RU2670249C1 - Реактор для плазменной обработки полупроводниковых структур - Google Patents

Реактор для плазменной обработки полупроводниковых структур Download PDF

Info

Publication number
RU2670249C1
RU2670249C1 RU2017145282A RU2017145282A RU2670249C1 RU 2670249 C1 RU2670249 C1 RU 2670249C1 RU 2017145282 A RU2017145282 A RU 2017145282A RU 2017145282 A RU2017145282 A RU 2017145282A RU 2670249 C1 RU2670249 C1 RU 2670249C1
Authority
RU
Russia
Prior art keywords
plasma
module
unit
substrate
solenoidal
Prior art date
Application number
RU2017145282A
Other languages
English (en)
Inventor
Георгий Яковлевич Павлов
Вадим Александрович Сологуб
Александр Арменакович Айрапетов
Михаил Георгиевич Бирюков
Вадим Васильевич Одиноков
Елена Владимировна Карпенкова
Наталья Борисовна Гусева
Владимир Борисович Павлов
Полина Алексеевна Неклюдова
Александр Михайлович Никонов
Александр Кириллович Петров
Константин Викторович Вавилин
Елена Александровна Кралькина
Original Assignee
Открытое акционерное общество "Научно-исследовательский институт точного машиностроения"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-исследовательский институт точного машиностроения" filed Critical Открытое акционерное общество "Научно-исследовательский институт точного машиностроения"
Priority to RU2017145282A priority Critical patent/RU2670249C1/ru
Application granted granted Critical
Publication of RU2670249C1 publication Critical patent/RU2670249C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Реактор для плазменной обработки полупроводниковых структур относится к области технологических устройств для травления технологических материалов в области производства изделий электронной техники и может быть использован, например, для проведения высокоаспектных процессов травления кремния в производстве микроэлектромеханических систем (МЭМС) или для создания щелевой изоляции при реализации технологии трехмерной интеграции кристаллов. Сущность изобретения заключается в том, что в реакторе для плазменной обработки полупроводниковых структур блок подачи и дозирования технологических газов выполнен в виде первого блока импульсной подачи и дозирования технологических газов 4. Причем в устройство введен второй газораспределительный модуль 24 со вторым блоком импульсной подачи и дозирования технологических газов 26 и с блоком синхронизации 28, при этом блок синхронизации 28 сопряжен с первым блоком импульсной подачи и дозирования технологических газов 4, со вторым блоком импульсной подачи и дозирования технологических газов 26, с блоком подачи напряжения 12, с первым блоком питания 20 первой соленоидальной катушки 16 и со вторым блоком питания 21 второй соленоидальной катушки 17. Технический результат изобретения заключается в увеличении однородности и скорости плазмохимического травления на подложках диаметром более 100 мм, а также в обеспечении возможности реализации анизотропного селективного плазмохимического травления кремниевых структур в производстве МЭМС или для создания щелевой изоляции при реализации технологии трехмерной интеграции кристаллов. 7 з.п. ф-лы, 7 ил.

