RU2669973C1 - Способ иммобилизации радионуклидов Cs+ в алюмосиликатной керамике - Google Patents
Способ иммобилизации радионуклидов Cs+ в алюмосиликатной керамике Download PDFInfo
- Publication number
- RU2669973C1 RU2669973C1 RU2017143093A RU2017143093A RU2669973C1 RU 2669973 C1 RU2669973 C1 RU 2669973C1 RU 2017143093 A RU2017143093 A RU 2017143093A RU 2017143093 A RU2017143093 A RU 2017143093A RU 2669973 C1 RU2669973 C1 RU 2669973C1
- Authority
- RU
- Russia
- Prior art keywords
- sintering
- cesium
- temperature
- radionuclides
- mold
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 38
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 title claims abstract description 34
- 229910000323 aluminium silicate Inorganic materials 0.000 title claims description 9
- 229910052792 caesium Inorganic materials 0.000 claims abstract description 35
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims abstract description 30
- 238000005245 sintering Methods 0.000 claims abstract description 29
- 239000010457 zeolite Substances 0.000 claims abstract description 29
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 22
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 15
- 239000010959 steel Substances 0.000 claims abstract description 15
- 229920006395 saturated elastomer Polymers 0.000 claims abstract description 13
- 238000000227 grinding Methods 0.000 claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 238000002490 spark plasma sintering Methods 0.000 claims abstract description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 7
- 239000010439 graphite Substances 0.000 claims abstract description 7
- 230000003100 immobilizing effect Effects 0.000 claims abstract description 4
- 238000001816 cooling Methods 0.000 claims description 4
- 239000000843 powder Substances 0.000 abstract description 28
- 239000011159 matrix material Substances 0.000 abstract description 18
- 230000000694 effects Effects 0.000 abstract description 10
- -1 cesium ions Chemical class 0.000 abstract description 6
- 230000005865 ionizing radiation Effects 0.000 abstract description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 6
- 239000002901 radioactive waste Substances 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 3
- 239000002594 sorbent Substances 0.000 abstract description 3
- 239000002699 waste material Substances 0.000 abstract description 3
- 239000003814 drug Substances 0.000 abstract description 2
- 230000007774 longterm Effects 0.000 abstract description 2
- 238000004321 preservation Methods 0.000 abstract description 2
- 238000005259 measurement Methods 0.000 abstract 1
- 238000002386 leaching Methods 0.000 description 10
- 239000011734 sodium Substances 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 239000002775 capsule Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910052586 apatite Inorganic materials 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- NLSCHDZTHVNDCP-UHFFFAOYSA-N caesium nitrate Chemical compound [Cs+].[O-][N+]([O-])=O NLSCHDZTHVNDCP-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000002485 combustion reaction Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000002285 radioactive effect Effects 0.000 description 4
- 229910052778 Plutonium Inorganic materials 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- UZLYXNNZYFBAQO-UHFFFAOYSA-N oxygen(2-);ytterbium(3+) Chemical compound [O-2].[O-2].[O-2].[Yb+3].[Yb+3] UZLYXNNZYFBAQO-UHFFFAOYSA-N 0.000 description 3
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910003454 ytterbium oxide Inorganic materials 0.000 description 3
- 229940075624 ytterbium oxide Drugs 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 2
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 229910001603 clinoptilolite Inorganic materials 0.000 description 2
- 238000007596 consolidation process Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- 238000001149 thermolysis Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 2
- LEHFSLREWWMLPU-UHFFFAOYSA-B zirconium(4+);tetraphosphate Chemical compound [Zr+4].[Zr+4].[Zr+4].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LEHFSLREWWMLPU-UHFFFAOYSA-B 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical class [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- HCGRZMUICVJNNL-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Si+4].[Al+3].[B+3] Chemical compound P(=O)([O-])([O-])[O-].[Si+4].[Al+3].[B+3] HCGRZMUICVJNNL-UHFFFAOYSA-K 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229910004283 SiO 4 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000001479 atomic absorption spectroscopy Methods 0.000 description 1
- 238000009933 burial Methods 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- JUNWLZAGQLJVLR-UHFFFAOYSA-J calcium diphosphate Chemical compound [Ca+2].[Ca+2].[O-]P([O-])(=O)OP([O-])([O-])=O JUNWLZAGQLJVLR-UHFFFAOYSA-J 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229940043256 calcium pyrophosphate Drugs 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000019821 dicalcium diphosphate Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 229910000449 hafnium oxide Inorganic materials 0.000 description 1
