RU2669557C2 - Абсорбирующий материал - Google Patents
Абсорбирующий материал Download PDFInfo
- Publication number
- RU2669557C2 RU2669557C2 RU2014122324A RU2014122324A RU2669557C2 RU 2669557 C2 RU2669557 C2 RU 2669557C2 RU 2014122324 A RU2014122324 A RU 2014122324A RU 2014122324 A RU2014122324 A RU 2014122324A RU 2669557 C2 RU2669557 C2 RU 2669557C2
- Authority
- RU
- Russia
- Prior art keywords
- cellulose
- sulfonate
- fibers
- fiber
- alkyl
- Prior art date
Links
- 239000011358 absorbing material Substances 0.000 title 1
- 239000000835 fiber Substances 0.000 claims abstract description 157
- 229920002678 cellulose Polymers 0.000 claims abstract description 103
- 239000001913 cellulose Substances 0.000 claims abstract description 102
- 238000010521 absorption reaction Methods 0.000 claims abstract description 75
- 239000002250 absorbent Substances 0.000 claims abstract description 65
- 230000002745 absorbent Effects 0.000 claims abstract description 65
- 239000000463 material Substances 0.000 claims abstract description 43
- 239000007788 liquid Substances 0.000 claims abstract description 28
- 239000000017 hydrogel Substances 0.000 claims abstract description 3
- 150000008052 alkyl sulfonates Chemical class 0.000 claims description 63
- 125000000217 alkyl group Chemical group 0.000 claims description 26
- 229920000433 Lyocell Polymers 0.000 claims description 22
- 239000012783 reinforcing fiber Substances 0.000 claims description 12
- 229920001169 thermoplastic Polymers 0.000 claims description 11
- 239000004416 thermosoftening plastic Substances 0.000 claims description 11
- 229920000098 polyolefin Polymers 0.000 claims description 10
- 229920002413 Polyhexanide Polymers 0.000 claims description 9
- 229910052709 silver Inorganic materials 0.000 claims description 7
- 239000004332 silver Substances 0.000 claims description 7
- CCIVGXIOQKPBKL-UHFFFAOYSA-M ethanesulfonate Chemical group CCS([O-])(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-M 0.000 claims description 5
- 239000004599 antimicrobial Substances 0.000 claims description 4
- VAZJLPXFVQHDFB-UHFFFAOYSA-N 1-(diaminomethylidene)-2-hexylguanidine Polymers CCCCCCN=C(N)N=C(N)N VAZJLPXFVQHDFB-UHFFFAOYSA-N 0.000 claims description 3
- KCXFHTAICRTXLI-UHFFFAOYSA-N propane-1-sulfonic acid Chemical compound CCCS(O)(=O)=O KCXFHTAICRTXLI-UHFFFAOYSA-N 0.000 claims description 3
- HNDXKIMMSFCCFW-UHFFFAOYSA-N propane-2-sulphonic acid Chemical compound CC(C)S(O)(=O)=O HNDXKIMMSFCCFW-UHFFFAOYSA-N 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 5
- 239000003814 drug Substances 0.000 abstract description 3
- 230000029663 wound healing Effects 0.000 abstract 1
- 235000010980 cellulose Nutrition 0.000 description 94
- 238000000034 method Methods 0.000 description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 43
- 206010052428 Wound Diseases 0.000 description 37
- 208000027418 Wounds and injury Diseases 0.000 description 37
- 238000006243 chemical reaction Methods 0.000 description 36
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical group CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 32
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- -1 hydroxyalkyl sulfonate Chemical compound 0.000 description 30
- 239000000047 product Substances 0.000 description 28
- 239000000243 solution Substances 0.000 description 26
- 239000000523 sample Substances 0.000 description 23
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 20
- 238000006467 substitution reaction Methods 0.000 description 20
- 238000012360 testing method Methods 0.000 description 20
- 229940045714 alkyl sulfonate alkylating agent Drugs 0.000 description 19
- 229920001282 polysaccharide Polymers 0.000 description 18
- 239000005017 polysaccharide Substances 0.000 description 18
- 239000011541 reaction mixture Substances 0.000 description 17
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 16
- 238000006277 sulfonation reaction Methods 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- 239000003513 alkali Substances 0.000 description 11
- 239000004744 fabric Substances 0.000 description 11
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 239000001768 carboxy methyl cellulose Substances 0.000 description 9
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 9
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 230000008901 benefit Effects 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 7
- 239000011575 calcium Substances 0.000 description 7
- 229910052791 calcium Inorganic materials 0.000 description 7
- 239000003795 chemical substances by application Substances 0.000 description 7
- 150000004804 polysaccharides Chemical class 0.000 description 7
- 229910052708 sodium Inorganic materials 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 229920003043 Cellulose fiber Polymers 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 6
- 229960000583 acetic acid Drugs 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- NLVXSWCKKBEXTG-UHFFFAOYSA-M ethenesulfonate Chemical group [O-]S(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-M 0.000 description 6
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- BWYYYTVSBPRQCN-UHFFFAOYSA-M sodium;ethenesulfonate Chemical compound [Na+].[O-]S(=O)(=O)C=C BWYYYTVSBPRQCN-UHFFFAOYSA-M 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 235000010443 alginic acid Nutrition 0.000 description 5
- 229920000615 alginic acid Polymers 0.000 description 5
- 239000012736 aqueous medium Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 229920000573 polyethylene Polymers 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 229920001661 Chitosan Polymers 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 229920001903 high density polyethylene Polymers 0.000 description 4
- 239000004700 high-density polyethylene Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- HSXUNHYXJWDLDK-UHFFFAOYSA-N 2-hydroxypropane-1-sulfonic acid Chemical compound CC(O)CS(O)(=O)=O HSXUNHYXJWDLDK-UHFFFAOYSA-N 0.000 description 3
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 229940072056 alginate Drugs 0.000 description 3
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 3
- 230000000845 anti-microbial effect Effects 0.000 description 3
- HMPHJJBZKIZRHG-UHFFFAOYSA-N chloromethanesulfonic acid Chemical compound OS(=O)(=O)CCl HMPHJJBZKIZRHG-UHFFFAOYSA-N 0.000 description 3
- 210000000416 exudates and transudate Anatomy 0.000 description 3
- 230000004438 eyesight Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005342 ion exchange Methods 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 3
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000783 alginic acid Substances 0.000 description 2
- 229960001126 alginic acid Drugs 0.000 description 2
- 150000004781 alginic acids Chemical class 0.000 description 2
- 125000005227 alkyl sulfonate group Chemical group 0.000 description 2
- 229940100198 alkylating agent Drugs 0.000 description 2
- 239000002168 alkylating agent Substances 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000000648 calcium alginate Substances 0.000 description 2
- 235000010410 calcium alginate Nutrition 0.000 description 2
- 229960002681 calcium alginate Drugs 0.000 description 2
- OKHHGHGGPDJQHR-YMOPUZKJSA-L calcium;(2s,3s,4s,5s,6r)-6-[(2r,3s,4r,5s,6r)-2-carboxy-6-[(2r,3s,4r,5s,6r)-2-carboxylato-4,5,6-trihydroxyoxan-3-yl]oxy-4,5-dihydroxyoxan-3-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylate Chemical compound [Ca+2].O[C@@H]1[C@H](O)[C@H](O)O[C@@H](C([O-])=O)[C@H]1O[C@H]1[C@@H](O)[C@@H](O)[C@H](O[C@H]2[C@H]([C@@H](O)[C@H](O)[C@H](O2)C([O-])=O)O)[C@H](C(O)=O)O1 OKHHGHGGPDJQHR-YMOPUZKJSA-L 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000009960 carding Methods 0.000 description 2
- 229920003086 cellulose ether Polymers 0.000 description 2
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 2
- 229940106681 chloroacetic acid Drugs 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000001212 derivatisation Methods 0.000 description 2
- 150000004683 dihydrates Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 239000002657 fibrous material Substances 0.000 description 2
- 244000144992 flock Species 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 229920000092 linear low density polyethylene Polymers 0.000 description 2