Description

Реактор для плазменной обработки полупроводниковых структур относится к области технологических устройств для травления технологических материалов в области производства изделий электронной техники и может быть использован, например, для проведения высокоаспектных процессов травления кремния в производстве микроэлектромеханических систем (МЭМС) или для создания щелевой изоляции при реализации технологии трехмерной интеграции кристаллов.
Известен плазмохимический реактор низкого давления для травления и осаждения материалов, содержащий технологическую камеру, сопряженную со средствами откачки, в которой установлен подложкодержатель с первой продольной осью O-O1, на котором закреплена подложка, содержащий также геликонный источник плазмы, включающий разрядную камеру с первым торцом и вторым торцом, соленоидальную антенну, расположенную с внешней стороны разрядной камеры, крышку, расположенную со стороны первого торца разрядной камеры, а также газовую систему, сопряженную с крышкой, при этом источник плазмы в зоне второго торца разрядной камеры закреплен на технологической камере симметрично первой продольной оси O-O1, содержащий также магнитную систему, расположенную симметрично первой продольной оси O-O1 и включающую первую соленоидальную магнитную катушку и вторую соленоидальную магнитную катушку (патент RU 2293796). Существенным недостатком этого технического решения является неэффективное размещение соленодоидальных катушек, а именно, размещение их в зоне циллиндрической антенны. При таком размещении соленодоидальных катушек имеется возможность управлять характеристиками плазмы, в частности плотностью плазмы, только в зоне действия магнитных полей, то есть в разрядной камере, и достигать максимальных значений плотности плазмы возможно только в разрядной камере. Далее, на выходе из разрядной камеры плазма диффузно распространяется в технологическую камеру, где ее плотность значительно снижается. Такое техническое решение ухудшает функциональные возможности описанного устройства: в нем отсутствует возможность управлять характеристиками плазмы в зоне технологической камеры, а также отсутствует возможность управлять характеристиками осаждаемых покрытий, таким образом снижается равномерность и скорость осаждения покрытий.
Известен также реактор для плазменной обработки полупроводниковых структур, содержащий вакуумную камеру, плазмообразующий модуль, включающий газораспределительный модуль с блоком подачи и дозирования технологических газов, при этом плазмообразующий модуль расположен в верхней части вакуумной камеры и соединен с ВЧ генератором, содержащий также модуль отвода газа, столик с подложкой, включающей верхнюю плоскость, расположенный в нижней части вакуумной камеры и соединенный с блоком подачи напряжения, содержащий также магнитную систему, состоящую из соосно расположенных первой соленоидальной катушки и второй соленоидальной катушки, причем первая соленоидальная катушка расположена в верхней части вакуумной камеры в области плазмообразующего модуля и соединена с первым блоком питания, а вторая соленоидальная катушка расположена ниже верхней плоскости подложки и соединена со вторым блоком питания, при этом плазмообразующий модуль расположен напротив подложки (патент RU 2408950). Это устройство выбрано в качестве прототипа предложенного решения.
Недостаток этого устройства заключается в том, что предложенная конструкция не обеспечивает приемлемую однородность и скорость плазмохимического травления на подложках диаметром более 100 мм, а так же не позволяет осуществлять анизотропное селективное травление кремниевых структур в производстве МЭМС или для создания щелевой изоляции при реализации технологии трехмерной интеграции кристаллов. Эти недостатки обусловлены тем, что система генерации плазмы выполнена в виде спирального плоского индуктора, система подвода газа не позволяет одновременную раздельную подачу технологических газов, а электрод-подложкодержатель (столик) не может быть размещен в области наибольшей плотности плазмы, вследствие отсутствия соответствующих приводов. Что снижает функциональные возможности устройства.
Задачей настоящего изобретения является обеспечение отечественных полупроводниковых производств производительным и прецизионным технологическим оборудованием с расширенными функциональными возможностями и предназначенного для выполнения технологических операций при изготовлении современных полупроводниковых приборов уровня 0,65-0,45 нм с использованием подложек диамером более 100 мм.
Технический результат изобретения заключается в увеличении однородности и скорости плазмохимического травления на подложках диаметром более 100 мм, а также - в обеспечении возможности реализации анизотропного селективного плазмохимического травления кремниевых структур в производстве МЭМС или для создания щелевой изоляции при реализации технологии трехмерной интеграции кристаллов.
Указанный технический результат достигается тем, что в реакторе для плазменной обработки полупроводниковых структур, содержащем вакуумную камеру, плазмообразующий модуль, включающий первый газораспределительный модуль с блоком подачи и дозирования технологических газов, при этом плазмообразующий модуль расположен в верхней части вакуумной камеры и соединенн с ВЧ генератором, содержащий также модуль отвода газа, столик с подложкой, включающей верхнюю плоскость, расположенный в нижней части вакуумной камеры и соединенный с блоком подачи напряжения, содержащий также магнитную систему, состоящую из соосно расположенных первой соленоидальной катушки и второй соленоидальной катушки, причем первая соленоидальная катушка расположена в верхней части вакуумной камеры в области плазмообразующего модуля и соединена с первым блоком питания, а вторая соленоидальная катушка расположена ниже верхней плоскости подложки и соединена со вторым блоком питания, при этом плазмообразующий модуль расположен напротив подложки, блок подачи и дозирования технологических газов выполнен в виде первого блока импульсной подачи и дозирования технологических газов. При этом в устройство введен второй газораспределительный модуль со вторым блоком импульсной подачи и дозирования технологических газов и с блоком синхронизации, причем блок синхронизации сопряжен с первым блоком импульсной подачи и дозирования технологических газов, со вторым блоком импульсной подачи и дозирования газов, с блоком подачи напряжением, с первым блоком питания первой соленоидальной катушки и со вторым блоком питания второй соленоидальной катушки.