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- 239000002927 high level radioactive waste Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000010857 liquid radioactive waste Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- UTDLAEPMVCFGRJ-UHFFFAOYSA-N plutonium dihydrate Chemical compound O.O.[Pu] UTDLAEPMVCFGRJ-UHFFFAOYSA-N 0.000 description 1
- FLDALJIYKQCYHH-UHFFFAOYSA-N plutonium(IV) oxide Inorganic materials [O-2].[O-2].[Pu+4] FLDALJIYKQCYHH-UHFFFAOYSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
- C04B35/19—Alkali metal aluminosilicates, e.g. spodumene
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62685—Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
- G21F9/16—Processing by fixation in stable solid media
- G21F9/162—Processing by fixation in stable solid media in an inorganic matrix, e.g. clays, zeolites
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Physics & Mathematics (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- General Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Изобретение относится к способам иммобилизации радионуклидов в керамике и предназначено для прочной иммобилизации и длительной консервации радиоактивных отходов, в том числе отходов атомной энергетики, отработанных сорбентов, содержащих радионуклиды, а также может найти применение в радиохимической промышленности при изготовлении источников ионизирующего излучения для использования в гамма-дефектоскопии, измерительной технике, медицине, в том числе источников ионизирующего излучения со строго дозированной удельной активностью для применения в онкологии. Согласно предлагаемому способу размолотый в порошок природный цеолит с содержанием NaO 1,55-2,15 мас. %, насыщенный ионами цезия, помещают в графитовую либо стальную пресс-форму, подпрессовывают и подвергают искровому плазменному спеканию в вакуумной камере при постоянной механической нагрузке под воздействием обладающих высокой энергией низковольтных импульсов униполярного электрического тока с длительностью 3,3 мс, которые генерируют пакетами с паузами между ними. Температуру спекаемого порошка повышают до 800-1100°С в две стадии: в диапазоне до 650°С скорость разогрева составляет 300°С/мин, выше 650°С - 90°С/мин. Пресс-форму с порошком цеолита выдерживают при достигнутой температуре в течение 4,5-5,5 мин, затем, сохраняя вакуум, охлаждают до температуры окружающей среды. При изготовлении источников ионизирующего излучения исходный цеолит перед размолом промывают, после размола отбирают фракцию 0,05-0,1 мм, которую перед спеканием снова промывают и высушивают. Технический результат - увеличение количества иммобилизуемых радионуклидов цезия в керамические матрицы, что обеспечивает повышение удельной активности и, соответственно, безопасности при захоронении РАО при одновременном расширении области применения получаемых продуктов. 3 з.п. ф-лы, 3 ил., 3 пр.
Description
Изобретение относится к способам иммобилизации радионуклидов в керамике и предназначено для прочной иммобилизации и длительной консервации радиоактивных отходов, в том числе, отходов атомной энергетики, отработанных сорбентов, содержащих радионуклиды, и других, а также может найти применение в радиохимической промышленности при изготовлении источников ионизирующего излучения для использования в гамма-дефектоскопии, измерительной технике, медицине, в том числе, источников ионизирующего излучения со строго дозированной удельной активностью для применения в онкологии.
Известен способ захоронения плутония в апатитовой керамике и полученный с использованием этого способа продукт (RU 2236055, опубл. 2004.09.10), содержащий матрицу из фосфоросиликатного апатита, в химическую структуру которого включены плутоний и радиоактивные лантаниды. Способ получения фосфоросиликатного апатита предусматривает приготовление смеси порошков диоксида плутония, пирофосфата кальция, химических компонентов, составляющих апатит, которая содержит, по меньшей мере, один фторирующий реагент, ее измельчение до частиц размером менее 50 мкм и спекание под давлением при температуре от 1100 до 1600°С в нейтральной или восстановительной атмосфере, при этом давление прикладывают до спекания или во время спекания. Синтез фосфоросиликатного апатита требует строгого соблюдения соотношения SiO4/PO4 в исходной смеси с учетом количества введенного плутония и количества катионов Ln и Pu, присутствующих в фосфоросиликатном апатите, и, в зависимости от получаемого состава, включает ряд дополнительных операций (смешивание исходных компонентов в ацетоне с его последующим удалением, предварительное прокаливание для улучшения реакционной способности порошка, повторный размол, термическую отжигающую обработку спрессованного продукта при атмосферном давлении в нейтральной или восстановительной атмосфере для улучшения однородности керамической матрицы), что существенно усложняет способ. Кроме того, для известного способа характерны продолжительность, высокая температура спекания и высокая энергоемкость, обусловленные тем, что прилагаемое извне тепло медленно и потому неравномерно распространяется по объему нагреваемой смеси.