- 239000004707 linear low-density polyethylene Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 239000012085 test solution Substances 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 238000005303 weighing Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- FKOZPUORKCHONH-UHFFFAOYSA-N 2-methylpropane-1-sulfonic acid Chemical compound CC(C)CS(O)(=O)=O FKOZPUORKCHONH-UHFFFAOYSA-N 0.000 description 1
- BTOBKJUENLMVAL-UHFFFAOYSA-N CC(=C)S(=O)(=O)O.C(=C)(C)S(=O)(=O)O Chemical compound CC(=C)S(=O)(=O)O.C(=C)(C)S(=O)(=O)O BTOBKJUENLMVAL-UHFFFAOYSA-N 0.000 description 1
- 229920000298 Cellophane Polymers 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 206010011985 Decubitus ulcer Diseases 0.000 description 1
- 229920000875 Dissolving pulp Polymers 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 208000005230 Leg Ulcer Diseases 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-M Methanesulfonate Chemical compound CS([O-])(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-M 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 1
- 239000006057 Non-nutritive feed additive Substances 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 208000004210 Pressure Ulcer Diseases 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- MSWZFWKMSRAUBD-QZABAPFNSA-N beta-D-glucosamine Chemical group N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O MSWZFWKMSRAUBD-QZABAPFNSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- WEJCHLMBZNBDKM-UHFFFAOYSA-N but-1-ene-1-sulfonic acid Chemical compound CCC=CS(O)(=O)=O WEJCHLMBZNBDKM-UHFFFAOYSA-N 0.000 description 1
- XZSFYGAQHBNTKT-UHFFFAOYSA-N but-2-ene-2-sulfonic acid Chemical compound CC=C(C)S(O)(=O)=O XZSFYGAQHBNTKT-UHFFFAOYSA-N 0.000 description 1
- QDHFHIQKOVNCNC-UHFFFAOYSA-N butane-1-sulfonic acid Chemical group CCCCS(O)(=O)=O QDHFHIQKOVNCNC-UHFFFAOYSA-N 0.000 description 1
- BRXCDHOLJPJLLT-UHFFFAOYSA-N butane-2-sulfonic acid Chemical compound CCC(C)S(O)(=O)=O BRXCDHOLJPJLLT-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- CJZGTCYPCWQAJB-UHFFFAOYSA-L calcium stearate Chemical compound [Ca+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CJZGTCYPCWQAJB-UHFFFAOYSA-L 0.000 description 1
- 239000008116 calcium stearate Substances 0.000 description 1
- 235000013539 calcium stearate Nutrition 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 230000001143 conditioned effect Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000011928 denatured alcohol Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- CCIVGXIOQKPBKL-UHFFFAOYSA-N ethanesulfonic acid Chemical group CCS(O)(=O)=O CCIVGXIOQKPBKL-UHFFFAOYSA-N 0.000 description 1
- PPCXFTKZPBHXIW-UHFFFAOYSA-N ethyl ethanesulfonate Chemical compound CCOS(=O)(=O)CC PPCXFTKZPBHXIW-UHFFFAOYSA-N 0.000 description 1
- MJEMIOXXNCZZFK-UHFFFAOYSA-N ethylone Chemical compound CCNC(C)C(=O)C1=CC=C2OCOC2=C1 MJEMIOXXNCZZFK-UHFFFAOYSA-N 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000012438 extruded product Nutrition 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000004088 foaming agent Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 231100001261 hazardous Toxicity 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 238000005935 nucleophilic addition reaction Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920005630 polypropylene random copolymer Polymers 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- RAJUSMULYYBNSJ-UHFFFAOYSA-N prop-1-ene-1-sulfonic acid Chemical compound CC=CS(O)(=O)=O RAJUSMULYYBNSJ-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229940054334 silver cation Drugs 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920006301 statistical copolymer Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 208000012313 wound discharge Diseases 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/60—Liquid-swellable gel-forming materials, e.g. super-absorbents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/225—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/28—Polysaccharides or their derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/44—Medicaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/46—Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B11/00—Preparation of cellulose ethers
- C08B11/02—Alkyl or cycloalkyl ethers
- C08B11/04—Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B11/00—Preparation of cellulose ethers
- C08B11/02—Alkyl or cycloalkyl ethers
- C08B11/04—Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals
- C08B11/10—Alkyl or cycloalkyl ethers with substituted hydrocarbon radicals substituted with acid radicals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/0006—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
- C08B37/0024—Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
- C08B37/0027—2-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
- C08B37/003—Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08B—POLYSACCHARIDES; DERIVATIVES THEREOF
- C08B37/00—Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
- C08B37/006—Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
- C08B37/0084—Guluromannuronans, e.g. alginic acid, i.e. D-mannuronic acid and D-guluronic acid units linked with alternating alpha- and beta-1,4-glycosidic bonds; Derivatives thereof, e.g. alginates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/26—Cellulose ethers
- C08L1/28—Alkyl ethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L1/00—Compositions of cellulose, modified cellulose or cellulose derivatives
- C08L1/08—Cellulose derivatives
- C08L1/26—Cellulose ethers
- C08L1/28—Alkyl ethers
- C08L1/286—Alkyl ethers substituted with acid radicals, e.g. carboxymethyl cellulose [CMC]
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/04—Alginic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L5/00—Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
- C08L5/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/425—Cellulose series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/425—Cellulose series
- D04H1/4258—Regenerated cellulose series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4282—Addition polymers
- D04H1/4291—Olefin series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43825—Composite fibres
- D04H1/43828—Composite fibres sheath-core
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43835—Mixed fibres, e.g. at least two chemically different fibres or fibre blends
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/44—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
- D04H1/46—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/736—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged characterised by the apparatus for arranging fibres
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/14—Polymer mixtures characterised by other features containing polymeric additives characterised by shape
- C08L2205/16—Fibres; Fibrils
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43825—Composite fibres
- D04H1/43832—Composite fibres side-by-side
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Textile Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Molecular Biology (AREA)
- Mechanical Engineering (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Dispersion Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Multicomponent Fibers (AREA)
- Nonwoven Fabrics (AREA)
- Absorbent Articles And Supports Therefor (AREA)
Abstract
Группа изобретений относится к области медицины, а именно к абсорбирующему изделию, содержащему в качестве абсорбирующего материала волокна нерастворимого в воде С1-С6-алкилсульфоната целлюлозы, в котором целлюлоза замещена одним типом С1-С6-алкилсульфоната, где волокна набухают при абсорбции жидкости, при этом абсорбирующее изделие не содержит гидрогеля; а также к применению в качестве абсорбирующего материала набухающих при абсорбции жидкости волокон нерастворимого в воде С1-С6-алкилсульфоната целлюлозы, в котором целлюлоза замещена одним типом С1-С6-алкилсульфоната. Группа изобретений обеспечивает создание материала, обладающего более высокими абсорбционными свойствами, что улучшает лечение раны. 2 н. и 10 з.п. ф-лы, 15 пр., 4 табл., 1 ил.
