound absorbers. To reduce sound vibration, the operator’s workplace is equipped with a floor on an elastic base. When installing the vibroactive equipment 7 and 8 on the plate 18, a two-stage vibration protection occurs due to vibration damping inclusions in the mass of the plate 18, as well as due to the layer of vibration damping material 21, which can be used: needle-punched mats of the type “Vibrosil” based on silica or aluminoborosilicate fiber, a material made of solid vibration-damping materials, for example, plastic, from soundproofing plates based on glass staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 .

Внутри помещений, где велика площадь открытого кирпича, штукатурки, бетона, кафеля, стекла, металла, всегда слышно долгое эхо. Если в таких помещениях есть несколько источников звука (разговор людей, музыка, производственные шумы), то прямой звук накладывается на его громкие первые отражения, что приводит к неразборчивости речи и повышенному уровню шума в помещении. Для снижения или коррекции времени реверберации помещений в его отделке применяют звукопоглощающие материалы и конструкции (звукопоглотители).Indoors, where the area of open brick, plaster, concrete, tile, glass, metal is large, a long echo is always heard. If in such rooms there are several sources of sound (people's conversation, music, industrial noises), then direct sound is superimposed on its loud first reflections, which leads to speech illegibility and an increased noise level in the room. To reduce or correct the reverberation time of premises, sound-absorbing materials and structures (sound absorbers) are used in its decoration.

С акустической точки зрения звукопоглотители могут быть разделены на следующие группы: пористые (в т.ч. волокнистые); пористые с перфорированными экранами; резонансные; слоистые конструкции; штучные или объемные.From an acoustic point of view, sound absorbers can be divided into the following groups: porous (including fibrous); porous with perforated screens; resonant; layered structures; piece or volume.

Пористые звукопоглотители изготавливают в виде плит, которые крепятся к ограждающим поверхностям непосредственно или на относе, из легких и пористых минеральных штучных материалов - пемзы, вермикулита, каолина, шлаков и т.п.с цементом или другим вяжущим. Такие материалы достаточно прочны и могут быть использованы для снижения шума в коридорах, фойе, лестничных маршах общественных и промышленных зданий.Porous sound absorbers are made in the form of plates that are attached to the enclosing surfaces directly or on the basis of light and porous mineral piece materials - pumice, vermiculite, kaolin, slag, etc. with cement or other binder. Such materials are strong enough and can be used to reduce noise in corridors, foyers, staircases of public and industrial buildings.

Figure 00000001
Figure 00000001

Сырьем для их производства служат древесные волокна, минеральная вата, стеклянная вата, синтетические волокна. Поверхность волокнистых звукопоглотителей обрабатывается специальными пористыми красками, пропускающими воздух (например, Acutex Т) или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом.The raw materials for their production are wood fibers, mineral wool, glass wool, synthetic fibers. The surface of the fibrous absorbers is treated with special porous paints that allow air to pass through (for example, Acutex T) or coated with breathable fabrics or non-woven materials, such as Lutrasil.

В настоящее время волокнистые звукопоглотители являются наиболее употребительными в строительной практике. Они не только оказались наиболее эффективными с акустической точки зрения в широком частотном диапазоне, но и отвечают возросшим требованиям, предъявляемые к дизайну помещений.Currently, fibrous sound absorbers are the most common in construction practice. They not only proved to be the most effective from an acoustic point of view in a wide frequency range, but also meet the increased requirements for room design.

В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Кроме этого, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0.

Напомним, что коэффициент звукопоглощения а равен отношению не отразившейся (поглощенной внутри и прошедшей сквозь) от поверхности энергии колебания воздуха к полной энергии, воздействующей на поверхность. Коэффициенты звукопоглощения большинства строительных материалов см. в таблице 1. Волокнистые и пористые материалы используют в основном для улучшения акустических качеств в кинотеатрах, театрах, концертных залах, студиях, аудиториях. Кроме того, они используются для уменьшения шума в детских садах, школах, больницах, ресторанах, офисах, торговых залах, вестибюлях, залах ожидания, производственных помещениях.Recall that the sound absorption coefficient a is equal to the ratio of the energy of the air vibrations not reflected (absorbed inside and passed through) from the surface to the total energy acting on the surface. Sound absorption coefficients for most building materials are shown in Table 1. Fibrous and porous materials are used mainly to improve acoustic performance in cinemas, theaters, concert halls, studios, and auditoriums. In addition, they are used to reduce noise in kindergartens, schools, hospitals, restaurants, offices, retail halls, lobbies, waiting rooms, industrial premises.

Рабочее место оператора 15 надежно защищено как от акустической нагрузки на оператора, так и от механических факторов производственной среды, таких, например, как витающая в цехе стружка, или движущиеся части оборудования.The operator’s workstation 15 is reliably protected both from the acoustic load on the operator and from mechanical factors of the production environment, such as, for example, shavings in the workshop, or moving parts of the equipment.