Известен способ обезвреживания жидких радиоактивных и токсичных материалов (RU 2137230, опубл. 1999.09.10) для захоронения и безопасного хранения под землей, предусматривающий заливку вышеуказанных материалов в капсулу, предварительно заполненную пористой керамикой и снабженную ловушкой возгонов, их упаривание при температуре 70-90°С, термолиз полученного сухого остатка при температуре 700-900°С в капсуле, непосредственно в порах керамики с улавливанием образующихся возгонов. Вышеупомянутые операции осуществляют в герметичной камере при давлении 0,01-0,05 МПа, а после окончания процесса термолиза, продукты которого взаимодействуют с материалом керамики и образуют с ними стойкие химические соединения, капсулу закупоривают. Однако первичная капсула не обеспечивает достаточной защиты от проникающего излучения. Извлеченную из печи капсулу непосредственно в герметичной камере снабжают дополнительной защитой, для чего размещают между двух стальных полусфер, которые соединяют контактной сваркой, затем, после извлечения из упомянутой камеры, закрывают еще двумя полусферами из хромистого сплава, легированного вольфрамом, соединенными между собой аргонно-дуговой сваркой, а на финишном этапе поверхность внешнего корпуса капсулы покрывают еще оксидом гафния толщиной 0,1 мм. В итоге известный способ получается сложным, многоступенчатым, энергоемким и трудоемким, требует сложного технологического оборудования. Надежность многослойной защиты достигается высокой ценой.
Известен способ переработки твердых высокоактивных отходов ядерного топлива, содержащих преимущественно цезий и стронций (RU 2176830, опубл. 2001.12.10), согласно которому измельченные отходы смешивают с шихтой, содержащей оксид кальция, титан, оксид титана, оксиды кремния и алюминия при соотношении Al2O3:SiO2, равном 1:2, а также нитрат кальция и/или оксид железа в качестве окислителя. Приготовленную смесь уплотняют, размещают в герметичном реакторе и проводят ее термическую обработку в режиме самораспространяющегося высокотемпературного синтеза путем инициирования реакции горения компонентов шихты с получением высокоплотной керамики, содержащей в основном фазу перовскита, в которой зафиксированы радионуклиды цезия и стронция. Известный способ характеризуется высокой эндотермичностью реакции взаимодействия исходных порошковых реагентов, необходимой для инициации их горения и поддержания реакции синтеза в виде горения. Кроме того, представляется неудобной регулировка процесса синтеза путем введения в состав шихты окислителей, поддерживающих процесс горения, и одновременно компонентов, обеспечивающих снижение температуры горения до 1250°С для уменьшения летучести цезия и повышения прочности его фиксации в перовскитовой матрице.
Известен также способ иммобилизации неразделенных жидких РАО в керамику (RU 2432641, опубл. 2011.10.27), который предусматривает концентрирование радиоактивного раствора низкой и средней активности, например, путем упаривания и высушивания, последующее смешивание его с фосфатной матрицей, содержащей аморфный фосфат циркония, и прокаливание в течение 7 часов при температуре около 1000°С до получения керамического пека в виде минералоподобных структурных форм типа коснарита, который покрывают стеклянной фриттой из алюмо-боро-силико-фосфатного стекла, нагревают до полного расплавления стекла, после небольшой выдержки охлаждают, затем извлекают из печи. Для обработки РАО, содержащих большие количества цезия, и связывания их в коснаритовую фазу, требуется предварительный синтез фосфата циркония, содержащего стехиометрические количества NaCl и CsCl. Помимо этого, известный способ является многоступенчатым, энергоемким и требует достаточно больших затрат времени.
Известен способ получения используемых в качестве источников радиоактивного излучения для медицинской и химической промышленности керамических изделий из оксида иттербия (RU 2527362, опубл. 2014.08.27) путем формования заготовок из порошка оксида иттербия Yb2O3 в металлической пресс-форме при давлении 0,1-0,5 Гпа и термообработки при температуре 400-550°С в течение 1-2 часов до полного удаления влаги с последующей термобарической обработкой, которую проводят в ячейке высокого давления с графитовым нагревателем, помещенной в камеру высокого давления, предназначенную для синтеза и спекания сверхтвердых материалов. Термобарическую обработку проводят в диапазоне давлений от 2,0 до 8,0 ГПа и температуре в диапазоне 600-1500°С, регулируя время спекания в пределах 5-100 с и обеспечивая тем самым формирование стабильной кубической или моноклинной фазы оксида иттербия, в зависимости от чего плотность керамики меняется от 9,0 до 10,0 г/см3. Известный способ является многоступенчатым, технологически сложным и, соответственно, требует сложного технологического оборудования, что существенно увеличивает стоимость производимой продукции.