Description
Область техники, к которой относится изобретение
В современном уровне техники известны абсорбирующие волокна, подходящие для использования в качестве компонентов усовершенствованных повязок для ухода за ранами, в частности, волокна на основе альгиновой кислоты, карбоксиметилцеллюлозы и карбоксиметилхитозана и их солей.
Уровень техники
Повязки на основе волокон из альгиновой кислоты или ее солей обладают хорошей абсорбционной способностью в отношении раневого отделяемого, но им присуще медленное абсорбирование вследствие необходимости обмена поливалентных ионов, связывающихся с волокнистой структурой совместно с ионами натрия, присутствующими в раневом отделяемом. Хотя данный ионный обмен и делает волокна набухаемыми в ионсодержащих водных средах, что позволяет добиться значительного абсорбирования жидкости, механическая прочность подвергшихся гелеобразованию волокон ухудшается, и обычно невозможно удалить насыщенную жидкостью повязку одним куском. Зачастую повязку необходимо орошать солевым раствором для ее удаления, что может оказаться травматичным для пациента.
В качестве основного компонента усовершенствованных повязок для ухода за ранами также использовали и волокна из карбоксиметилцеллюлозы, они также обладают значительной абсорбционной способностью в отношении раневого отделяемого. Их преимущество в сравнении с повязками альгинатного типа заключается в практически мгновенном абсорбировании жидкости, поскольку не требуется ионного обмена для придания волокнам способности к гелеобразованию. В дополнение к этому, данные волокна на основе высококристаллической целлюлозы, такие как лиоцелл, и, в частности, те, которые описываются в документах EP 0616650 и EP 0680344, имеют тенденцию к сохранению повышенного уровня механической прочности и поэтому могут быть удалены с места раны одним куском. Однако, абсорбционная способность данного класса материала сильно зависит от значения pH раневого отделяемого, радикально уменьшаясь при кислом значении pH. Это серьезный недостаток, поскольку значение pH отделяемого хронической раны может находиться в диапазоне от 4 до 8 в зависимости от состояния лечения. Кроме того, искусственное уменьшение значения pH раневой среды может привести к получению улучшенных результатов лечения. Например, как было установлено (Tsioras et al., article presented at 19th Annual Symposium on Advanced Wound Care, San Antonio, TX, April 30, 2006 - May 3, 2006), наложение раневой повязки, содержащей крем, регулирующий значение pH и доводящий его до pH 2,8, уменьшало время, необходимое для закрытия раны. В еще одном исследовании ожоговые раны заживали быстрее при обработке жидкостью, характеризующейся значением pH 3,5, (Kaufman et al., Burns Incl Therm Inj, 12(2) 84-90 (1985)). Действительно, коммерчески доступными для использования совместно с абсорбирующими повязками являются препараты, уменьшающие значение pH раневой среды. Например, CADESORB®, доступный в компании Smith & Nephew, характеризуется значением pH, равным приблизительно 4,35.
Желательно, чтобы абсорбирующая повязка демонстрировала бы хорошие эксплуатационные характеристики при кислом значении pH, а предпочтительно хорошие эксплуатационные характеристики в широком диапазоне значений pH. Поскольку абсорбирующие повязки на основе карбоксиметилцеллюлозы не демонстрируют хороших эксплуатационных характеристик в средах с низким значением pH, существует потребность в мгновенно подвергающейся гелеобразованию абсорбирующей повязке, которая на хорошем уровне продолжала бы абсорбировать и при пониженном значении pH.
Желательно, чтобы абсорбирующие волокна, предназначенные для использования в абсорбирующих повязках, были бы получены из возобновляемого источника, были бы не дорогими, а также биоразлагаемыми. Значительный интерес в качестве возобновляемого и биоразлагаемого источника абсорбирующего материала представляет целлюлоза. В промышленности средств личной гигиены в США в качестве абсорбирующего материала используют распушенную целлюлозу ложной сосны. Однако обычно ее используют совместно с другими абсорбирующими материалами, которые не являются возобновляемыми и биоразлагаемыми, например, полимерами акриловой кислоты. Причина этого заключается в том, что абсорбированная жидкость не удерживается эффективно в материалах, которые получают исключительно из целлюлозных волокон.
Целлюлозные волокна могут быть модифицированы в результате сульфонирования, например, в результате замещения алкилсульфонатом одной или нескольких гидроксильных групп ангидроглюкозных мономеров, которые составляют основную цепь целлюлозы, образуя соединительные связи простого эфира. Производные целлюлозы данного типа известны под наименованием сульфонатов целлюлозы или алкилсульфонатов целлюлозы.
Коммерчески доступные простые эфиры целлюлозы, как правило, представляют собой растворимые в воде соединения. В частности, как известно, растворимым в воде является этилсульфонат целлюлозы.
Авторы Herzog et al. в патенте США №4990609 описывают этилсульфонаты целлюлозы высокого качества раствора, которые получают в результате добавления к целлюлозе алкилирующего агента, а после этого добавления щелочи. Способ сопоставим с двухступенчатым способом получения этилсульфоната целлюлозы, описанном в документе SU 757540.
Для получения нерастворимых в воде продуктов эфирсульфонаты целлюлозы на основе простых эфиров дополнительно модифицировали. Например, опубликованная патентная заявка США авторов Glasser et al. №2006/0142560 относится к абсорбирующим волокнам на основе смешанных алкилсульфонатов целлюлозы, в которых для целлюлозы проводят замещение двумя различными группами - алкилсульфонатом и гидроксиалкилсульфонатом, говоря конкретно, этилсульфонатом и 2-гидроксипропилсульфонатом. Нерастворимость в воде модифицированной целлюлозы, как представляется, является результатом присутствия 2-гидроксипропилсульфонатной группы.
Патент США авторов Shet et al. №5703225 относится к нерастворимой в воде сульфонированной целлюлозе, которая является гидроксисульфоновой целлюлозой, в которой как атом серы сульфоновой группы, так и гидроксильная группа непосредственно присоединены к атому углерода цепи целлюлозы.
Для обеспечения пригодности при использовании в раневых повязках абсорбирующие материалы должны сохранять свою целостность и, таким образом, быть нерастворимыми в воде. Принципиальный недостаток нерастворимых в воде алкилсульфонатов целлюлозы, которые были разработаны для использования в качестве абсорбирующих материалов на сегодняшний день, заключается в необходимости проведения замещения целлюлозы, по меньшей мере, двумя различными группами. По сравнению с замещением одним заместителем процесс требует дополнительных реагентов и дополнительных технологических стадий, что нежелательно и приведет к увеличению стоимости производства. Кроме того, по мере все большего модифицирования целлюлозы преимущества, связанные с натуральным волокном, такие как его биоразлагаемость, могут быть ухудшены.
Сущность изобретения
Неожиданно было установлено, что нерастворимые в воде алкилсульфонаты целлюлозы могут быть получены в результате проведения замещения целлюлозы только одним типом алкилсульфоната.