Существует вариант, в котором в устройство введена третья соленоидальная катушка с первым модулем вертикальной подвижки и с третьим блоком питания, сопряженным с блоком синхронизации, при этом третья соленоидальная катушка расположена соосно с первой соленоидальной катушкой и второй соленоидальной катушкой таким образом, что верхняя плоскость подложки оказывается между нижней плоскостью А третьей солиноидальной катушки и верхней плоскостью В второй соленоидальной катушки.
Существует также вариант, в котором ВЧ генератор сопряжен с блоком синхронизации.
Существует также вариант, в котором второй газораспределительный модуль выполнен в виде кольца диаметром d1 с нижней плоскостью С и установлен соосно над подложкой диаметром d2 нижней плоскостью С на расстоянии h от ее верхней плоскости, при этом выполняются условия d2≤d1≤1.2d2, 0,01d1≤h≤0,2d2 или h≤Н/2 если 0,2d2≥Н, где Н расстояние между верхней плоскостью подложки и нижней границей плазмообразующего модуля.
Существует также вариант, в котором плазмообразующий модуль выполнен в виде цилиндрического спирального индуктора, расположенного на цилиндрической образующей трубы, выполненной из диэлектрического материала, причем первый газораспределительный модуль расположен в торцевой заглушке с отверстием, закрепленной на трубе.
Существует также вариант, в котором в устройство введен второй модуль вертикальной подвижки, сопряженный со вторым газораспределительным модулем.
Существует также вариант, в котором в устройство введен третий модуль вертикальной подвижки, сопряженный со столиком.
Существует также вариант, в котором второй газораспределительный модуль установлен с возможностью его оперативной замены.
На фиг. 1 изображена схема реактора для плазменной обработки полупроводниковых структур в общем виде.
На фиг. 2 изображен упрощенный вариант схемы выполнения плазмообразующего модуля с использованием цилиндрического спирального индуктора.
На фиг. 3 изображены графики распределения плотности ионного тока в плазменном реакторе вдоль плоскости подложки при различных значениях магнитной индукции в случае использования цилиндрического спирального индуктора (II) в сравнении с использованием плоской антенны (I), как у прототипа.
На фиг. 4 графически изображено распределение магнитного поля при включенных первой соленодоидальной катушки и второй соленодоидальной катушки.
На фиг. 5 изображено распределение плотности ионного тока вдоль оси O1-O2 при включенных первой соленодоидальной катушки и второй соленодоидальной катушки, а также различных значениях магнитной индукции.
На фиг. 6 изображена диаграмма области плазмохимического травления и плазмохимической полимеризации в зависимости от отношения фтора к углероду в химических соединениях рабочих газов и от напряжения смещения на столике с подложкой.
На фиг. 7 изображены РЭМ-снимки с результатами глубокого травления кремния на макетных образцах тестовой структуры (Бош процесс) на экспериментальном стенде реактора в смеси газов.
Реактор для плазменной обработки полупроводниковых структур, содержит вакуумную камеру 1, предназначенную для создания рабочего давления в ней при использовании таких газов, как например, гексафторид серы SF6, фторидов углерода CXFY, аргона Ar. Реактор содержит также плазмообразующий модуль 2, включающий первый газораспределительный модуль 3 с первым блоком импульсной подачи и дозирования технологических газов 4, который может быть выполнен в виде набора элементов для газового регулирования и коммутации, таких, как прецизионный регулятор расхода газа типа РРГ-10, регулятора давления типа РДМ, манометр и коммутирующий электромагнитный клапан. Плазмообразующий модуль 2 расположен в верхней части 5 вакуумной камеры 1 и соединен с ВЧ генератором 6, который является стандартным изделием и производится серийно, например, высокочастотный генератор Cesar (фирмы Advanced Energy). Реактор содержит также модуль отвода газа 7, со средствами откачки, в качестве которых может быть использованы турбомолекулярный насос типа STPA1300CV производительностью 1300 л/с, форвакуумная система сухой откачки типа iHX100, дроссельная заслонка типа 65046-PHCG(VAT), а также элементы измерения и регулирования вакуума. Реактор содержит также столик 8 с подложкой 9, включающей верхнюю плоскость 10. В качестве столика 8 можно использовать металлический диск, например, из нержавеющей стали. В качестве подложки 9 можно использовать кремниевую пластину. Столик 8 расположен в нижней части 11 вакуумной камеры 1 и соединен с блоком подачи напряжения 12, который может быть выполнен в виде стандартного высокочастотного генератора CX-600S (фирмы Comdel Inc.). Реактор содержит также магнитную систему, состоящую из соосно расположенных первой соленоидальной катушки 16 и второй соленоидальной катушки 17, каждая из которых может быть выполнена в виде конструкции, состоящей из цилиндрического каркаса из диэлектрического материала с намотанными на его внешнюю поверхность витками медной проволоки диаметром 1,5 мм. Первая соленодоидальная катушка 16 расположена в верхней части 5 вакуумной камеры 1 в области плазмообразующего модуля 2 и соединена с первым блоком питания 20, а вторая соленодоидальная катушка 17 расположена ниже верхней плоскости 10 подложки 9 и соединена со вторым блоком питания 21. Первый блок питания 20 и второй блок питания 21 являются стандартными изделиями, например, источниками питания ЕА Electroavtomatic EA-PS 8720-15. Плазмообразующий модуль 2 расположен напротив подложки 9. В качестве отличительных признаков реактор включает второй газораспределительный модуль 24 со вторым блоком импульсной подачи и дозирования технологических газов 26 и с блоком синхронизации 28. Второй блок импульсной подачи и дозирования технологического газа 26 может быть выполнен в виде набора элементов для газового регулирования и коммутации, таких, как прецизионный регулятор расхода газа типа РРГ-10, регулятора давления типа РДМ, манометр и коммутирующий электромагнитный клапан. Блок синхронизации 28 сопряжен с первым блоком импульсной подачи и дозирования технологических газов 4, со вторым блоком импульсной подачи и дозирования технологических газов 26, с блоком подачи напряжением 12, с первым блоком питания 20 первой соленоидальной катушки 16 и со вторым блоком питания 21 второй соленоидальной катушки 17. Блок синхронизации 28 может быть выполнен в виде программируемого устройства, управляющего в автоматическом режиме заданным алгоритмом работы заявляемого изобретения. Таким устройством может быть программируемый контроллер AL2-24-15, фирмы Mitsubishi.