Наиболее близким к заявляемому способу является способ получения алюмосиликатной ядерной керамики, описанный в работе «Технология искрового плазменного спекания как перспективное решение для создания функциональных наноструктурированных керамик». Е.К. Папынов и др. Вестник ДВО РАН. 2016 №6. с. 15-29, согласно которому измельченный до порошкообразного состояния (50-100 мкм), промытый и высушенный природный цеолит Чугуевского месторождения (Приморский край) помещали на сутки в раствор нитрата цезия с концентрацией 5 г/л до полного адсорбирования цезия, после чего промывали, высушивали и подвергали искровому плазменному спеканию (spark plasma sintering) в электрическом поле постоянного тока под воздействием импульсов длительностью в интервале 3,3-326,7 мс, при скорости нагрева 140-170°С/мин с достижением температуры 800-1100°С и выдержке при достигнутой температуре около 5 мин с механической нагрузкой 24,5 МПа. Полученные компаунды монолитной структуры с содержанием радионуклидов цезия обнаруживает низкую скорость выщелачивания (<10-5-10-6 г/м2 сутки) и высокую прочность при сжатии (до 500 МПа).
Сорбционная емкость, природных цеолитов по катиону Cs+ определяется долей свободных к ионному обмену катионов Na+ и K+, входящих в состав кристаллических фаз минерала, и в значительной мере зависит от этого состава. Кристаллические фазы цеолитов, в свою очередь, дифференцируются по соотношению SiO2/Al2O3 и содержанию воды.
В природном цеолите Чугуевского месторождения, преимущественно содержащем клиноптилолит с примесью морденита (SiO2/Al2O3=5,2), содержание натрия в виде Na2O является низким (около 0,78 мас. %), при этом часть его находится в связанном состоянии и не участвует в ионном обмене. Таким образом, при использовании этого цеолита в качестве исходного сырья указанное в известной работе вышеуказанное содержание цезия в спеченной керамической матрице, по всей видимости, обеспечивается только в определенных условиях модельного опыта и при насыщении порошка клиноптилолита/морденита раствором нитрата цезия определенной концентрации. Однако в реальных условиях сорбционная емкость полученной керамической матрицы едва превышает 13 мас. %, что создает проблемы при захоронении радиоактивных отходов различной активности и затрудняет создание готовых изделий с заданной удельной активности.
Задачей изобретения является разработка способа иммобилизации радионуклидов в алюмосиликатной керамике на основе природных цеолитов с получением продукта либо в виде спеченного компаунда, содержащего радионуклиды цезия в составе подлежащих захоронению РАО, либо спеченного компаунда, содержащего специально введенное определенное количество радионуклидов цезия и представляющего собой активную часть источника ионизирующего излучения.
Технический результат изобретения заключается в увеличении количества иммобилизуемых радионуклидов цезия в керамические матрицы, что обеспечивает повышение удельной активности и, соответственно, безопасности при захоронении РАО, при одновременном расширении сырьевой базы способа, а также области применения получаемых продуктов.
Указанный технический результат достигают способом иммобилизации радионуклидов Cs+ в алюмосиликатной матрице, согласно которому размолотый порошок природного алюмосиликата, а именно, цеолита, насыщенный радионуклидами цезия, помещают в токопроводящую пресс-форму, подпрессовывают и подвергают искровому плазменному спеканию в вакууме под воздействием низковольтовых импульсов униполярного электрического тока длительностью 3,3 мс, при повышении температуры до 800-1100°С с выдержкой при достигнутой температуре в течение 4,5-5,5 мин, при постоянной механической нагрузке 24,0-25,0 МПа, в котором, в отличие от известного, используют природные цеолиты с содержанием Na2O 1,55-2,15 мас. %, при этом импульсы электрического тока генерируют пакетами по 10-12 импульсов с паузами, по времени равными длительности 2 импульсов, повышение температуры регулируют ступенчато: в диапазоне до 650°С скорость разогрева составляет 300°С/мин, выше 650°С - 90°С/мин.
При изготовлении изделий с точно дозированной активностью исходный цеолит перед размолом промывают, после размола фракционируют, отбирая для работы фракцию 0,05-0,1 мм, которую перед спеканием промывают и высушивают.
В качестве токопроводящей пресс-формы может быть использована графитовая либо металлическая пресс-форма.
При изготовлении капсулы с иммобилизованным в алюмосиликатную керамику цезием спекание проводят в стальной пресс-форме в виде цилиндра с запаянным дном, герметично запечатываемым верхней заглушкой.
Способ осуществляют следующим образом.
Природный цеолит с содержанием Na2O в интервале 1,50-2,15 мас. % размалывают в порошок и подвергают спеканию, при этом подготовка порошка определяется назначением получаемой керамической матрицы.