Специалистам в соответствующей области техники должно быть ясно то, что в соответствии с изобретением другие полисахаридные субстраты могли бы быть превращены в алкилсульфонатные производные. Например, хитин и хитозан представляют собой натуральные полисахариды на основе D-глюкозаминовых звеньев, которые имеют гидроксильные группы в положениях C3 и C5, в которых может протекать реакция замещения алкилсульфонатными группами. В дополнение к этому, возможно замещение по аминовой группе в положении C2 с присоединением алкилсульфоната через атом азота.
Таким образом, в соответствии с первым аспектом изобретения предложено абсорбирующее изделие, содержащее в качестве абсорбирующего материала нерастворимый в воде алкилсульфонат полисахарида, где полисахарид замещен одним типом алкилсульфоната.
Модифицированные полисахариды изобретения являются исключительно выгодными с точки зрения использования в качестве абсорбирующих материалов в раневых повязках, поскольку они характеризуются превосходными абсорбированием и удерживанием жидкости при одновременном сохранении своей целостности для удаления с раны одним куском без предварительного орошения и при минимальной боли и отсутствии шелушения. Как и в случае карбоксиметилцеллюлозы, абсорбирование жидкости является практически мгновенным, поскольку для придания волокнам способности к гелеобразованию не требуется ионный обмен. Однако нерастворимые в воде алкилсульфонаты полисахаридов настоящего изобретения являются выгодными в сравнении с карбоксиметилцеллюлозой, поскольку изменение значения pH в меньшей степени оказывают воздействие на абсорбционную способность. Раневые повязки, содержащие данные материалы, могут продолжать абсорбировать на хорошем уровне и при низком значении pH.
Во множестве вариантов осуществления абсорбирующих изделий, соответствующих изобретению, нерастворимый в воде алкилсульфонат полисахарида представляет собой единственный присутствующий абсорбирующий материал. Такие варианты осуществления не содержат других абсорбирующих материалов, таких как гидрогели, анионообменные смолы или их комбинации.
Алкилсульфонат полисахарида может быть использован в форме волокон. Волокна могут быть использованы в широком диапазоне длин, например, от нескольких мм, таких как 2 мм или 5 мм, до нескольких десятков мм, например, 100 мм и более. Однако во множестве областей применения волокна имеют длину 20-50 мм. Волокна предпочтительно имеют линейную плотность в диапазоне от 0,1 до 30 децитекс, более предпочтительно приблизительно от 0,5 до 20 децитекс, а наиболее предпочтительно от 0,9 до 3 децитекс.
Под термином «абсорбционная способность» алкилсульфоната полисахарида заявители имеют в виду способность алкилсульфоната полисахарида поглощать жидкость. В предпочтительных вариантах осуществления, в которых волокном является этилсульфонат полисахарида, жидкость абсорбируется во внутренней структуре волокна, и волокно набухает.
Однако, при измерении абсорбционной способности изделия настоящего изобретения (содержащего алкилсульфонат полисахарида) заявители измеряют общую абсорбционную способность изделия по поглощению жидкости, и данная величина будет включать абсорбционную способность, состоящую из непосредственного абсорбирования жидкости индивидуальными волокнами, а также абсорбирования вследствие открытой структуры изделия. Например, жидкости будут проникать в воздушные пространства или межволоконные объемы в промежутках между волокнами. Таким образом, общая абсорбционная способность чувствительна к размерам и взаимосвязи межволоконных объемов в ткани и, таким образом, к способу ее изготовления.
По этой причине волокна могут оказаться подходящими для использования в качестве абсорбирующих материалов вне зависимости от химической природы материала волокна. Даже волоконные материалы, образованные из неабсорбирующих полимеров, могут обладать определенной абсорбционной способностью вследствие проникновения жидкости в межволоконные объемы.
Измерение общей абсорбционной способности изделия представляет собой удобный и эффективный метод определения эффективности изделия в качестве абсорбирующего материала для таких областей применения, как раневые повязки. Тем не менее, в сравнении с абсорбирующими материалами предшествующего уровня техники, преимущества абсорбирующих материалов настоящего изобретения, главным образом обуславливаются химической природой и получающейся в результате абсорбционной способностью используемых материалов, а, в частности, использованием нерастворимого в воде алкилсульфоната полисахарида, в котором проводят замещение полисахарида одним типом алкилсульфоната.
Алкилсульфонат полисахарида может быть алкилсульфонатом целлюлозы, и следующее далее описание изобретения главным образом относится к таким вариантам осуществления изобретения. Однако необходимо понимать, что могут быть использованы и другие полисахариды.
Алкильный фрагмент группы алкилсульфонатного заместителя предпочтительно представляет собой низший алкил, содержащий от 1 до 6 атомов углерода, предпочтительно метил, этил, пропил или бутил. Предпочтительно алкильный фрагмент не замещают какими-либо другими заместителями, например, гидроксильными группами. Алкильный фрагмент может быть разветвленным или неразветвленным, и, таким образом, подходящие пропилсульфонатные заместители могут представлять собой 1- или 2-метилэтилсульфонат. Бутилсульфонатные заместители могут представлять собой 2-этилэтилсульфонат, 2,2-диметилэтилсульфонат или 1,2-диметилэтилсульфонат. Группа алкилсульфонатного заместителя, которая является наиболее предпочтительной, представляет собой этилсульфонат. Настоящее изобретение не предполагает включение алкилсульфонатов целлюлозы, имеющих группу алкилсульфонатного заместителя, которая представляет собой 2-гидроксипропилсульфонат.
Таким образом, один предпочтительный алкилсульфонат целлюлозы настоящего изобретения представляет собой этилсульфонат целлюлозы, где этилсульфонат или одну из его солей присоединяют по одной или нескольким гидроксильным группам у ангидроглюкозных звеньев целлюлозы. Структура одного ангидроглюкозного звена, замещенного одной этилсульфонатной группой, имеет формулу (I)
Формула (I) не предполагает изображения точной химической структуры этилсульфоната целлюлозы, полученного в соответствии с изобретением, поскольку замещение может происходить в любом из гидроксильных положений в макромолекуле целлюлозы, при любом распределении вплоть до максимальной степени замещения, которая возможна.
Средняя степень замещения относится к среднему количеству гидроксильных положений, замещенных группой алкилсульфонатного заместителя, или, говоря другими словами, к среднему количеству молей алкилсульфонатных групп на один моль ангидроглюкозного звена в полимере целлюлозы. В связи с этим максимальная степень замещения составит 3 в случае замещения в ангидроглюкозном звене по всем трем гидроксильным положениям. Степень замещения при замещении в среднем одной гидроксильной группы на одно ангидроглюкозное звено, как это продемонстрировано в формуле (I), составляет 1.
Функциональные свойства алкилсульфонатов целлюлозы настоящего изобретения зависят от степени замещения, длины цепи структуры основной цепи целлюлозы и структуры алкилсульфонатного заместителя. Растворимость и абсорбционная способность в основном зависят от степени замещения: по мере увеличения степени замещения алкилсульфонат целлюлозы становится все более растворимым. Следовательно, по мере увеличения растворимости увеличивается и абсорбционная способность.
Для того чтобы волокна абсорбирующего материала были пригодны для использовании в абсорбирующей усовершенствованной раневой повязке, они предпочтительно должны обладать абсорбционной способностью, равной по меньшей мере 8 грамм на один грамм (г/г) 0,9%-ного солевого раствора согласно измерению по методу, описываемому ниже в примере 1. Волокна предпочтительных алкилсульфонатов целлюлозы настоящего изобретения обладают абсорбционной способностью (в 0,9%-ном солевом растворе), равной по меньшей мере 8 г/г, более предпочтительно по меньшей мере 9 г/г, наиболее предпочтительно по меньшей мере 10 г/г.