В одном из вариантов в реактор введена третья соленоидальная катушка 18 с первым модулем вертикальной подвижки 29 и с третьим блоком питания 22, сопряженным с блоком синхронизации 28, при этом третья соленоидальная катушка 18 расположена соосно с первой соленоидальной катушкой 16 и второй соленоидальной катушкой 17 таким образом, что верхняя плоскость 10 подложки 9 оказывается между нижней плоскостью А третьей соленоидальной катушки 18 и верхней плоскостью В второй соленоидальной катушки 17. Третья соленоидальная катушка 18 может быть выполнен в виде конструкции, состоящей из цилиндрического каркаса из диэлектрического материала с намотанными на его внешнюю поверхность витками медной проволоки диаметром 1,5 мм. Третий блок питания 22 является стандартным изделием, например, источником питания ЕА Electroavtomatic EA-PS 8720-15. Первый блок вертикальной подвижки 29 может быть выполнен в виде сервопривод НМСА.303313.012 (производство ОАО НИИТМ, Зеленоград, РФ).
В одном из вариантов ВЧ генератор 6 сопряжен с блоком синхронизации 28.
В одном из вариантов второй газораспределительный модуль 24 выполнен в виде кольца диаметром d1 с нижней плоскость С и установлен соосно над подложкой 9 диаметром d2 нижней плоскость С на расстоянии h от ее верхней плоскости 10, при этом выполняются условия d2≤d1≤1,2d2, 0,01d2≤h≤0,2d2 или h≤H/2 если 0,2d2≥Н, где Н расстояние между верхней плоскостью 10 подложки 9 и нижней границей плазмообразующего модуля 2. Второй газораспределительный модуль 24 может быть изготовлен из кварцевой, керамической или металлической трубки с вутренним диаметром 3-5 мм с отверстиями, направленными в центр кольца диаметром 0,5-2,5 мм. Диаметр подложки d2 может быть в диапазоне 50 мм - 450 мм. Величина расстояния h может быть в диапазоне 1 мм - 120 мм. Величина расстояния Н может быть в диапазоне 50 мм - 750 мм.
В основном варианте плазмообразующий модуль 2 выполнен в виде цилиндрического спирального индуктора 36, расположенного на цилиндрической образующей 38 трубы 39, выполненной из диэлектрического материала. Спиральный индуктор 36 может быть изготовлен из медной трубки и иметь следующие характеристики: диаметр трубки 10 мм, количество витков цилиндрической спирали 1-5. В качестве диэлектрического материала трубы 39 можно использовать кварц или специальную керамику типа нитрида алюминия (AlN). Толщина стенок трубы 39 может быть в диапазоне 3-7 мм. В этом варианте первый газораспределительный модуль 3 расположен в торцевой заглушке 40 с отверстием 41, и закреплен на трубе 39. Диаметр d3 отверстия 41 в заглушке 40 может быть в диапазоне d3≤0,6-0,8d4. Первый газораспределительный модуль 3 может представлять собой металлический диск с отверстием (не показано), соединенным с блоком подачи технологических газов 4. Подробно элементы плазмообразующего модуля показаны в [1].
В одном из вариантов в реактор введен второй модуль вертикальной подвижки 42, сопряженный со вторым газораспределительным модулем 24. В качестве второго модуля вертикальной подвижки 42 можно использовать сервопривод НМСА.303313.012 (производство ОАО НИИТМ, Зеленоград, РФ). Вертикальная подвижка второго газораспределительного модуля 24 может быть в диапазоне 0,1-0,5 Н.
В одном из вариантов в реактор введен третий модуль вертикальной подвижки 44, сопряженный со столиком 8. В качестве третьего модуля вертикальной подвижки 44 можно использовать сервопривод НМСА.303313.012 (производство ОАО НИИТМ, Зеленоград, РФ). Вертикальная подвижка столика 8 может быть в диапазоне 0,1-0,5 Н.
В одном из вариантов второй газораспределительный модуль 24 установлен с возможностью его оперативной замены. Для этого в нижней части 11 вакуумный камеры 1 могут быть установлены V-образные захваты (не показаны), сопряженные с первым модулем вертикальной подвижки 42.
Реактор для плазменной обработки полупроводниковых структур работает следующим образом.
Рассмотрим вариант, когда в реакторе реализуется технологический процесс плазмохимического травления глубоких щелей в кремниевой подложке диаметром до 200 мм.
Подготовительные операции:
- Через загрузочный шлюз (в графических материалах не показан) в вакуумную камеру 1 на столике 8 размещают подложку 9.
- Используя модуль отвода газа 7 производят вакуумирование рабочего объема камеры 1 до необходимого уровня остаточного вакуума (например, до 1.10-4 Па).
- При помощи первого модуля вертикальной подвижки 29 устанавливают необходимое положение третьей соленодидальной катушки 18, при котором ее электромагнитное поле, совместно с электромагнитным полем второй соленодоидальной катушки 17 формирует магнитную ловушку в области верхней плоскости 10 подложки 9.
- При помощи третьего модуля вертикальной подвижки 44 устанавливают необходимую высоту Н между верхней частью 5 вакуумной камеры 1 и верхней плоскостью 10 подложки 9 (например, 50-750 мм).
- При помощи второго модуля вертикальной подвижки 42 устанавливают необходимую величину расстояния h между верхней плоскостью 10 подложки 9 и нижней плоскостью С второго газораспределительного модуля 24 (например, 1-120 мм).
- От первого 20 и второго 21 блоков питания задают необходимые значения токов на первой 16 и второй 17 соленодоидальных катушках (например, 5А, 7А соответственно).
- Подготавливают к работе первый блок импульсной подачи и дозирования технологических газов 4 и второй блок импульсной подачи и дозирования технологических газов 26 и устанавливают значения расходов газа в газовых магистралях. В зависимости от выбранного технологического режима, к блоку 4 подключаются плазмообразующий газ аргон и устанавливается его расход - 250-300 см3/мин и реактивные газы травления типа эльгаза SF6 или халодон14 CF4 и устанавливается расход - 240-260 см3/мин, а к блоку 26 подключаются полимеробразующие газы C2F4 или C4F8 и устанавливают их расход - 120-150 см3/мин.
- Подготавливают к работе ВЧ генератор 6 и блок подачи напряжения 12 в соответствии с инструкциями по эксплуатации на их работу.
- Подготавливают к работе блок синхронизации 28 в соответствии с инструкцией по эксплуатации на его работу.
- Посредством блока синхронизации 28 устанавливают последовательность включения и длительность работы элементов устройств, участвующих в выполнении технологического процесса.
- Через первый газораспределительный модуль 3 плазмообразующего модуля 2 по газовому каналу аргона (в графических материалах не показан) в вакуумную камеру 1 подают газ аргон и устанавливают рабочее давление в вакуумной камере 1 (например, 0,5-1,5 Па).
- Включают ВЧ генератор 6, после чего в плазмообразующем модуле 2 загорается плазменный разряд, который при помощи магнитных полей, формируемых первой 16 и второй 17 соленодоидальными катушками, образует в объеме вакуумной камеры 1 плазменный столб с повышенной плотностью плазмы.