Звуковая энергия от оборудования 7 и 8, находящегося в помещении, пройдя через перфорированную стенку акустических стеновых панелей 6 попадает на слои звукопоглощающего материала (который может быть как мягким, например из базальтового или стеклянного волокна, так и жестким, например камня-ракушечника). Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Коэффициент перфорации перфорированной стенки принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрена стеклоткань, например типа ЭЗ-100, расположенная между звукопоглотителем и перфорированной стенкой. При этом акустический подвесной потолок 5, размещенный в верхней зоне помещения (зоне ферм 4), снижает уровни звуковых волн, исходящих от оборудования 7 и 8, а рабочее место оператора 15, расположенное между акустическими экранами 9 и 11, надежно защищено как от акустической нагрузки на оператора, так и от механических факторов производственной среды, таких, например, как витающая в цехе стружка, или движущиеся части оборудования.Sound energy from the equipment 7 and 8 located in the room, passing through the perforated wall of the acoustic wall panels 6, falls on the layers of sound-absorbing material (which can be either soft, for example, from basalt or glass fiber, or hard, for example, shell rock). The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of a sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the frequency of excitation on the neck wall, which has the form of a branched sound absorber pore network. The perforation coefficient of the perforated wall is taken to be equal to or more than 0.25. To prevent the eruption of a soft sound absorber, a fiberglass fabric, for example, type EZ-100, is located between the sound absorber and the perforated wall. In this case, the acoustic suspended ceiling 5, located in the upper zone of the room (farms zone 4), reduces the levels of sound waves emanating from equipment 7 and 8, and the operator’s workstation 15, located between the acoustic screens 9 and 11, is reliably protected as from acoustic load on the operator, and on the mechanical factors of the production environment, such as, for example, shavings in the workshop, or moving parts of the equipment.

На фиг. 4 представлена конструкция стеновой шумопоглощающей панели, установленной на перекрытии, которая состоит 24 - звукопоглощающая плита типа шуманет-ЭКО (50 мм); 25 - лист гипсоволокнистый 12,5 мм; 26 - лист гипсокартонный 12,5 мм; 27 - профиль типа Вибронет ПН 100/40; 28 - прокладка типа Вибростек-М (2 слоя); 29 - герметик типа Вибросил.In FIG. 4 shows the design of a wall sound-absorbing panel mounted on the ceiling, which consists of 24 - sound-absorbing plate of the Schumanet-ECO type (50 mm); 25 - sheet gypsum fiber 12.5 mm; 26 - gypsum plasterboard sheet 12.5 mm; 27 - profile type Vibronet PN 100/40; 28 - gasket type Vibrostek-M (2 layers); 29 - sealant type Vibrosil.

Звукопоглощающая плита типа шуманет-ЭКО или ШУМАНЕТ-БМ: Звукопоглощающая плита из минеральной ваты. Плиты ШУМАНЕТ-БМ применяются в качестве эффективного среднего слоя в конструкциях звукоизолирующих каркасных перегородок или облицовок из листов ГКЛ/ГВЛ, ДСП, фанеры, а также в системах акустических перфорированных экранов или подвесных потолков. Состав: гидрофобизированная плита из минеральной ваты на основе базальтовых пород. Размеры: Длина плиты: 1000 мм. Ширина плиты: 600 мм. Толщина плиты: 50 мм. Физические характеристики: объемная плотность: 40 кг/м3. Количество плит в упаковке: 4 шт. Количество в упаковке: 2,4 м2. Объем упаковки: 0,12 м3. Вес упаковки: 5,5 кг.Sound-absorbing plate such as Schumanet-ECO or SHUMANET-BM: Sound-absorbing plate made of mineral wool. SHUMANET-BM slabs are used as an effective middle layer in the design of soundproofing frame partitions or claddings of sheets GKL / GVL, chipboard, plywood, as well as in systems of acoustic perforated screens or suspended ceilings. Composition: hydrophobized mineral wool slab based on basalt rocks. Dimensions: Plate length: 1000 mm. Plate width: 600 mm. Plate thickness: 50 mm. Physical characteristics: bulk density: 40 kg / m 3 . The number of plates in the package: 4 pcs. Amount of packaging: 2.4 m 2 . Packing volume: 0.12 m3. Package weight: 5.5 kg.

Figure 00000002
Figure 00000002

Вибростек-М - это упакованная в рулон лента из звукоизоляционного стеклохолста. Изоляция структурного шума обеспечиваются за счет упругих свойств пористо-волокнистой структуры материала. Это определяет стабильные физико-механические характеристики прокладки под статическими и динамическими нагрузками, а также сохранение заявленных акустических свойств в течение длительного срока эксплуатации.Vibrostek-M is a tape packed from a soundproof fiberglass packed in a roll. Structural noise isolation is ensured by the elastic properties of the porous-fibrous structure of the material. This determines the stable physical and mechanical characteristics of the gasket under static and dynamic loads, as well as the preservation of the declared acoustic properties over a long service life.

ВИБРОСТЕК-М применяется в качестве прокладочного материала в строительных конструкциях при монтаже панельной системы, каркасных звукоизоляционных перегородок и облицовок, а также деревянных полов и перекрытий. Состав: многослойный звукоизолирующий стеклохолст LB300, на основе стекловолокна типа «С». Виброакустические характеристики: динамический модуль упругости Ед: 0,18 МПа при нагрузке 2 кПа, 0,35 МПа при нагрузке 5 кПа. Коэффициент относительного сжатия εд: 0,25 при нагрузке 2 кПа, 0,35 при нагрузке 5 кПа.VIBROSTEK-M is used as a cushioning material in building structures during the installation of a panel system, frame soundproofing partitions and cladding, as well as wooden floors and ceilings. Composition: multilayer soundproof fiberglass LB300, based on fiberglass type “C”. Vibroacoustic characteristics: dynamic modulus of elasticity Unit: 0.18 MPa at a load of 2 kPa, 0.35 MPa at a load of 5 kPa. Relative compression coefficient εd: 0.25 at a load of 2 kPa, 0.35 at a load of 5 kPa.