Еще один класс повязок для ухода за ранами, которые просто формируют слой неадгезионного контакта с раной и иногда называются сетчатым перевязочным материалом, - не требует наличия такого высокого уровня абсорбционной способности, поскольку они могут быть использованы на ранах, которые характеризуются пониженным уровнем генерации раневого экссудата, или на верхней поверхности контактного слоя используют более абсорбирующий слой. Однако, ключевой признак таких контактных слоев заключается в том, что они не пристают к поверхности раны. Материал ткани, включающий волокна из алкилсульфоната целлюлозы и обладающий абсорбционной способностью ткани, большей, чем 2 г/г, обеспечивает получение повязки с хорошим контактным слоем, поскольку волокна абсорбируют достаточное количество экссудата, таким образом, формируя подвергаемый гелеобразованию материал, образующий неадгезионную поверхность. Таким образом, в еще одном аспекте алкилсульфонаты целлюлозы настоящего изобретения обладают абсорбционной способностью (в 0,9%-ном солевом растворе), большей, чем 2 г/г, 4 г/г или 6 г/г.
Как было установлено, средняя степень замещения предпочтительно должна быть меньшей, чем 0,4 для того, чтобы алкилсульфонат целлюлозы был по существу нерастворим в воде. Под термином «по существу» в данном контексте понимают то, что при воздействии на алкилсульфонат целлюлозы избытком водной среды он не растворяется с образованием раствора, или что растворение является по меньшей мере настолько медленным, что не оказывает какого-либо значительного воздействия на свойства полимера.
Средняя степень замещения предпочтительно является меньшей, чем 0,4, более предпочтительно меньшей, чем 0,3. В некоторых предпочтительных вариантах осуществления изобретения средняя степень замещения алкилсульфоната целлюлозы находится в диапазоне от приблизительно 0,05 до приблизительно 0,4, более предпочтительно от приблизительно 0,1 до приблизительно 0,3.
Алкилсульфонаты целлюлозы, имеющие алкильную группу, содержащую от 2 до 6 атомов углерода, в соответствии с настоящим изобретением могут быть получены в результате проведения реакции между целлюлозой и алкенилсульфонатом или одной из его солей в присутствии основания, предпочтительно гидроксида щелочного металла, либо в водной, либо в неводной среде. Алкилсульфонат целлюлозы, содержащий 1 атом углерода, то есть, метилсульфонат целлюлозы, может быть получен в результате проведения реакции с хлорметансульфоновой кислотой или одной из ее солей в присутствии основания, предпочтительно гидроксида щелочного металла, либо в водной, либо в неводной среде.
Алкализация и алкилсульфонирование (что в данном случае представляет собой стадию этерификации) могут быть проведены в виде одной стадии, на которой основание и алкенилсульфонат или хлорметилсульфонат одновременно добавляют в одну реакционную емкость («однореакторный» способ). В альтернативном варианте, алкализация и алкилсульфонирование могут быть проведены в виде двух раздельных стадий реакции при обработке целлюлозы сначала щелочью, а после этого алкисульфонирующим агентом или алкилсульфонирующим агентом, а после этого щелочью.
Предпочтительно алкализацию и алкилсульфонирование (как в виде одной стадии, так и в виде раздельных стадий реакции) проводят в водной среде. Наиболее предпочтительно алкализацию и алкилсульфонирование проводят в воде. В общем случае предпочитается избегать использования органических растворителей, таких как изопропанол, н-пропанол, бутанол, метанол, этанол, ацетон, диоксан, бензол, толуол, тетрагидрофуран, этиленгликоль и диэтиловый эфир.
Часто желательными являются однореакторные способы, поскольку они могут быть более легкими и быстрыми, а в результате сведения к минимуму количества стадий реакции может быть получен больший выход.
В случае одновременного использования щелочи и алкилсульфонирующего агента в однореакторном способе получения алкилсульфоната целлюлозы настоящего изобретения скорость реакции будет большей по сравнению со скоростью эквивалентной реакции, в которой алкализацию и алкилсульфонирование проводят на раздельных стадиях. Как упоминалось выше, чем большей будет степень замещения, тем большей будет абсорбционная способность материала алкилсульфоната целлюлозы. Таким образом, скорость реакции может быть определена в результате измерения времени, требующегося на реакцию алкилсульфонирования для получения продукта, характеризующегося конкретной степенью абсорбционной способности. На практике нелегко остановить реакцию на конкретном уровне абсорбционной способности. Тем не менее, ясно, что реакция, требующая 90 минут для достижения абсорбционной способности 14,2 г/г, является значительно более быстрой, чем та реакция, которая требует 120 минут для достижения абсорбционной способности, равной всего лишь 9,7 г/г.
Как было продемонстрировано, на скорость реакции также оказывает воздействие количество воды в реакционной смеси. Уменьшение содержания воды в реакционной смеси, в которой алкализацию и алкилсульфонирование проводят одновременно, в результате приводит к значительному увеличению скорости реакции. Уменьшение уровня содержания воды на стадии алкилсульфонирования реакции, при которой алкализацию и алкилсульфонирование проводят раздельно, также увеличивает скорость реакции, но в меньшей степени.
Однореакторный способ также предположительно будет сводить к минимуму воздействие на целлюлозу основания, сохраняя на минимальном уровне щелочное окислительное разложение целлюлозы. Разложение целлюлозы во время переработки необходимо сводить к минимуму в целях обеспечения достаточной прочности модифицированной целлюлозы при использовании в качестве абсорбирующего материала в раневой повязке и доведения до максимума прочности продукта как в сухом состоянии, так и во влажном состоянии.
Однако, как было установлено, прочность волокон, полученных по однореакторному способу, неожиданно оказалось значительно меньше, чем у волокон, полученных в результате проведения алкализации и алкилсульфонирования на раздельных стадиях, и зависит от уровня содержания воды, используемой в реакционной смеси.
В случае использования в реакционной смеси повышенного содержания воды, алкилсульфонаты целлюлозы, полученные по однореакторному способу, характеризуются на удивление низкой прочностью волокна по сравнению с алкилсульфонатами целлюлозы, полученными по аналогичному двухстадийному способу. Волокна являются слишком непрочными для переработки обычными способами переработки нетканого текстиля. В случае уменьшения уровня содержания воды, используемой в реакционной смеси, скорость реакции увеличится, а также до подходящего уровня увеличится и прочность волокна. Однако при реализации на практике требуется определенное количество разбавителя, в частности, при смачивании целлюлозы и обеспечении прохождения равномерной и полной реакции.
В соответствии с одним дополнительным аспектом изобретения предложен способ получения нерастворимого в воде алкилсульфоната целлюлозы, включающий одновременное проведение реакции между целлюлозой и щелочью и алкилсульфонирующим агентом, где единственным растворителем является вода, и где масса воды, присутствующей в реакционной смеси, является меньшей, чем 1070%, предпочтительно меньшей, чем 1050%, предпочтительно меньшей, чем 1030%, в расчете на (сухую) массу целлюлозы. Абсорбционные способности волокна, равные приблизительно 15 г/г, достигались при 1027% воды в расчете на массу сухого вещества.