В частности, в случае, когда целевым продуктом является радионуклидный сердечник, являющийся активной частью источника ионизирующего излучения с точно дозированной активностью, цеолит пред размолом промывают и высушивают. Размол фракционируют, отбирая для использования фракцию 0,05-0,1 мм. Для удаления микроскопической пыли отсеянный порошок помещают в дистиллированную воду и декантируют, после чего проводят сушку при 100°С с целью удаления избыточной влаги. Подготовленный таким образом порошок насыщают рассчитанным количеством радионуклидов цезия, погружая в раствор соли цезия на время, необходимое для полного сорбционного насыщения. Затем порошок цеолита отделяют от раствора путем фильтрации, тщательно промывают дистиллированной водой и высушивают.
При захоронении жидких радиоактивных отходов стадии промывки являются избыточными. После насыщения порошка цеолита радионуклидами цезия из подлежащих очистке ЖРО его подсушивают.
В том случае, когда захоронению подлежат отработанные сорбенты, уже насыщенные радионуклидами, подготовка к спеканию ограничивается размолом, проводимым только в случае необходимости, для совмещения фракции исходного материала с размерами рабочего диаметра пресс-формы.
Спекание (консолидацию) порошка цеолита, насыщенного радионуклидами цезия, осуществляют с помощью технологии искрового плазменного спекания.
Порошок помещают в токопроводящую (графитовую либо металлическую) пресс-форму, подпрессовывают при давлении прессования 19,0-20,4 МПа; пресс-форму с порошком устанавливают в камеру спекания, в которой создают вакуум (давление 5⋅10-5 атм, или 6 Па), и проводят непосредственно процесс спекания, поддерживая механическую нагрузку 24,5 МПа постоянной в течение всего процесса.
Спекание происходит под воздействием обладающих высокой энергией (мощностью до 100 кДж) кратковременных импульсов низковольтового униполярного электрического тока, генерируемых по типу ON/OFF=(10-12/2), т.е. после пакета из 10-12 импульсов, длительностью по 3,3 мс каждый, идет пауза, соответствующая по времени длительности двух импульсов по 3,3 мс, при постоянном механическом давлении. Под воздействием электрического тока происходит быстрый разогрев токопроводящей пресс-формы, которая выступает в роли замкнутого электрического контура внутри которого расположен спекаемый образец, который при этом получает джоулево тепло, а искровые разряды, возникающие в местах неполного контакта частиц, обеспечивают быстрый локальный (точечный) разогрев в этих местах, таким образом, спекаемый порошковый материал разогревается как изнутри, так и снаружи, тем самым обеспечивается быстрый и равномерный разогрев по всему объему.
Температура спекания преимущественно составляет 800-1100°С, при этом повышение температуры регулируют ступенчато: в диапазоне до 650°С скорость разогрева составляет 300°С/мин, выше 650°С - 90°С/мин. Время выдержки при достигнутой температуре 4,5-5,5 минут.
Минимальное время охлаждения 30 минут при поддерживаемом вакууме.
Таким образом, полный цикл иммобилизации цезия в алюмосиликатной, а именно, в цеолитной, керамике, включая подготовку сырья, спекание, охлаждение и выемку готового изделия, занимает неполных 60 минут.
Значения силы тока (500-1000 А) и напряжения (в среднем 4-5 В) при спекании задаются конечной температурой и скоростью нагрева, а также зависят от вида цеолита. Кроме того, режим спекания варьируется в зависимости от формы и размера спекаемого изделия.
На фиг. 1 показана микроструктура исходного порошка цеолита Сокирницкого месторождения (Закарпатская область), насыщенного радионуклидами цезия. РЭМ изображения получены при различном увеличении (а, а*).
На фиг. 2 показаны полученные при различном увеличении (б, б*) РЭМ изображения микроструктуры насыщенной радионуклидами цезия керамической матрицы, полученной искровым плазменным спеканием при температуре 900°С порошка цеолита Сокирницкого месторождения.
За счет использования алюмосиликатного сырья с максимальным для природных цеолитов содержанием Na2O (соответственно, ионов Na+, участвующих в ионном обмене) и оптимальным соотношением SiO2 : Al2O3, обеспечивающим наличие кристаллической фазы, которая характеризуется однородной пористой структурой с высокой долей свободного объема и высокой сорбционной способностью, формируется керамическая матрица, которая адсорбирует более 20 мас. % цезия, равномерно распределенного в ее структуре.
Полученная керамическая матрица (компаунд) преимущественно (после 900 градусов имеет аморфную (стеклоподобную) монолитную структуру, на которую не влияет состав примесей иммобилизуемого радионуклида.
Керамическая матрица обнаруживает высокую конструкционную (механическую) прочность (предел прочности при сжатии 470-490 МПа). Высокая прочность связывания и фиксации ионов цезия в объеме полученной предлагаемым способом керамической матрицы обеспечивает минимальную десорбцию упомянутых нуклидов из ее объема.
Скорость выщелачивания 137Cs водой из керамических компаундов, полученных предлагаемым способом, составляет 10-5-10-7 г/см2⋅сутки. Такая высокая гидролитическая устойчивость обеспечивает срок их службы не менее 20 лет.