При монтаже сэндвич-панелей ленточная прокладка ВИБРОСТЕК-М укладывается в два слоя в местах их опоры на пол, а также в местах соприкосновения панелей с боковыми стенами и потолком. При монтаже каркасных перегородок и облицовок материал ВИБРОСТЕК-М, применяется между профилями каркаса (крепежными элементами) и несущими строительными конструкциями. Ленты материала ВИБРОСТЕК-М применяются также в местах примыкания обшивных листов перегородки (облицовки) к другим строительным конструкциям.When installing sandwich panels, the VIBROSTEK-M strip gasket is laid in two layers at the points of their support on the floor, as well as at the places where the panels come in contact with the side walls and the ceiling. When mounting frame partitions and claddings, the VIBROSTEK-M material is used between the frame profiles (fasteners) and the supporting building structures. VIBROSTEK-M material tapes are also used in the places where the cladding sheets of the partition (cladding) are adjacent to other building structures.

Герметик типа Вибросил: однокомпонентный виброизолирующий силиконовый герметик ВИБРОСИЛ предназначен для герметизации стыков и соединений в специальных звукоизолирующих конструкциях. Герметик обеспечивает высокую виброизоляцию стыков между строительными конструкциями. Снижает распространение структурного шума по ним и, тем самым, повышает их собственную звукоизоляцию. Применяется для заполнения швов в конструкциях звукоизоляционных (плавающих) полов, панельной системы, каркасных звукоизолирующих перегородок и облицовок. Состав: герметик изготовлен на основе силиконовых смол и кремнийсодержащих модифицирующих добавок.Vibrosil type sealant: VIBROSIL, a one-component vibration-isolating silicone sealant, is designed to seal joints and joints in special soundproof structures. Sealant provides high vibration isolation of joints between building structures. Reduces the spread of structural noise over them and, thereby, increases their own sound insulation. It is used to fill joints in the construction of soundproof (floating) floors, panel systems, frame soundproofing partitions and claddings. Composition: sealant is made on the basis of silicone resins and silicon-containing modifying additives.

Виброизолирующие стеновые крепления ВИБРОФЛЕКС (фиг. 3) - это амортизирующее устройство для решения задач по снижению уровня шума и передачи вибраций в помещениях любого типа и назначения. Для монтажа к вертикальным ограждающим конструкциям разработаны стеновые варианты креплений типа ЕР. Область применения: стеновые крепления применяются для устройства звукоизоляционных облицовок стен, виброизоляции трубопроводов инженерных сетей, вентиляционных каналов, подвесного инженерного оборудования и других виброизлучающих агрегатов. Состав: конструкция выполнена на основе уникального материала Sylomer - это микропористый полиуретановый эластомер, специально разработанный для решения задач звуко- и виброизоляции.VIBROFLEX vibration-isolating wall mounts (Fig. 3) are a shock-absorbing device for solving problems of reducing noise levels and transmitting vibrations in rooms of any type and purpose. For mounting to vertical enclosing structures, wall versions of EP type fasteners have been developed. Scope: wall mounts are used for soundproofing wall cladding, vibration isolation of pipelines of engineering networks, ventilation ducts, suspended engineering equipment and other vibration-emitting units. Composition: the design is based on the unique Sylomer material - it is a microporous polyurethane elastomer specially developed for solving problems of sound and vibration isolation.

Звукопоглощающий элемент (фиг. 7) как вариант в конструкции стеновой шумопоглощающей панели выполнен в виде жестких 30 и перфорированных 35 стенок, между которыми расположены слои звукоотражающего 31 и 34 материала, а также звукопоглощающего 32 и 33 материалов разной плотности, расположенные в два слоя, причем слои звукоотражающего материала выполнены сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и которые расположены соответственно у жесткой 30 и перфорированной 35 стенок, а перфорированная стенка имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10%÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.The sound-absorbing element (Fig. 7) as an option in the design of the wall sound-absorbing panel is made in the form of rigid 30 and perforated 35 walls, between which are layers of sound-reflecting 31 and 34 materials, as well as sound-absorbing 32 and 33 materials of different densities, located in two layers, and The layers of sound-reflecting material are made of a complex profile, consisting of uniformly distributed hollow tetrahedra, which allow reflecting sound waves incident in all directions, and which are located respectively at the gesture oh 30 and perforated 35 walls, and the perforated wall has the following perforation parameters: hole diameter - 3 ÷ 7 mm, perforation percentage 10% ÷ 15%, and the shape of the hole can be made in the form of holes of round, triangular, square, rectangular or diamond-shaped profile, while in the case of non-circular holes, the maximum diameter of the circle inscribed in the polygon should be considered as the conditional diameter.

Перфорированная стенка 35 может быть выполнена из конструкционных материалов, с нанесенным на их поверхности с одной или двух сторон слоя мягкого вибродемпфирующего материала, например мастики ВД-17, или материала типа «Герлен-Д», при этом соотношение между толщинами материала и вибродемпфирующего покрытия лежит в оптимальном интервале величин: 1/(2,5…3,5).The perforated wall 35 can be made of structural materials, with a layer of soft vibration-damping material, for example, VD-17 mastic or “Gerlen-D” type material deposited on their surface on one or two sides, while the ratio between the thicknesses of the material and the vibration-damping coating lies in the optimal range of values: 1 / (2.5 ... 3.5).