Масса воды, присутствующей в реакционной смеси, предпочтительно является большей, чем 200%, предпочтительно большей, чем 300%, предпочтительно большей, чем 400%, в расчете на (сухую) массу целлюлозы. Таким образом, масса воды, присутствующей в реакционной смеси, предпочтительно находится в диапазоне от 200 до 1070%, предпочтительно от 300 до 1050%, а более предпочтительно от 400 до 1030%, в расчете на (сухую) массу целлюлозы. Наиболее предпочтительно масса воды, присутствующей в реакционной смеси, составляет приблизительно 1027% в расчете на (сухую) массу целлюлозы.
В соответствии с одним дополнительным аспектом изобретения предложен способ получения нерастворимого в воде алкилсульфоната целлюлозы, который включает раздельные стадии:
(a) обработки целлюлозы щелочью;
(b) проведения реакции между продуктом стадии (a) и алкенилсульфонатом или его солью или хлорметансульфоновой кислотой или ее солью; и
(c) выделения продукта стадии (b);
где единственным растворителем является вода.
Данный двухстадийный способ является чрезвычайно выгодным при уровне содержания воды, используемой на стадии (b), большем, чем 11070% в расчете на (сухую) массу целлюлозы.
В еще одном аспекте настоящего изобретения предложено абсорбирующее изделие, включающее волокна из алкилсульфоната целлюлозы. При полной гидратации абсорбирующее изделие является по существу прозрачным. Это имеет преимущество в области ухода за ранами, поскольку состояние раны может быть определено без удаления повязки.
В еще одном аспекте настоящее изобретение относится к абсорбирующему тканевому изделию, содержащему алкилсульфонат целлюлозы настоящего изобретения, которое армируют армирующим волокном, смешанным или связанным с нерастворимым в воде алкилсульфонатом полисахарида. В особенности выгодным является использование двухкомпонентного волокна со структурой «оболочка/ядро», поскольку материал оболочки плавится при меньшей температуре, чем ядро, таким образом, оставляя после связывания прочную сверхструктуру нерасплавленных ядер. Как неожиданно было установлено в настоящем изобретении, в случае использования для армирования волокон из этилсульфоната целлюлозы термопластичных двухкомпонентных волокон на основе полиолефинов (предпочтительно полипропиленовое ядро/полиэтиленовая оболочка), даже вплоть уровня содержания 20 мас.%, абсорбционная способность получающейся в результате ткани не ухудшится при наличии по существу неабсорбирующего гидрофобного армирующего компонента. Кроме того, использование армирующего волокна, имеющего пониженную линейную плотность, делает возможным уменьшение величины массы волокон, что в результате приводит к повышенной прозрачности абсорбирующего изделия.
В другом аспекте абсорбирующие тканевые изделия, содержащие алкилсульфонат целлюлозы настоящего изобретения, обладают абсорбционной способностью, равной по меньшей мере 15 г/г при использовании испытуемого раствора натрия/кальция, полученного в результате растворения 16,6 г NaCl и 0,74 г дигидрата CaCl в 2 л воды. Абсорбционная способность по существу не ухудшается при использовании армирующего волокна, в то время как прочность во влажном состоянии улучшается. Таким образом, абсорбционная способность композитного продукта, включающего волокна из алкилсульфоната целлюлозы и армирующие волокна, предпочтительно составляет, по меньшей мере, 15, 16, 17, 18, 19 или 20 г/г при использовании испытуемого раствора натрия/кальция. Прочность композитного продукта во влажном состоянии предпочтительно составляет, по меньшей мере, 1, 2, 3, 4, 5 или 6 н/см/100 г на кв. см (где г на кв. см представляет собой граммы на один квадратный сантиметр) при использовании испытуемого раствора натрия/кальция и машины для испытания на растяжение Instron, как это описано в примере 9.
В еще одном аспекте на волокна из алкилсульфоната полисахарида и абсорбирующие изделия настоящего изобретения наносят один или несколько противомикробных агентов. Предпочтительные агенты включают серебро и/или полигексаметиленбигуанид («ПГМБ»). Масса катиона серебра в продукте предпочтительно находится в диапазоне приблизительно от 0,5 до 10 мас.%, предпочтительно приблизительно от 0,5 до 5 мас.%, предпочтительно приблизительно от 1 до 3 мас.%, а еще более предпочтительно приблизительно от 1,5 до 2,0 мас.%. Масса ПГМБ предпочтительно находится в диапазоне приблизительно от 0,1 до 5%, предпочтительно приблизительно от 0,1 до 1 мас.%, а предпочтительно приблизительно от 0,5 до 0,7 мас.%.
Дополнительные аспекты изобретения совместно с относящимися к нему преимуществами и новыми признаками, отчасти будут непосредственно представлены в следующем далее описании, а отчасти станут очевидными для специалистов в соответствующей области техники после рассмотрения нижеследующего описания или могут быть установлены при практической реализации изобретения. Цели и преимущества изобретения могут быть реализованы и достигнуты при использовании средств и комбинаций, конкретно указанных в прилагаемой формуле изобретения.
Краткое описание чертежей
Фиг. 1 демонстрирует абсорбционную способность волокон из этилсульфоната целлюлозы («ЭСЦ») настоящего изобретения в сопоставлении с волокнами из карбоксиметилцеллюлозы («КМЦ»), описываемыми в примере 8.
Осуществление изобретения
Способы получения алкилсульфонатов целлюлозы настоящего изобретения сопоставляли при использовании 47%-ного раствора NaOH, 25%-ного раствора винилсульфоната натрия и различных количеств воды в реакции алкилсульфонирования.
В случае использования воды при уровне содержания большем, чем 1070% в расчете на (сухую) массу целлюлозы, скорость реакции в однореакторном способе была значительно выше, но прочность элементарного волокна у продукта этилсульфоната целлюлозы, полученного по однореакторному способу, была меньшей, чем прочность волокна, полученного по двухстадийному способу с раздельными стадиями алкализации и алкилсульфонирования. Прочность элементарного волокна продукта однореакторного способа была слишком низкой для использования в областях применения раневых повязок.
В однореакторном способе получения нерастворимого в воде алкилсульфоната целлюлозы, включающем одновременное проведение реакции между целлюлозой и щелочью и алкилсульфонирующим агентом, масса воды, присутствующей в реакционной смеси, является меньшей, чем 1070% в расчете на (сухую) массу целлюлозы, предпочтительно меньшей, чем 1050% в расчете на массу целлюлозы, а более предпочтительно меньшей, чем 1030% в расчете на массу целлюлозы.
Уменьшение уровня содержания воды на второй стадии алкилсульфонирования в двухстадийном способе, как было показано, увеличивает скорость реакции. Однако, не всегда практичным является проведение данной стадии реакции при использовании пониженных уровней содержания воды, поскольку по мере уменьшения объема алкилсульфонатного реагента становится все более трудным смачивание целлюлозы. Масса воды, присутствующей в реакционной смеси, является предпочтительно большей, чем 200%, более предпочтительно большей, чем 300%, более предпочтительно большей, чем 400%, в расчете на (сухую) массу целлюлозы. В любом случае при использовании пониженных уровней содержания воды в реакционной смеси предпочтительным является однореакторный способ.