На фиг. 3 показана скорость выщелачивания цезия из керамических матриц, полученных искровым плазменным спеканием порошка цеолита Сокирницкого месторождения при температуре 900°С.
При использовании металлической, преимущественно стальной, пресс-формы общий режим обработки сохраняется, за исключением заданной конечной температуры, которая в этом случае составляет не более 900°С, поскольку интенсивность спекания увеличивается за счет разогрева самой пресс-формы.
Значения силы тока (700-1100 А) и напряжения (6-7 В), как и в случае использования графита, задаются температурой и скоростью нагрева, при этом за счет высокой электропроводности металлической пресс-формы достигают более высоких значений.
Для получения изделия закрытого типа в виде насыщенного ионами цезия спеченного керамического сердечника, помещенного в стальной корпус, спекание проводят непосредственно в стальной пресс-форме с запаянным дном, снабженной верхней заглушкой в виде крышки, которая опускается по мере спекания материала и уменьшения его объема. После охлаждения пресс-форму с содержимым герметизируют. Стенки при необходимости срезают.
Предлагаемый способ обеспечивает возможность точного дозирования удельной активности (разброс не более ±5%) спекаемой матрицы.
Примеры конкретного осуществления способа
Измельчение природных цеолитов осуществляли с помощью шаровой планетарной мельницы при 500 об/мин в течение 10 минут. Удаление избыточной влаги после фракционирования и декантации проводили в сушильном шкафу при температуре 100°С в течение 2 ч на воздухе.
Насыщение радионуклидами Cs+ проводили из раствора нитрата цезия с концентрацией 10 г/л. В емкость со 100 мл приготовленного раствора помещали 10 г порошка цеолита и оставляли на сутки при комнатной температуре на шейкере, что обеспечивало максимальное сорбционное насыщение.
Насыщенный порошок отделяли от раствора путем фильтрации на бумажной ленте, промывали дистиллированной водой в количестве 3 л и повторно сушили в сушильном шкафу на воздухе при 100°С в течение 2 ч.
Консолидацию (спекание) порошков цеолитов, насыщенных ионами цезия, проводили на установке SPS-515S «Dr. Sinten*LAB» (Япония).
Изображения структуры спекаемых материалов получены методом растровой электронной микроскопии (РЭМ) на приборе Carl Zeiss Cross Beam 1540 XB (Германия).
Гидролитическую устойчивость спеченных керамических матриц оценивали согласно ГОСТ Р 52126-2003 по скорости выщелачивания ионов цезия при длительном контакте с дистиллированной водой. Концентрацию ионов цезия, поступивших из матрицы в воду, определяли на 1, 3, 7, 14 и 30 сутки методом атомно-абсорбционной спектрометрии (ThermoMSeries, США).
Механическую прочность (прочность при сжатии) определяли на образцах цилиндрической формы диаметром 10-15 мм и высотой от 5 до 10 мм с помощью разрывной машины Autograph AG-Xplus 50 и 100 kN «Shimadzu» (Япония) со скоростью нагрузки 0,5 мм/мин.
Обработку полученных результатов и расчет величины скорости выщелачивания выполняли с использованием формулы:
где - масса (г) элемента i, выщелоченного за n-ый интервал времени испытания tn (суток), - массовая концентрация (г/г) элемента i в матрице, S - площадь открытой геометрической поверхности образца (см2).
Измерение плотности выполняли методом гидростатического взвешивания на весах Adventurer «OHAUS Corporation» (США).
Пример 1
Насыщенный цезием порошок цеолита Ягодинского месторождения (Камчатский край) с содержанием Na2O 2,13 мас. % в количестве 3 г помещали в графитовую пресс-форму с внутренним диаметром 15,5 мм, подпрессовывали при механической нагрузке 20,4 МПа, затем устанавливали в камеру спекания и вакуумировали. Поднимали температуру, как описано выше, в два приема, до 1000°С и проводили процесс при достигнутой температуре, поддерживая ее в течение 5 мин при постоянной нагрузке 24,5 МПа.
Количество иммобилизованного цезия - 20,8 мас. %. Плотность спеченной керамики - 2,98 г/см3. Скорость выщелачивания не превышала 10-5 г/см2⋅сутки. Прочность при сжатии 45 МПа.
Пример 2
Насыщенный цезием порошок цеолита Сокирницкого месторождения (Закарпатская область) с содержанием Na2O 1,75 мас. % в количестве 3 г помещали непосредственно в стальную матрицу, выполненную в виде цилиндра с толщиной стенок 3 мм и толщиной дна и верхней заглушки 2 мм с внутренним диаметром 15,5 мм устанавливали в камере спекания, подпрессовывали, прикладывали давление 24,5 МПа, одновременно ступенчато поднимали температуру до 900°С и проводили процесс спекания при достигнутой температуре, поддерживая ее в течение 4,5 мин.