Перфорированная стенка 35 может быть выполнена из нержавеющей стали или оцинкованного листа толщиной 0,7 мм с полимерным защитно-декоративным покрытием типа «Пурал» толщиной 50 мкм или «Полиэстер» толщиной 25 мкм, или алюминиевого листа толщиной 1,0 мм и толщиной покрытия 25 мкм. Коэффициент перфорации перфорированных листов принимается равным или более 0,25.Perforated wall 35 can be made of stainless steel or galvanized sheet with a thickness of 0.7 mm with a protective and decorative polymer coating such as Pural 50 μm thick or Polyester 25 μm thick, or an aluminum sheet with a thickness of 1.0 mm and a coating thickness of 25 microns. The perforation coefficient of perforated sheets is taken to be equal to or more than 0.25.

В качестве материала звукоотражающих слоев 31, 34 может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 Мпа, например пеноалюминия.As the material of the sound-reflecting layers 31, 34, a material based on aluminum-containing alloys can be used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength within 10 ... 20 MPa, for example foam aluminum.

В качестве материала звукоотражающих слоев 31, 34 могут быть применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.As the material of the sound-reflecting layers 31, 34, sound-proofing plates based on glass noise staple fiber of the “Shumostop” type with a material density of 60 ÷ 80 kg / m 3 can be used.

Звукопоглощающий элемент работает следующим образом.Sound-absorbing element operates as follows.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированную стенку 35 попадает на слои 31 и 34 звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и которые расположены соответственно у жесткой 30 и перфорированной 35 стенок, а затем на слои 32 и 33 мягкого звукопоглощающего материала разной плотности, расположенные в два слоя (например выполненного из базальтового или стеклянного волокна). В волокнистых поглотителях рассеяние энергии колебания воздуха и превращение ее в тепло происходит на нескольких физических уровнях. Во-первых, вследствие вязкости воздуха, а его очень много в межволоконном пространстве, колебание частиц воздуха внутри поглотителя приводит к трению. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Кроме того, происходит трение воздуха о волокна, поверхность которых также велика. В-третьих, волокна трутся друг о друга и, наконец, происходит рассеяние энергии из-за трения кристаллов самих волокон. Этим объясняется, что на средних и высоких частотах коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0.Sound energy from equipment located in the room, or another object that emits intense noise, passing through the perforated wall 35, enters the layers 31 and 34 of the sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedrons, which allow sound waves incident in all directions to be reflected, and which are located respectively at the rigid 30 and perforated 35 walls, and then onto the layers 32 and 33 of soft sound-absorbing material of different densities located in two layers (for example, ennogo basalt or glass fibers). In fibrous absorbers, the dissipation of the energy of air vibrations and its transformation into heat occurs at several physical levels. Firstly, due to the viscosity of the air, and there is a lot of it in the interfiber space, the oscillation of air particles inside the absorber leads to friction. The transition of sound energy into thermal energy (dissipation, energy dissipation) occurs in the pores of a sound absorber, which are the Helmholtz resonator model, where energy losses occur due to friction of the mass of air in the resonator neck oscillating with the frequency of excitation on the neck wall, which has the form of a branched sound absorber pore network. In addition, there is air friction on the fibers, the surface of which is also large. Thirdly, the fibers rub against each other and, finally, energy dissipation occurs due to the friction of the crystals of the fibers themselves. This explains that at medium and high frequencies the sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0.

Кулисный штучный звукопоглотитель составной (фиг. 5) состоит по крайней мере из двух частей жесткого каркаса, стягиваемого хомутами и подвешиваемого за крючья на направляющих (на чертеже не показано) либо непосредственно крепящегося к потолку производственного здания. Внутри каркаса расположен звукопоглощающий материал, обернутый сетчатой капроновой тканью или стеклотканью. В некоторых случаях поверх стеклоткани 3 к каркасу может быть прикреплен просечно-вытяжной стальной лист (на чертеже не показан). Каркас может быть выполнен по форме в виде прямоугольного параллелепипеда с размерами ребер d×h×b, отношение которых лежит в оптимальном интервале величин d:h:b=2:1:0,5 или куба с размером ребра k×L, где min L=100 мм; k - коэффициент пропорциональности, лежащий в пределах от 1 до 10 с шагом 2. Внутри кулис могут быть выполнены полости, не заполненные звукопоглощающим материалом. При всех схемах подвеса должны соблюдаться оптимальные соотношения размеров: m - от точки подвеса каркаса на направляющей до потолка и с - расстояние между осями соседних каркасов, причем отношение этих размеров должно находиться в оптимальном интервале величин: m:с=1:1…0,5:1. Заполнение осуществляют звукопоглощающим негорючим материалом (например, винипором, стекловолокном) с защитным слоем из стеклоткани, предотвращающим выпадение звукопоглотителя.The composite rocker sound absorber (Fig. 5) consists of at least two parts of a rigid frame, pulled together by clamps and suspended by hooks on rails (not shown in the drawing) or directly attached to the ceiling of a production building. Inside the frame is a sound-absorbing material wrapped in a mesh nylon fabric or fiberglass. In some cases, expanded glass sheet (not shown) may be attached over the glass fabric 3 to the frame. The frame can be made in the form of a rectangular parallelepiped with dimensions of d × h × b ribs, the ratio of which lies in the optimal range of d: h: b = 2: 1: 0.5 or a cube with k × L rib size, where min L = 100 mm; k is the coefficient of proportionality, lying in the range from 1 to 10 in steps of 2. Inside the wings, cavities not filled with sound-absorbing material can be made. For all suspension schemes, the optimum size ratios must be observed: m - from the point of suspension of the frame on the guide to the ceiling and c - the distance between the axes of adjacent frames, and the ratio of these sizes should be in the optimal range of values: m: c = 1: 1 ... 0, 5: 1. The filling is carried out with a sound-absorbing non-combustible material (for example, vinipore, fiberglass) with a protective layer of fiberglass, preventing the sound absorber from falling out.