Далее реализуют технологический процесс, при котором последовательность и длительность операций регулируется блоком синхронизации 28. Технологический процесс выполняют чередованием импульсов травления кремния через маску и импульсов осаждения полимерной пленки на поверхности отверстий, образовавшихся в процессе травления.
Импульсы травления, в процессе которых реализуется процесс травление кремния через маску. В течение импульса травления выполняются следующие операции, задаваемые блоком синхронизации 28.
- Через первый газораспределительный модуль 3 плазмообразующего модуля 2 по газовому каналу (в графических материалах не показан) подают реактивный газ травления (SF6, CF4 и др.), который создает в плазме атомы фтора, которые взаимодействуя, например, с кремниевой подложкой 9, производят изотропное травление кремния через лежащую на нем маску. Таким образом, в кремниевой подложке 9 формируются изотропное отверстие небольшой глубины, зависящей от длительность подачи травящего газа, которое может составлять от нескольких секунд до минуты.
- Одновременно включают блок подачи напряжения 12 и подают напряжение смещения на столик 8 в диапазоне минус 200-300 В, который обеспечивает бомбардировку и очистку дна отверстия травления от полимерной пленки, при сохранении ее на боковой поверхности.
- После окончания времени импульса травления обычно отключают канал подачи травящего газа (в графических материалах не показан) в блоке подачи и дозирования технологических газа 4
- Отключают блок подачи напряжения 12 и прекращают подачу напряжения смещения на столик 8, и напряжение на столике становится менее минус 50 В.
Импульс полимеризации, в процессе которого реализуется изотропное осаждения полимерной пленки на поверхности и в вытравленных отверстиях. В течение этого импульса выполняются следующие операции, задаваемые блоком синхронизации 28.
- Снижают мощность ВЧ генератора до необходимого значения (например, на 50% от заданного на импульсе травления).
- Включают второй блок импульсной подачи и дозирования полимеризующего газа 26, например, C4F8. В течение этого импульса полимерезующий газ взаимодействует с плазмой плазмообразующего модуля 2 с образование в результате плазмохимического процесса тонкой тефлоновая полимерной пленки типа F-C-F которая изотропно осаждается на поверхности и стенках кремниевых структур, протравленных в течение предыдущего импульса, что обеспечивает анизотропию травления при последующих импульсах травления.
- Для повышения эффективности плазмохимического процесса полимеризации под воздействием плазмы плазмообразующего модуля 2 одновременно с подачей полимеризующего газа от третьего блока питания 22 подают напряжение на третью соленодоидальную катушку 18 с установленным значением тока 5 А.
- После окончания времени импульса осаждения полимерной пленки отключают блок импульсной подачи и дозирования плазмообразующих газов 26 и третий блок питания 22 третьей соленодоидальной катушки 18. Мощность ВЧ генератора 6 повышают до исходного значения.
- Количество и время чередующихся импульсов травления и осаждения определяет глубину отверстий и скайлоп (неровность боковых стенок) в кремниевой структуре. На практике для травления отверстий глубиной до 100 мкм количество импульсов может составляет 100 до 1000.
- После завершения технологического процесса формирования глубоких отверстий в кремниевой подложке 9 устройство отключают. В том числе отключают: модуль отвода газа 7, ВЧ генератор 6, блоки питания 20, 21, 22, блоки импульсной подачи и дозирования технологических газов 4 и 26, модули вертикальной подвижки 44 и 42, блок подачи напряжения 12 и блок синхронизации 28.
На диаграмме фиг. 6 показаны области траления и полимеризации кремния в зависимости от отношения концентраций фтора к углероду (F/C) в области верхней плоскости 10 подложки 9 и напряжения смещения на верхней плоскости 10 подложки 9. Процесс плазмохимической полимеризации начинается когда отношение концентрации фтора к углероду становится меньше 3 при отсутствии напряжения смещения. При увеличении отрицательного смещения процесс полимеризации уходит область уменьшения отношений.
При реализации стандартного Бош процесса травления, происходит последовательный напуск в плазмообразующий модуль газа травления с подачей смещения на подложку 9, далее его откачка, снятие напряжения с подложки ь9 и подача полимеробразующего газа с последующей откачкой и дальнейшее проведение импульсов травления и полимеризации. В результате процессов откачки повышается расход реактивных газов, увеличивается время импульсов и формируется структура с большими скайлопами 47 (Фиг. 7), уменьшается, соответственно, и скорость травления.
На фиг. 7 представлена фотография, полученная на сканирующем электронном микроскопе, отверстий протравленных в Si на реакторе предлагаемой конструкции в смеси газов (Ar+CF4) и C4F8 в камере объемом 40 дм3, ВЧ 13б54МГц, 1,5 кВт., диаметр отверстия 10 мкм.
То, что в реакторе для плазменной обработки полупроводниковых структур блок подачи и дозирования технологических газов выполнен в виде первого блока импульсной подачи и дозирования технологических газов 4, а также то, что в реактор введен второй газораспределительный модуль 24 со вторым блоком импульсной подачи и дозирования технологических газов газов 26 и с блоком синхронизации 28, при этом блок синхронизации 28 сопряжен с первым блоком импульсной подачи и дозирования технологических газов 4, со вторым блоком импульсной подачи и дозирования технологических газов 26, с блоком подачи напряжением 12, с первым блоком питания 20 первой соленоидальной катушки 16 и со вторым блоком питания 21 второй соленоидальной катушки 17, приводит к тому, что обеспечивается возможность проведения локального изменение отношения концентраций фтора к углероду, не во всем объеме реактора, а только в области верхней плоскости 10 подложки 9, реализуя анизатропное травления путем только периодической подачей полимеробразующего газа, импульсов смещения и импульсов управления без последовательных процессов объемной откачки газов, что повышает скорость и однородность процесса травления кремния и расширяет функциональные возможности технологического оборудования, в составе которого будет использован заявляемый реактор. Это особенно важно, когда процессы должны быть реализованы в камере с большим объемом.