Количество иммобилизованного цезия - 18,9 мас. %. Плотность спеченной керамики - 2,58 г/см3. Прочность керамики при сжатии 146 МПа. Скорость выщелачивания порядка 10-6 г/см2⋅сутки. Выщелачивание цезия из керамики, герметизированной в стальном корпусе, отсутствует. Прочность при сжатии/растяжении/изгибе стального корпуса определяется маркой используемой стали.
Пример 3
Насыщенный цезием порошок цеолита месторождения Лютога (Сахалинская область) с содержанием Na2O 1,57 мас. % в количестве 3 г помещали внутрь цилиндрической стальной пресс-формы с внутренним диаметром 15 мм, толщиной стенок 3 мм и толщиной дна и верхней заглушки 2 мм. Снаряженную пресс-форму помещали а камеру спекания и подпрессовывали. После вакуумирования камеры ступенчато поднимали температуру до 800°С и проводили процесс, поддерживая ее в течение 5,5 мин, при постоянном давлении 24,5 МПа.
Плотность спеченной керамики - 2,45 г/см3. Количество иммобилизованного цезия - 18,1 мас. %. Прочность при сжатии 100 МПа. Скорость выщелачивания цезия из керамики 3 10-5. Выщелачивание цезия из керамики, герметизированной в стальном корпусе, отсутствует. Прочность при сжатии/растяжении/изгибе стального корпуса определяется маркой используемой стали.
Claims (4)
1. Способ иммобилизации радионуклидов цезия Cs+ в алюмосиликатной керамике, согласно которому размолотый в порошок природный цеолит, насыщенный цезием, помещают в токопроводящую пресс-форму, подпрессовывают, затем подвергают искровому плазменному спеканию в вакуумной камере при постоянной механической нагрузке 24,5 МПа под воздействием низковольтных импульсов униполярного электрического тока длительностью 3,3 мс, при повышении температуры до 800-1100°C с выдержкой при достигнутой температуре в течение 4,5-5,5 мин и последующим охлаждением в вакууме до температуры окружающей среды, отличающийся тем, что в качестве исходного сырья используют цеолиты с содержанием Na2O 1,55-2,15 мас. %, при этом импульсы электрического тока генерируют пакетами по 10-12 импульсов с паузами, по времени равными длительности двух импульсов, повышение температуры регулируют ступенчато: в диапазоне до 650°C скорость разогрева составляет 300°C/мин, выше 650°C - 90°C/мин.
2. Способ по п. 1, отличающийся тем, что исходный цеолит перед размолом промывают, после размола фракционируют, отбирая для работы фракцию 0,05-0,1 мм, которую перед спеканием промывают и высушивают.
3. Способ по п. 1, отличающийся тем, что в качестве проводящей пресс-формы используют графитовую пресс-форму.
4. Способ по п. 1, отличающийся тем, что спекание проводят непосредственно в стальной пресс-форме в виде цилиндра с запаянным дном, который закрывают верхней заглушкой и после спекания герметизируют.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017143093A RU2669973C1 (ru) | 2017-12-08 | 2017-12-08 | Способ иммобилизации радионуклидов Cs+ в алюмосиликатной керамике |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017143093A RU2669973C1 (ru) | 2017-12-08 | 2017-12-08 | Способ иммобилизации радионуклидов Cs+ в алюмосиликатной керамике |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2669973C1 true RU2669973C1 (ru) | 2018-10-17 |
Family
ID=63862546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017143093A RU2669973C1 (ru) | 2017-12-08 | 2017-12-08 | Способ иммобилизации радионуклидов Cs+ в алюмосиликатной керамике |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2669973C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2746985C1 (ru) * | 2020-10-05 | 2021-04-23 | Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ) | Способ иммобилизации радионуклидов стронция в керамике |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4172807A (en) * | 1976-11-02 | 1979-10-30 | Asea As | Method for anchoring radioactive substances in a body resistant to leaching by water |
SU1036257A3 (ru) * | 1977-02-07 | 1983-08-15 | Асеа Актиеболаг (Фирма) | Способ отверждени радиоактивных отходов путем закреплени их в массе вещества,стойкого к выщелачиванию водой |
RU2104933C1 (ru) * | 1996-02-06 | 1998-02-20 | Научно-производственное объединение "Радиевый институт им.В.Г.Хлопина" | Цезий-литийсодержащий алюмофосфат общей формулы cs2lial2(po4)3 со структурой поллуцита и способ его получения |
EP1303860B1 (en) * | 2000-06-12 | 2008-03-26 | Geomatrix Solutions, Inc. | Processes for immobilizing radioactive and hazardous wastes |