Кулисный штучный звукопоглотитель работает следующим образом.Rocker piece absorber works as follows.

Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями. Звукопоглощение на низких и средних частотах происходит за счет акустического эффекта, построенного по принципу резонаторов Гельмгольца, образованных полостями. Различные объемы резонансных полостей служат для подавления звуковых колебаний в требуемом звуковом диапазоне частот, как правило большие объемы для подавления шума в низкочастотном диапазоне, а малые - в области средних и высоких частот.Sound waves propagating in the production room interact with cavities filled with sound absorber. Sound absorption at low and medium frequencies occurs due to the acoustic effect constructed on the principle of Helmholtz resonators formed by cavities. Different volumes of resonant cavities are used to suppress sound vibrations in the required sound frequency range, as a rule large volumes to suppress noise in the low-frequency range, and small ones in the medium and high frequencies.

На фиг. 8 изображен вариант звукопоглощающего элемента с резонансными вставками.In FIG. 8 shows a variant of a sound-absorbing element with resonant inserts.

Звукопоглощающий элемент содержит гладкую 36 и перфорированную 37 поверхности, между которыми расположен слой звукопоглощающего материала сложной формы, представляющий собой чередование сплошных участков 38 и пустотелых участков 40, причем пустотелые участки 40 образованы призматическими поверхностями, имеющими в сечении, параллельном плоскости чертежа форму параллелограмма, внутренние поверхности которого имеют зубчатую структуру 41, или волнистую, или поверхность со сферическими поверхностями (на чертеже не показано). Полости 39, образованные гладкой 36 и перфорированной 37 поверхностями, между которыми расположен слой звукопоглощающего материала сложной формы, заполнены звукопоглотителем. При этом вершины зубьев обращены внутрь призматических поверхностей, а ребра призматических поверхностей закреплены соответственно на гладкой 36 и перфорированной 37 стенках. Полости 42 пустотелых участков 40, образованные призматическими поверхностями, заполнены строительно-монтажной пеной. Между гладкой 36 поверхностью и сплошными участками 38 слоя звукопоглощающего материала сложной формы, а также между перфорированной 37 поверхностью и сплошными участками 38, расположены резонансные пластины 43 и 44 с резонансными вставками 45, выполняющими функции горловин резонаторов «Гельмгольца».The sound-absorbing element contains a smooth 36 and perforated 37 surface, between which there is a layer of sound-absorbing material of complex shape, which is an alternation of solid sections 38 and hollow sections 40, and the hollow sections 40 are formed by prismatic surfaces having a parallelogram shape in section parallel to the plane of the drawing, inner surfaces which have a gear structure 41, or wavy, or a surface with spherical surfaces (not shown in the drawing). Cavities 39, formed by smooth 36 and perforated 37 surfaces, between which a layer of sound-absorbing material of complex shape is located, are filled with a sound absorber. In this case, the tops of the teeth are turned inward to the prismatic surfaces, and the edges of the prismatic surfaces are fixed respectively on smooth 36 and perforated 37 walls. Cavities 42 of the hollow sections 40 formed by prismatic surfaces are filled with construction foam. Between a smooth 36 surface and continuous sections 38 of a layer of sound-absorbing material of complex shape, as well as between a perforated 37 surface and continuous sections 38, there are resonant plates 43 and 44 with resonant inserts 45 that serve as the neck of Helmholtz resonators.

Звукопоглощающий элемент работает следующим образом. Звуковая энергия, пройдя через слой перфорированной поверхности 37 и комбинированный звукопоглощающий слой сложной формы уменьшается, так как осуществляется переход звуковой энергии в тепловую (диссипация, рассеивание энергии), т.е. в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", имеют место потери энергии за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети микропор звукопоглотителя. Между гладкой 36 поверхностью и сплошными участками 38 слоя звукопоглощающего материала сложной формы, а также между перфорированной 37 поверхностью и сплошными участками 38, расположены резонансные пластины 43 и 44 с резонансными вставками 45, выполняющими функции горловин резонаторов «Гельмгольца».Sound-absorbing element operates as follows. Sound energy, passing through a layer of perforated surface 37 and a combined sound-absorbing layer of complex shape is reduced, since the transition of sound energy into thermal energy (dissipation, energy dissipation), i.e. in the pores of the sound absorber, which are the Helmholtz resonator model, there are energy losses due to friction, which fluctuates with the excitation frequency of the mass of air in the resonator neck against the walls of the neck itself, which has the form of an extensive network of micropores of the sound absorber. Between a smooth 36 surface and continuous sections 38 of a layer of sound-absorbing material of complex shape, as well as between a perforated 37 surface and continuous sections 38, there are resonant plates 43 and 44 with resonant inserts 45 that serve as the neck of Helmholtz resonators.

Резонансные отверстия 45 (вставки), расположенные в резонансных пластинах 43 и 44 выполняют функции горловин резонаторов "Гельмгольца", частотная полоса гашения звуковой энергии которых определяется диаметром и количеством резонансных отверстий 45.The resonant holes 45 (inserts) located in the resonant plates 43 and 44 serve as the necks of the Helmholtz resonators, the frequency band of the damping of sound energy of which is determined by the diameter and number of resonant holes 45.