При повышенных уровнях содержания воды наиболее подходящим для использования при получении алкилсульфонатов целлюлозы настоящего изобретения при надлежащей прочности волокна является двухстадийный способ. Предпочтительно масса воды, присутствующей на стадии алкилсульфонирования, является большей, чем 1030% в расчете на (сухую) массу целлюлозы, более предпочтительно большей, чем 1050% в расчете на массу целлюлозы, а наиболее предпочтительно большей, чем 1070% в расчете на массу целлюлозы.
Для возможности использования в настоящем изобретении целлюлоза предпочтительно должна иметь волокнистую природу. Целлюлозные волокна должны характеризоваться высокой степенью кристалличности и наличием полной ориентации для сохранения волокнами достаточной прочности при проведении переработки после дериватизации и для наличия у получающегося в результате материала достаточной прочности в его предполагаемом варианте использования.
В частности, использование щелочи на стадии алкализации может привести к разложению основной цепи целлюлозы, вызывая деструкцию цепи и уменьшение степени полимеризации, что, тем самым приведет к получению волокон, характеризующихся пониженной прочностью после дериватизации. Прочность в сухом состоянии у дериватизированных волокон должна быть достаточной для обеспечения проведения переработки в тканые или нетканые структуры и для достижения пригодности в качестве абсорбирующего материала в раневой повязке, прочность материала во влажном состоянии должна быть достаточной для обеспечения его удаления с места одним куском.
Волокнистые целлюлозы, характеризующиеся высокой степенью кристалличности, которые являются в особенности подходящими для использования в изобретении, включают волокна из хлопка или регенерированной целлюлозы, такие как лиоцелл.
Специалистам в соответствующей области техники должно быть ясно, что для получения абсорбирующего материала изобретения можно сульфонировать дисперсную целлюлозу, такую как волокна волокнистой массы, после этого растворять сульфонированную целлюлозу в подходящем растворителе, таком как растворитель для лиоцелла или ионная жидкость, и формовать сульфонированную целлюлозу в виде волокон или экструдировать сульфонированную целлюлозу в виде пленки или другого экструдированного продукта. Кроме того, в раствор может быть добавлен пенообразователь для получения вспененного абсорбирующего материала.
Целлюлоза может быть подвергнута алкализации в результате обработки сильной щелочью, предпочтительно гидроксидом щелочного металла, таким как гидроксид натрия. Как было установлено, подходящим для использования является 47%-ный раствор гидроксида натрия. В общем случае чем большей будет концентрация щелочи, и чем большей будет температура реакции, тем большей будет скорость реакции. Жесткость условий проведения реакции должна быть сбалансирована потребностью избежать разложения целлюлозного субстрата. Однако, уровень разложения целлюлозы является значительно более низким в сопоставлении с тем, чего можно было бы ожидать при относительно интенсивных условиях проведения реакции, которые требуются для алкализации. Перед переходом ко второй стадии алкилсульфонирования при реализации двухстадийного способа выгодным может оказаться удаление избыточной щелочи, например, в результате механического отжатия волокон, подвергнутых алкализации.
В случае стадии алкилсульфонирования (или стадии этерификации) при участии от 2 до 6 атомов углерода реакция включает нуклеофильное присоединение алкоксидного иона к алкенилсульфонату, говоря конкретно, α-алкенилсульфонату или его соли, α-Алкенилсульфонатом предпочтительно является низший алкенилсульфонат, в котором алкенильный фрагмент содержит от 2 до 6 атомов углерода. Предпочтительно α-алкенилсульфонат представляет собой винилсульфонат, аллилсульфонат (1-пропенилсульфонат), изопропенилсульфонат (1-метилвинилсульфонат), 1-бутенилсульфонат, 1-метилаллилсульфонат (1-метил-1-пропенилсульфонат) или 2-метилаллилсульфонат (2-метил-1-пропенилсульфонат). В одном особенно предпочтительном варианте осуществления α-алкенилсульфонат представляет собой винилсульфонат, более предпочтительно натриевую соль винилсульфоната, и, таким образом, продукт алкилсульфонат целлюлозы представляет собой этилсульфонат целлюлозы.
Натриевая соль винилсульфоната коммерчески доступна в виде приблизительно 30%-ного водного раствора. Она может быть приведена в контакт с целлюлозой или алкализованной целлюлозой способами, известными в современном уровне техники, например, в результате распыления на целлюлозе или перемешивания при использовании перемешивающих устройств. Превращение в алкилсульфонат целлюлозы может происходить при любой температуре, доходящей вплоть до температуры кипения реакционной смеси или сверх того в случае использования системы, работающей под давлением. Скорость реакции увеличивается при проведении операции при повышенной температуре. Предпочтительный диапазон составляет 30-95°C, что обеспечивает достижение подходящей степени замещения за экономичное время. Кроме того, в любое время в ходе всей реакции могут быть введены свежие загрузки реагента. Степень замещения можно контролировать в результате контроля температуры реакции и, в частности, в результате контроля времени реакции.
Винилсульфонат, как полагают, является менее опасным, чем некоторые галогенированные реагенты, в частности, хлорированные реагенты, которые обычно используют для получения абсорбирующих материалов, в настоящее время доступных для использования в продуктах для ухода за ранами. Безусловно хлоруксусная кислота, используемая для изготовления карбоксиметилцеллюлозы, представляет собой потенциально небезопасный алкилирующий агент. Ее использование в ходе производственного способа нежелательно, и сохранение любого количества остаточной хлоруксусной кислоты в абсорбирующем продукте может оказаться вредным по меньшей мере, вызывая раздражение кожи. Использование только одного типа алкилсульфоната демонстрирует потенциальные преимущества также и в отношении безопасности и удаления остаточного реагента по меньшей мере вследствие относительной простоты химической реакции по сравнению с тем, что имеет место для других нерастворимых в воде алкилсульфонатов целлюлозы, которые известны, и которые используют для замещения целлюлозы более, чем одним типом алкилсульфоната.
После прохождения реакции в требуемой степени, реакция может быть прекращена в результате нейтрализации реакционной смеси, то есть, уменьшения значения pH до приблизительно нейтральной величины в результате добавления кислоты. Кислота может быть любой обычной минеральной или органической кислотой, такой как хлористоводородная или уксусная кислота, соответственно. После этого продукт алкилсульфонат целлюлозы может быть промыт для полного удаления побочных продуктов и примесей при использовании ступеней промывания, известных в современном уровне техники. Такие ступени включают промывание водой, органическими жидкостями или их смесями. В особенности подходящими являются смеси низшего спирта и воды. Эффективность промывания может быть улучшена в результате промывания при повышенной температуре. После промывания желательным может оказаться использование технологической добавки, такой как глицерин, что является обычной практикой при получении, например, целлюлозной пленки (целлофана). Этого можно добиться способами, известными в современном уровне техники, такими как окунание, распыление и тому подобное.
В заключение, изделие из дериватизированной целлюлозы должно быть высушено для удаления остаточной жидкости предшествующих стадий. Высушивание может быть проведено способами, известными в современном уровне техники, такими как высушивание с принудительной подачей воздуха, радиационное высушивание и тому подобное.
Абсорбирующие материалы настоящего изобретения демонстрируют мгновенное гелеобразование в водных средах, хорошую абсорбционную способность и, что самое главное, хорошее сохранение абсорбционной способности в кислотной среде. Это делает их идеальными для использования в качестве абсорбирующей раневой повязки или в качестве части абсорбирующей повязки. Они являются в особенности подходящими для использовании в случае ран, характеризующихся уровнями экссудатов в диапазоне от умеренных до высоких, и в случае плоских или полостных ран данного типа. Типичные примеры включают пролежни и язвы на ногах.