EP2045007A2 (en) * | 2004-06-07 | 2009-04-08 | National Institute for Materials Science | Adsorbent for radioelement-containing waste and method for fixing radioelement |
-
2017
- 2017-12-08 RU RU2017143093A patent/RU2669973C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4172807A (en) * | 1976-11-02 | 1979-10-30 | Asea As | Method for anchoring radioactive substances in a body resistant to leaching by water |
SU1036257A3 (ru) * | 1977-02-07 | 1983-08-15 | Асеа Актиеболаг (Фирма) | Способ отверждени радиоактивных отходов путем закреплени их в массе вещества,стойкого к выщелачиванию водой |
RU2104933C1 (ru) * | 1996-02-06 | 1998-02-20 | Научно-производственное объединение "Радиевый институт им.В.Г.Хлопина" | Цезий-литийсодержащий алюмофосфат общей формулы cs2lial2(po4)3 со структурой поллуцита и способ его получения |
EP1303860B1 (en) * | 2000-06-12 | 2008-03-26 | Geomatrix Solutions, Inc. | Processes for immobilizing radioactive and hazardous wastes |
EP2045007A2 (en) * | 2004-06-07 | 2009-04-08 | National Institute for Materials Science | Adsorbent for radioelement-containing waste and method for fixing radioelement |
Non-Patent Citations (1)
Title |
---|
ПАПЫНОВ Е.К. и др. Технология искрового плазменного спекания как перспективное решение для создания функциональных наноструктурированных керамик. Вестник ДВО РАН, 2016, N6, с.15-29. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2746985C1 (ru) * | 2020-10-05 | 2021-04-23 | Федеральное государственное автономное образовательное учреждение высшего образования «Дальневосточный федеральный университет» (ДВФУ) | Способ иммобилизации радионуклидов стронция в керамике |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Papynov et al. | SPS technique for ionizing radiation source fabrication based on dense cesium-containing core | |
US4172807A (en) | Method for anchoring radioactive substances in a body resistant to leaching by water | |
Shichalin et al. | Reaction synthesis of SrTiO3 mineral-like ceramics for strontium-90 immobilization via additional in-situ synchrotron studies | |
JP5562857B2 (ja) | ヨードアパタイトの合成および緻密化のためのフラッシュ焼結技術の使用 | |
He et al. | Self-propagating chemical furnace synthesis of nanograin Gd2Zr2O7 ceramic and its aqueous durability | |
Nam et al. | Iodosodalite waste forms from low-temperature aqueous process | |
US6137025A (en) | Ceramic composition for immobilization of actinides | |
JP7129989B2 (ja) | 危険なスラッジおよびイオン交換媒体の処理のための組成物 | |
RU2669973C1 (ru) | Способ иммобилизации радионуклидов Cs+ в алюмосиликатной керамике | |
Orlova et al. | Phosphorus-containing cesium compounds of pollucite structure. Preparation of high-density ceramic and its radiation tests | |
Lere-Adams et al. | Glass-bonded ceramic waste forms for immobilization of radioiodine from caustic scrubber wastes | |
Chen et al. | Transformation of Cs-IONSIV® into a ceramic wasteform by hot isostatic pressing | |
Tomilin et al. | Radiation resistance and chemical stability of yttrium aluminum garnet | |
RU2627690C1 (ru) | Способ кондиционирования воды, содержащей тритий | |
Patel et al. | Mechanism of powellite crystallite expansion within nano-phase separated amorphous matrices under Au-irradiation | |
Garino et al. | Development of iodine waste forms using low-temperature sintering glass | |
Zubekhina et al. | Leaching of Plutonium from “Old” samples of single phase ceramics based on Zr 0.79 Gd 0.14 Pu 0.04 O 1.93 and La 0.9 Pu 0.1 PO 4 doped with 238 Pu | |
Vance et al. | Freudenbergite: a possible synroc phase for sodium‐bearing high‐level waste | |
Lewis et al. | Densification of salt-occluded zeolite a powders to a leach-resistant monolith | |
JP4426173B2 (ja) | 放射性セシウムをパッケージするのに適したセシウムを内包するホランド構造を有するセラミック及びその製造方法 | |
Shichalin et al. | Immobilization of 137Cs in NaY type zeolite matrices using various heat treatment methods | |
Chong | Characterization of Sodalite Based Waste Forms for Immobilization of 129I | |
RU2242814C1 (ru) | Способ переработки отходов реакторного графита | |
Chukanov et al. | The kinetics of cation exchange of amorphized terskite | |
Vinokurov et al. | Magnesium potassium phosphate matrix for the immobilization of radioactive waste generated during the reprocessing of mixed uranium plutonium nitride spent nuclear fuel |