На фиг. 9 изображен вариант звукопоглощающего элемента в виде жесткой стенки 46 и перфорированной стенки 47, между которыми расположен двухслойный комбинированный звукопоглощающий элемент, причем слой 48, прилегающий к жесткой стенке 46, выполнен звукопоглощающим, а прилегающий к перфорированной стенке 47, слой 49, выполнен с перфорацией 50 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны.In FIG. 9 shows a variant of a sound-absorbing element in the form of a rigid wall 46 and a perforated wall 47, between which there is a two-layer combined sound-absorbing element, the layer 48 adjacent to the rigid wall 46 is made sound-absorbing, and the layer 49 adjacent to the perforated wall 47 is made with perforation 50 from sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedrons, which allow reflecting sound waves incident in all directions.

В качестве звукопоглощающего материала слоя 48 может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененного полимера, например полиэтилена или полипропилена. При этом поверхность волокнистых звукопоглотителей обрабатывается пористыми красками, пропускающими воздух, например, типа Acutex Т или покрывается воздухопроницаемыми тканями или неткаными материалами, например Лутрасилом,As the sound-absorbing material of layer 48, rockwool-type mineral wool or URSA-type mineral wool, or P-75-type basalt wool or glass wool lined with glass wool, or foamed polymer, such as polyethylene or polypropylene can be used. The surface of the fibrous absorbers is treated with porous paints that allow air to pass through, for example, Acutex T, or coated with breathable fabrics or non-woven materials, such as Lutrasil,

В качестве материала звукоотражающего слоя 49 применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5...0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия, или применены звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3, или материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.As the material of the sound-reflecting layer 49, a material based on aluminum-containing alloys was used, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: compressive strength in the range of 5 ... 10 MPa, bending strength within 10 ... 20 MPa, for example foam aluminum, or soundproofing boards based on glass staple fiber of the Shumostop type with a material density of 60 ÷ 80 kg / m 3 or a material based on a magnesian binder with reinforcing glass fiber were used New or fiberglass.

Звукопоглощающий элемент работает следующим образом.Sound-absorbing element operates as follows.

Звуковая энергия от оборудования, находящегося в помещении, или другого, излучающего интенсивный шум, объекта, пройдя через перфорированную стенку 47 попадает на слой 49 из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, а часть звуковой энергии проходит через слой 49 из звукоотражающего материала, и взаимодействует со слоем 48 из звукопоглощающего материала, где происходит окончательное рассеивание звуковой энергии. Коэффициент звукопоглощения волокнистых материалов находится в пределах 0,4…1,0. Выполнение перфорации на звукоотражающим слое способствует более эффективному шумоглушению на средних частотах, так как часть звуковых волн будет проходить через перфорацию 50 и рассеиваться на слое 48 из звукопоглощающего материала.Sound energy from equipment located in the room, or another object that emits intense noise, passing through the perforated wall 47 enters the layer 49 of sound-reflecting material of a complex profile, consisting of uniformly distributed hollow tetrahedra, which allow sound waves incident in all directions to be reflected, and part of the sound energy passes through the layer 49 of sound-reflecting material, and interacts with the layer 48 of sound-absorbing material, where the final dispersion of sound energy occurs WGIG. The sound absorption coefficient of fibrous materials is in the range of 0.4 ... 1.0. Performing perforation on the sound-reflecting layer contributes to a more effective sound attenuation at medium frequencies, as part of the sound waves will pass through the perforation 50 and scatter on the layer 48 of sound-absorbing material.

Claims (1)