То, что в устройство введена третья соленоидальная катушка 18 с первым блоком вертикальной подвижки 29 и с третьим блоком питания 22, сопряженным с блоком синхронизации 28, при этом третья соленоидальная катушка 18 расположена соосно с первой соленоидальной катушкой 16 и второй соленоидальной катушкой 17 таким образом, что верхняя плоскость 10 подложки 9 оказывается между нижней плоскостью А третьей солиноидальной катушки 18 и верхней плоскостью В второй соленоидальной катушки 17 приводит к тому, что магнитные поля, создаваемые соленодоидальными катушками 18 и 17 формируют в области подложки 9 магнитную ловушку - то есть конфигурацию магнитного поля, способную длительное время удерживать заряженные частицы или плазму в ограниченном объеме. Принцип удержания основан на взаимодействии заряженных частиц с магнитным полем [2].
Это позволяет значительно увеличить концентрацию плазмы в области верхней плоскости 10 обрабатываемой поверхности кремниевой подложки 9 и способствует интенсификации осаждения защитных пленок на стенках отверстий в кремниевых структурах, сформированных в течение предыдущего импульса травления. При этом блок синхронизации 28 позволяет включать третью соленодоидальную катушку 18 именно во время импульса осаждения полимерной пленки и отключать после завершения этого импульса. Таким образом, увеличение концентрации плазмы в области верхней плоскости 10 обрабатываемой поверхности кремниевой подложки 9 приводит к увеличению скорости осаждения защитных пленок на стенках отверстий в кремниевых структурах.
То, что ВЧ генератор 6 сопряжен с блоком синхронизации 28 приводит к тому, что изменение мощности ВЧ генератора на импульсах осаждения происходит в соответствии с заданным алгоритмом выполнения технологического процесса. При этом снижение мощности ВЧ генератора 6 во время импульсов осаждения позволяет снижать энергию ионов в направлении осаждаемых защитных пленок, чем снижается интенсивность процесса их распыления, который идет параллельно с процессом осаждения. Это способствует увеличению скорости осаждения защитных пленок на стенках отверстий в кремниевых структурах.
То, что второй газораспределительный модуль 24 выполнен в виде кольца диаметром d с нижней плоскостью С и установлен соосно над с подложкой 9 диаметром D нижней плоскостью С на расстоянии h от ее верхней плоскости 10, при этом выполняются условия d2≤d1≤1,2d2, 0,01d≤h≤0,2d2 или ≤H/2 если 0,2d2≥Н, где Н расстояние между верхней плоскостью 10 подложки 9 и нижней границей плазмообразующего модуля 2 приводит к тому, что увеличивается однородность и скорость плазмохимического травления на подложках диаметром более 100 мм, а также - обеспечивается возможность реализации анизотропного селективного плазмохимического травления кремниевых структур. Это происходит из-за того, что в области верхней плоскости 10 подложки 9 можно изменять химический состав плазмы без изменения состава газов, подаваемых из первого газораспределительного модуля 3. При этом выполнение указанных соотношений обеспечивает необходимое и достаточное распределение плазмы в зоне верхней плоскости 10 подложки 9.
То, что плазмообразующий модуль 2 выполнен в виде цилиндрического спирального индуктора 36, расположенного на цилиндрической образующей 38 трубы 39, выполненной из диэлектрического материала, причем первый газораспределительный модуль 3 расположен в торцевой заглушке 40 с отверстием 41, закрепленной на трубе 39, приводит к тому, что равномерность, как травления кремния, так и осаждения полимерных пленок повышается вследствие более равномерного распределения плотности ионного тока вдоль подложки 9, по сравнению с прототипом, где плазма формируется с использованием плоского индуктора. На фиг. 3 показано распределение плотности ионного тока по диаметру в области подложки 9 в случае использования плоского (I) и цилиндрического (II) спирального индуктора. Из приведенных графиков видно, что при использовании цилиндрического спирального индуктора 36 распределение плотности ионного тока (II) по диаметру в области подложки 9 значительно более равномерное, чем распределение плотности ионного тока (I) там же в случае плоского индуктора. Это в основном, и определяет увеличение равномерности травления и осаждения при использовании цилиндрического спирального индуктора 36.
То, что в устройство введен второй модуль вертикальной подвижки 42, сопряженный со вторым газораспределительным модулем 24, а также третий модуль вертикальной подвижки 44, сопряженный со столиком 8 позволяет перемещать конструкцию, состоящую из столика 8 с подложкой 9 и второго газораспределительного модуля 24 по оси O1-O2, размещая их в оптимальной зоне, например, в области наибольшей плотности ионного тока, где имеют место максимальные значения скорости травления кремния и осаждения полимерных пленок. На фиг. 5 показаны результаты измерений зависимости плотности ионного тока (I) от места расположения измерительного лонгмюровского зонда при различных значениях магнитной индукции. Особенности зондовых измерений в плазме пониженного давления приведены в [3].
Из выполненных измерений следует, что при различных значениях магнитной индукции, создаваемой первой 16 и второй 17 соленодоидальными катушками, имеются наиболее оптимальные области размещения подложки 9 по оси O1-O2, где и следует ее размещать. Например, в нашем случае при необходимости использования плазмы с максимальными значениями ионного тока, подложка 9 может быть размещена на расстоянии Н=300 мм или на расстоянии Н=110 мм, где значения ионного тока максимальны. Возможность размещать обрабатываемую подложку 9 в наиболее оптимальной области может быть реализована при использовании модулей вертикальной подвижки 42 и 44. Эта возможность позволяет размещать подложку 9 в области, где путем предварительных настроечных экспериментов, определена возможность получать наиболее оптимальные значения скорости, равномерности и селективности процессов плазмохимического травления, а также скорости и равномерности плазмохимического осаждения.
То, что в устройство введен второй модуль вертикальной подвижки 42, сопряженный со вторым газораспределительным модулем 24, а также - введен третий модуль вертикальной подвижки 44, сопряженный со столиком 8 позволяет регулировать и оптимизировать величины h и Н для повышения однородности и скорости плазменного травления.
То, что второй газораспределительный модуль 24 установлен с возможностью его оперативной замены приводит к повышению однородности и скорости плазменного травления за счет применения газораспределительных модулей, выполненных с учетом используемых газов.
Источники информации
1. Патент US 5487785.
2. Лебедев Ю.А. ЭЛЕКТРИЧЕСКИЕ ЗОНДЫ В ПЛАЗМЕ ПОНИЖЕННОГО ДАВЛЕНИЯ. Институт нефтехимического синтеза им А.В. Топчиева РАН, 2011 г.
[3]. Брушлинский К.В., Савельев В.В. Магнитные ловушки для удержания плазмы // Математическое моделирование. - 1999. - Т. 11. - №. 5. - С. 3-36.