Комплекс для акустической защиты оператора, содержащий рабочее место оператора, оснащенное средствами снижения шума, рабочее место оператора расположено между акустическими экранами, которые защищают оператора от прямого звука, распространяющегося от виброактивного оборудования, а над рабочей зоной установлен акустический подвесной потолок, размещенный в верхней зоне помещения, а для снижения звуковой вибрации рабочее место оператора оснащено полом на упругом основании, осуществляющем двухкаскадную виброзащиту оператора, а также предусмотрен кулисный звукопоглотитель, который состоит из жесткого каркаса, подвешиваемого за крючья на тросах к потолку здания, с расположенным внутри каркаса звукопоглощающим материалом, обернутым сетчатой капроновой тканью, а к каркасу прикреплен просечно-вытяжной стальной лист, а в качестве звукопоглощающего материала используют плиты ШУМАНЕТ-БМ в качестве эффективного среднего слоя в конструкциях звукоизолирующих каркасных перегородок или облицовок из листов ГКЛ/ГВЛ, ДСП, фанеры, а также в системах акустических перфорированных экранов или подвесных потолков, при монтаже сэндвич-панелей используют ленточную прокладку ВИБРОСТЕК-М, которую укладывают в два слоя в местах их опоры на пол, а также в местах соприкосновения панелей с боковыми стенами и потолком, при монтаже используют герметик типа Вибросил: однокомпонентный виброизолирующий силиконовый герметик для герметизации стыков и соединений в специальных звукоизолирующих конструкциях, а в качестве виброизолирующих стеновых креплений - ВИБРОФЛЕКС - амортизирующее устройство для решения задач по снижению уровня шума и передачи вибраций в помещениях любого типа и назначения, а для монтажа к вертикальным ограждающим конструкциям используют стеновые варианты креплений типа ЕР - микропористый полиуретановый эластомер, специально для решения задач звуко- и виброизоляции, отличающийся тем, что в конструкции стеновой шумопоглощающей панели применен звукопоглощающий элемент, содержащий гладкую и перфорированную поверхности, между которыми размещена многослойная звукопоглощающая конструкция, который выполнен в виде жестких и перфорированных стенок, между которыми расположены слои звукоотражающего, а также звукопоглощающего материалов разной плотности, расположенные в два слоя, причем слои звукоотражающего материала выполнены сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, позволяющих отражать падающие во всех направлениях звуковые волны, и расположены соответственно у жесткой и перфорированной стенок, а слои звукоотражающего материала выполнены из теплоизоляционного материала, способного поддерживать заданный микроклимат в помещении, а в качестве звукопоглощающего материала используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом, например стеклотканью типа ЭЗ-100 или полимером типа «повиден», а перфорированная стенка имеет следующие параметры перфорации: диаметр отверстий - 3÷7 мм, процент перфорации 10÷15%, причем по форме отверстия могут быть выполнены в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного профиля, при этом в случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности, причем звукопоглощающий элемент содержит гладкую и перфорированную поверхности, между которыми расположен слой звукопоглощающего материала сложной формы, при этом слой сложной формы представляет собой чередование сплошных участков и пустотелых участков, причем пустотелые участки образованы призматическими поверхностями, имеющими в сечении форму параллелограмма, внутренние поверхности которого имеют зубчатую структуру, при этом вершины зубьев обращены внутрь призматических поверхностей, а ребра призматических поверхностей закреплены соответственно на гладкой и перфорированной стенках, причем полости пустотелых участков, образованные призматическими поверхностями, заполнены звукопоглотителем, а между гладкой поверхностью и сплошными участками слоя звукопоглощающего материала сложной формы, а также между перфорированной поверхностью и сплошными участками расположены резонансные пластины с резонансными вставками, выполняющими функции горловин резонаторов «Гельмгольца», при этом звукопоглощающий элемент выполнен в виде жесткой и перфорированной стенок, между которыми расположен многослойный звукопоглощающий элемент, который выполнен в виде двух слоев: один из которых, прилегающий к жесткой стенке, является звукопоглощающим, а другой, прилегающий к перфорированной стенке, выполнен с перфорацией из звукоотражающего материала сложного профиля, состоящего из равномерно распределенных пустотелых тетраэдров, при этом в качестве звукоотражающего материала применен материал на основе алюминийсодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминий, или звукоизоляционные плиты на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3, или материал на основе магнезиального вяжущего с армирующей стеклотканью или стеклохолстом.The complex for acoustic protection of the operator, containing the operator’s workplace equipped with noise reduction means, the operator’s workplace is located between the acoustic screens that protect the operator from direct sound propagating from vibroactive equipment, and an acoustic suspended ceiling located in the upper area of the room is installed above the working area and to reduce sound vibration, the operator’s workplace is equipped with a floor on an elastic base, which provides two-stage vibration protection of the operator, as well as a rocker sound absorber is proposed, which consists of a rigid frame suspended by hooks on cables to the ceiling of the building, with sound-absorbing material located inside the frame wrapped in mesh nylon fabric, and expanded metal steel sheet attached to the frame, and SHUMAN-plates are used as sound-absorbing material BM as an effective middle layer in the design of soundproofing frame partitions or claddings of sheets GKL / GVL, chipboard, plywood, as well as in acoustic perforated systems screens or false ceilings, when installing sandwich panels, use the VIBROSTEK-M tape gasket, which is laid in two layers at the places of their support on the floor, as well as at the places where the panels come into contact with the side walls and the ceiling, when installing, use Vibrosil type sealant: one-component vibration-isolating silicone sealant for sealing joints and joints in special soundproofing structures, and as vibration-isolating wall mounts - VIBROFLEX - a shock-absorbing device for solving tasks to reduce the level of noise and vibration transmission in rooms of any type and purpose, and for mounting to vertical enclosing structures, wall mounts of the EP type are used - microporous polyurethane elastomer, especially for solving problems of sound and vibration isolation, characterized in that sound absorbing panels are used in the design of the wall sound-absorbing panel an element containing smooth and perforated surfaces, between which a multilayer sound-absorbing structure is placed, which is made in the form of rigid and perforated with a henchock, between which are layers of sound-reflecting, as well as sound-absorbing materials of different density, arranged in two layers, the layers of sound-reflecting material made of a complex profile, consisting of uniformly distributed hollow tetrahedra, which allow reflecting sound waves incident in all directions, and are located respectively in the rigid and perforated walls, and the layers of sound-reflecting material are made of heat-insulating material that can maintain a given microclimate in the room, and as sound-absorbing material, slabs made of rockwool basalt mineral wool or URSA mineral wool or P-75 basalt wool or glass wool lined with glass wool are used as sound absorbing material, and the sound-absorbing element is lined with acoustically transparent over its entire surface material, for example, fiberglass type EZ-100 or a polymer of the type “visible”, and the perforated wall has the following perforation parameters: hole diameter - 3 ÷ 7 mm, perforation percentage 10 ÷ 15%, and the shape of the hole can be filled in the form of holes of a round, triangular, square, rectangular or rhomboid profile, while in the case of non-circular holes, the maximum diameter of a circle inscribed in a polygon should be considered as a conditional diameter, and the sound-absorbing element contains a smooth and perforated surface, between which there is a layer of sound-absorbing material with a complex shape, while the layer of complex shape is an alternation of solid sections and hollow sections, and hollow sections of the image They are prismatic surfaces having a parallelogram shape in cross section, the inner surfaces of which have a toothed structure, with the tooth tips facing the prismatic surfaces, and the edges of the prismatic surfaces mounted on smooth and perforated walls, respectively, and the cavities of the hollow sections formed by the prismatic surfaces are filled with sound absorbers, and between a smooth surface and solid sections of a layer of sound-absorbing material of complex shape, as well as between perforations The resonant plates with resonant inserts serving as the necks of Helmholtz resonators are located on the solid surface and solid sections, while the sound-absorbing element is made in the form of rigid and perforated walls, between which there is a multilayer sound-absorbing element, which is made in the form of two layers: one of which adjacent to the rigid wall is sound-absorbing, and the other adjacent to the perforated wall is made with perforation of sound-reflecting material of a complex profile I, consisting of uniformly distributed hollow tetrahedra, while the material based on aluminum-containing alloys was used as a sound-reflecting material, followed by filling them with titanium hydride or air with a density in the range of 0.5 ... 0.9 kg / m 3 with the following strength properties: strength compressive within 5 ... 10 MPa, the flexural strength in the range of 10 ... 20 MPa, such as foamed aluminum or sound insulating plate on the base glass staple fiber type "Shumostop" material with a density of 60 ÷ 80 kg / m 3, or the mother l based on magnesia binder with reinforcing glass fiber or glass tissue.
RU2017120711A 2017-06-14 2017-06-14 Complex for acoustical protection of the operator RU2671261C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017120711A RU2671261C1 (en) 2017-06-14 2017-06-14 Complex for acoustical protection of the operator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017120711A RU2671261C1 (en) 2017-06-14 2017-06-14 Complex for acoustical protection of the operator