Claims (8)

1. Реактор для плазменной обработки полупроводниковых структур, содержащий вакуумную камеру (1), плазмообразующий модуль (2), включающий первый газораспределительный модуль (3) с блоком подачи и дозирования технологических газов, при этом плазмообразующий модуль (2) расположен в верхней части (5) вакуумной камеры (1) и соединен с ВЧ-генератором (6), содержащий также модуль отвода газа (7), столик (8) с подложкой (9), включающей верхнюю плоскость (10), расположенный в нижней части (11) вакуумной камеры (1) и соединенный с блоком подачи напряжения (12), содержащий также магнитную систему, состоящую из соосно расположенных первой соленоидальной катушки (16) и второй соленоидальной катушки (17), причем первая соленоидальная катушка (16) расположена в верхней части (5) вакуумной камеры (1) в области плазмообразующего модуля (2) и соединена с первым блоком питания (20), а вторая соленоидальная катушка (17) расположена ниже верхней плоскости (10) подложки (9) и соединена со вторым блоком питания (21), при этом плазмообразующий модуль (2) расположен напротив подложки (9), отличающийся тем, что блок подачи и дозирования технологических газов выполнен в виде первого блока импульсной подачи и дозирования технологических газов (4), в устройство введен второй газораспределительный модуль (24) со вторым блоком импульсной подачи и дозирования технологических газов (26) и с блоком синхронизации (28), при этом блок синхронизации (28) сопряжен с первым блоком импульсной подачи и дозирования технологических газов (4), со вторым блоком импульсной подачи и дозирования технологических газов (26), с блоком подачи напряжения (12), с первым блоком питания (20) первой соленоидальной катушки (16) и со вторым блоком питания (21) второй соленоидальной катушки (17).
2. Реактор по п. 1, отличающееся тем, что в него введена третья соленоидальная катушка (18) с первым модулем вертикальной подвижки (29) и с третьим блоком питания (22), сопряженным с блоком синхронизации (28), при этом третья соленоидальная катушка (18) расположена соосно с первой соленоидальной катушкой (16) и второй соленоидальной катушкой (17) таким образом, что верхняя плоскость (10) подложки (9) оказывается между нижней плоскостью А третьей соленоидальной катушки (18) и верхней плоскостью В второй соленоидальной катушки (17).
3. Реактор по п. 1, отличающееся тем, что ВЧ-генератор (6) сопряжен с блоком синхронизации (28).
4. Реактор по п. 1, отличающееся тем, что второй газораспределительный модуль (24) выполнен в виде кольца диаметром d1 с нижней плоскостью С и установлен соосно над подложкой (9) диаметром d2 нижней плоскостью С на расстоянии h от ее верхней плоскости (10), при этом выполняются условия d2≤d1≤1,2d2, 0,01d1≤h≤0,2d2 или h≤Н/2, если 0,2d2≥Н, где Н расстояние между верхней плоскостью (10) подложки (9) и нижней границей плазмообразующего модуля (2).
5. Реактор по п. 1, отличающееся тем, что плазмообразующий модуль (2) выполнен в виде цилиндрического спирального индуктора (36), расположенного на цилиндрической образующей (38) трубы (39), выполненной из диэлектрического материала, причем первый газораспределительный модуль (3) расположен в торцевой заглушке (40) с отверстием (41), закрепленной на трубе (39).
6. Реактор по п. 1, отличающееся тем, что в него введен второй модуль вертикальной подвижки (42), сопряженный со вторым газораспределительным модулем (24).
7. Реактор по п. 1, отличающееся тем, что в него введен третий модуль вертикальной подвижки (44), сопряженный со столиком (8).
8. Реактор по п. 1, отличающееся тем, что второй газораспределительный модуль (24) установлен с возможностью его оперативной замены.
RU2017145282A 2017-12-22 2017-12-22 Реактор для плазменной обработки полупроводниковых структур RU2670249C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017145282A RU2670249C1 (ru) 2017-12-22 2017-12-22 Реактор для плазменной обработки полупроводниковых структур

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017145282A RU2670249C1 (ru) 2017-12-22 2017-12-22 Реактор для плазменной обработки полупроводниковых структур

Publications (1)

Publication Number Publication Date
RU2670249C1 true RU2670249C1 (ru) 2018-10-19

Family

ID=63862387

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017145282A RU2670249C1 (ru) 2017-12-22 2017-12-22 Реактор для плазменной обработки полупроводниковых структур

Country Status (1)

Country Link
RU (1) RU2670249C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2714864C1 (ru) * 2019-06-10 2020-02-19 Акционерное общество "Научно-производственное предприятие "Электронное специальное-технологическое оборудование" Реактор плазменной обработки полупроводниковых структур
RU2753823C1 (ru) * 2020-12-21 2021-08-23 Открытое акционерное общество "Научно-исследовательский институт точного машиностроения" Реактор для плазмохимической обработки полупроводниковых структур
RU2814510C1 (ru) * 2023-09-20 2024-02-29 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ травления карбида кремния

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2133998C1 (ru) * 1998-04-07 1999-07-27 Научно-производственный комплекс "Технологический центр" Московского института электронной техники Реактор для плазменной обработки полупроводниковых структур
WO2002097854A2 (en) * 2001-05-30 2002-12-05 Plasma Tech Co., Ltd. Plasma reactor
RU2293796C2 (ru) * 2005-01-11 2007-02-20 Институт микроэлектроники и информатики РАН Плазмохимический реактор низкого давления для травления и осаждения материалов
RU2408950C1 (ru) * 2009-10-13 2011-01-10 Государственное образовательное учреждение высшего профессионального образования Московский государственный институт электронной техники (технический университет), (МИЭТ) Реактор для плазменной обработки полупроводниковых структур
RU2483501C2 (ru) * 2010-07-30 2013-05-27 Открытое акционерное общество "Научно-исследовательский институт точного машиностроения" Плазменный реактор с магнитной системой

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2133998C1 (ru) * 1998-04-07 1999-07-27 Научно-производственный комплекс "Технологический центр" Московского института электронной техники Реактор для плазменной обработки полупроводниковых структур
WO2002097854A2 (en) * 2001-05-30 2002-12-05 Plasma Tech Co., Ltd. Plasma reactor
RU2196395C1 (ru) * 2001-05-30 2003-01-10 Александров Андрей Федорович Плазменный реактор и устройство для генерации плазмы (варианты)
RU2293796C2 (ru) * 2005-01-11 2007-02-20 Институт микроэлектроники и информатики РАН Плазмохимический реактор низкого давления для травления и осаждения материалов
RU2408950C1 (ru) * 2009-10-13 2011-01-10 Государственное образовательное учреждение высшего профессионального образования Московский государственный институт электронной техники (технический университет), (МИЭТ) Реактор для плазменной обработки полупроводниковых структур
RU2483501C2 (ru) * 2010-07-30 2013-05-27 Открытое акционерное общество "Научно-исследовательский институт точного машиностроения" Плазменный реактор с магнитной системой

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2714864C1 (ru) * 2019-06-10 2020-02-19 Акционерное общество "Научно-производственное предприятие "Электронное специальное-технологическое оборудование" Реактор плазменной обработки полупроводниковых структур
RU2753823C1 (ru) * 2020-12-21 2021-08-23 Открытое акционерное общество "Научно-исследовательский институт точного машиностроения" Реактор для плазмохимической обработки полупроводниковых структур
RU2816689C1 (ru) * 2023-07-31 2024-04-03 Леонид Александрович Мочалов Способ получения тонких пленок вида Pb-Ch-Ch и устройство для его реализации
RU2814510C1 (ru) * 2023-09-20 2024-02-29 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Способ травления карбида кремния

Similar Documents

Publication Publication Date Title
TWI822617B (zh) 射頻產生器及用於產生射頻訊號的方法
US10090160B2 (en) Dry etching apparatus and method
US9502219B2 (en) Plasma processing method
US8753474B2 (en) Method and apparatus for high efficiency gas dissociation in inductive couple plasma reactor
KR101941828B1 (ko) 플라즈마 에칭 프로세스를 위한 급속하고 균일한 가스 스위칭
US11742184B2 (en) Plasma processing apparatus and plasma processing method
KR100812829B1 (ko) 플라즈마 성막 장치 및 플라즈마 성막 방법
KR101164829B1 (ko) 일 세트의 플라즈마 처리 단계를 튜닝하는 방법 및 장치
US8008596B2 (en) Plasma processing apparatus and electrode used therein
TWI645442B (zh) Plasma processing device
US20100003827A1 (en) Method and device for etching a substrate by means of plasma
JP5819154B2 (ja) プラズマエッチング装置
US20220238313A1 (en) Apparatus for plasma processing and method of etching
KR20170101952A (ko) 플라스마 처리 장치 및 그것을 이용한 플라스마 처리 방법
KR20170129054A (ko) 에칭 방법
KR20150024277A (ko) 반도체 장치의 제조 방법
CN110416116B (zh) 蚀刻装置和蚀刻方法
TW201712146A (zh) 氣體供給系統、氣體供給控制方法及氣體置換方法
RU2670249C1 (ru) Реактор для плазменной обработки полупроводниковых структур
TWI712342B (zh) 電漿處理裝置及電漿處理方法
US20160372306A1 (en) Method for Controlling Plasma Uniformity in Plasma Processing Systems
TWI446439B (zh) 電漿處理方法
TWI656558B (zh) Cleaning method of plasma processing device and plasma processing device
US11450515B2 (en) Plasma processing apparatus
KR20070116505A (ko) 반도체 기판 처리장치