Publications (1)

Publication Number Publication Date
RU2671261C1 true RU2671261C1 (en) 2018-10-30

Family

ID=64103131

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017120711A RU2671261C1 (en) 2017-06-14 2017-06-14 Complex for acoustical protection of the operator

Country Status (1)

Country Link
RU (1) RU2671261C1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115073139A (en) * 2022-07-29 2022-09-20 西安理工大学 Preparation method of antibacterial two-stage micropore sound-insulation inner wall brick
WO2023098196A1 (en) * 2021-11-30 2023-06-08 中国电力科学研究院有限公司 Thermal insulation and sound absorption and insulation enclosure wall for substation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA741049A (en) * 1966-08-23 J. Palfey Albert Self sustaining enclosure
US3517468A (en) * 1968-07-22 1970-06-30 John Thomas Woods Audiometric enclosure
RU2366785C2 (en) * 2007-06-22 2009-09-10 Олег Савельевич Кочетов Acoustic structure for production premises
RU108458U1 (en) * 2011-01-19 2011-09-20 Анатолий Анатольевич Савиных NOISE PROTECTIVE SCREEN
RU2547524C1 (en) * 2013-10-09 2015-04-10 Олег Савельевич Кочетов Kochetov(s system for acoustic protection of operator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA741049A (en) * 1966-08-23 J. Palfey Albert Self sustaining enclosure
US3517468A (en) * 1968-07-22 1970-06-30 John Thomas Woods Audiometric enclosure
RU2366785C2 (en) * 2007-06-22 2009-09-10 Олег Савельевич Кочетов Acoustic structure for production premises
RU108458U1 (en) * 2011-01-19 2011-09-20 Анатолий Анатольевич Савиных NOISE PROTECTIVE SCREEN
RU2547524C1 (en) * 2013-10-09 2015-04-10 Олег Савельевич Кочетов Kochetov(s system for acoustic protection of operator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023098196A1 (en) * 2021-11-30 2023-06-08 中国电力科学研究院有限公司 Thermal insulation and sound absorption and insulation enclosure wall for substation
CN115073139A (en) * 2022-07-29 2022-09-20 西安理工大学 Preparation method of antibacterial two-stage micropore sound-insulation inner wall brick

Similar Documents

Publication Publication Date Title
RU2528802C1 (en) Sound absorbing element
RU2528356C1 (en) Kochetov's sound-absorbing structure
RU2583441C1 (en) Kochetov device for acoustic protection of operator
RU2500860C1 (en) Method of operator's acoustic protection
RU2547524C1 (en) Kochetov(s system for acoustic protection of operator
RU2571109C1 (en) Kochetov's acoustic screen for safe operator work
RU2530437C1 (en) Kochetov's acoustic workshop structure
RU2671261C1 (en) Complex for acoustical protection of the operator
RU2547529C1 (en) Kochetov's sound-absorbing structure
RU2649681C2 (en) Kochetov sound-absorbing lining
RU139312U1 (en) OPERATOR ACOUSTIC PROTECTION DEVICE
RU2671278C1 (en) Workshop acoustic structure
RU2531154C1 (en) Sound-absorbing structure
RU2648733C2 (en) Device for acoustic protection of operator
RU2646252C1 (en) Sound-absorbing lining
RU2646996C1 (en) Complex for acoustical protection of the operator
RU2663523C1 (en) Device for acoustic protection of operator
RU2550604C2 (en) Acoustic dissipation element for acoustic baffles, piece sound absorbers, partitions
RU2583446C1 (en) Operator cabin, operating in conditions of high dust content and high noise levels
RU2643205C1 (en) Device for acoustic protection of operator
RU2565281C1 (en) Kochetov's shop acoustic structure
RU2646876C1 (en) Method of protecting the operator from production noise
RU2655639C2 (en) Soundproofing enclosure
RU2651565C1 (en) Acoustic construction for industrial premises
RU2529352C1 (en) Acoustic structure of workshop