Использование абсорбирующих материалов настоящего изобретения не ограничивается продуктами для ухода за ранами, и предположительно они являются подходящими для использования во множестве других областей применения. Их абсорбционные свойства, биоразлагаемость и тот факт, что целлюлоза является возобновляемым материалом, означают, что алкилсульфонаты целлюлозы изобретения являются в особенности желательными для использования также и в секторе средств личной гигиены, в частности, в случае одноразовых гигиенических изделий, таких как памперсы (подгузники), одноразовые пеленки и тренировочные рейтузы, предметы женской гигиены, например, тампоны, гигиенические женские прокладки или салфетки, и прокладочный материал для трусов и изделия для лиц, страдающих недержанием. Простота химической реакции и доступность реагентов делают возможным поддержание стоимости производства таких изделий на выгодном низком уровне.
Возможно использование и в других медицинских изделиях, например, хирургических и стоматологических губках. Материалы также могли бы оказаться подходящими для использования при упаковке, например, в качестве гигроскопических прокладок в контейнерах для продуктов питания.
Алкилсульфонаты целлюлозы настоящего изобретения в соответствии с известными способами могут быть переработаны в широкий ассортимент форм в зависимости от варианта их предполагаемого использования. Способ, которым производное целлюлозы подвергают переработке, оказывает значительное воздействие на свойства конечного продукта, в частности, на прочность, время гелеобразования и абсорбционную способность. Продукты алкилсульфонаты целлюлозы, предпочтительные для использования в изделиях для ухода за ранами, представляют собой иглоскрепленные нетканые материалы из пряжи кардного прочеса.
Алкилсульфонаты целлюлозы могут быть объединены с одним или несколькими армирующими волокнами, как это в общем случае предлагается в патенте США №5981410 автора Hansen, озаглавленном «Cellulose-Binding Fibres»; патенте США №6811716 авторов Stengaard et al., озаглавленном «Polyolefin Fibers and Method for the Production Thereof»; патенте США авторов Jensen et al. №5958806, озаглавленном «Cardable Hydrophobic Polyolefin Fibres Comprising Cationic Spin Finishes»; все они посредством ссылки включены в настоящий документ.Предпочтительными армирующими волокнами являются термопластичные двухкомпонентные волокна, наиболее предпочтительно содержащие полиолефиновый компонент. Таким образом, волокна предпочтительно содержат полиолефинсодержащий полимерный материал, у которого наибольшая часть (в расчете на массу) состоит из гомо- или сополимеров моноолефинов, таких как этилен, пропилен, 1-бутен, 4-метил-1-пентен и тому подобное. Примеры таких полимеров представляют собой изотактический или синдиотактический полипропилен, полиэтилены различных плотностей, такие как полиэтилен высокой плотности (ПЭВП), полиэтилен низкой плотности (ПЭНП) и линейный полиэтилен низкой плотности (ЛПЭНП), и их смеси. Полимерный материал может быть перемешан с другими неполиолефиновыми полимерами, такими как полиамид или сложный полиэфир, при условии, что полиолефины будут составлять наибольшую часть композиции. Расплавы, используемые для получения полиолефинсодержащих волокон, также могут содержать различные обычные добавки к волокнам, такие как стеарат кальция, антиоксиданты, технологические стабилизаторы, компатибилизаторы и пигменты. Способы использования термопластичных двухкомпонентных волокон описываются в документах EP 0740554; EP 0171806; патенте США №5456982 авторов Ejima et al.; патенте США №4189338 автора Davies; патенте США №3511747 автора Davies; и патенте США №3597731 авторов Reitboeck et al., которые посредством ссылки включены в настоящий документ.
Термопластичные двухкомпонентные волокна могут относиться к типу со структурой «оболочка-ядро» при либо эксцентричном (со смещением от центра), либо концентричном (по существу по центру) расположении ядра или к типу со структурой «бок-о-бок», в которой каждый из двух компонентов обычно имеет полукруглое поперечное сечение. Также предусматриваются и двухкомпонентные волокна, имеющие неправильные профили волокон, например, при овальном, эллиптическом, дельтовидном, звездообразном, многодольном или другом неправильном поперечном сечении, а также и расщепляемые волокна. Двухкомпонентные волокна обычно содержат высокоплавкий и низкоплавкий полиолефиновый компонент, который содержит, соответственно, полипропилен/полиэтилен (при этом полиэтилен включает ПЭВП, ПЭНП и/или ЛПЭНП), полиэтилен высокой плотности/линейный полиэтилен низкой плотности, полипропиленовый статистический сополимер/полиэтилен или полипропилен/полипропиленовый статистический сополимер. Предпочтительные термопластичные двухкомпонентные волокна коммерчески доступны в компании Fiber Visions (Афины, Джорджия). Подходящие термопластичные двухкомпонентные волокна составляют 30, 25, 20, 18, 16, 14, 12, 10, 8, 6 или 4 мас.% или любую величину в диапазоне между ними от композитного абсорбирующего изделия. Термопластичные двухкомпонентные волокна предпочтительно имеют линейную плотность в диапазоне от приблизительно 1,7; 1,9; 2,1; 2,3; 2,4; 2,6; 2,8; 3,0; 3,2; 3,4; 3,8; 4,0; 4,2; 4,4; 4,6; 4,8; 5,0 децитекс вплоть до 16,7 децитекс или любой величины в диапазоне между ними. Однако неожиданно было установлено, что в случае включения в абсорбирующее изделие, содержащее алкилсульфонат целлюлозы, волокон высокой плотности (например, при 4,0 децитекс) при высоких уровнях содержания (например, при приблизительно 20%) абсорбционная способность изделия не ухудшается. Кроме того, использование армирующего волокна, имеющего меньшую линейную плотность, делает возможным уменьшение величины массы волокон, что в результате приводит к получению повышенной прозрачности. Таким образом, в одном аспекте термопластичные двухкомпонентные волокна предпочтительно составляют приблизительно от 10 до 30 мас.% (более предпочтительно приблизительно от 10 до 20 мас.%, а еще более предпочтительно приблизительно от 10 до 13 мас.%) от абсорбирующего изделия и имеют линейную плотность в диапазоне приблизительно от 1,7 до 4,0 децитекс (более предпочтительно приблизительно от 1,7 до 1,9 децитекс). Температура, используемая для сплавления волокон друг с другом, обычно находится в диапазоне от 90 до 162°C, предпочтительно приблизительно от 120 до 125°C.
В еще одном аспекте армирующие волокна включают волокна лиоцелл. Данные волокна в общем случае содержат целлюлозу, полученную способом формования волокна из органического растворителя. Предпочтительно волокно лиоцелл формируют из целлюлозных волокон при использовании в качестве растворителей оксидов аминов. В частности, в особенности подходящим растворителем оказался N-метилморфолин-N-оксид («NMNO») совместно с водой (приблизительно 12%). Примеры способов получения волокон лиоцелл описываются в патентах США №№4142913; 4144080; 4211574; 4246221; и 4416698 и других авторов McCorsley et al.. Патент США №5252284 авторов Jurkovic et al. и патент США №5417909 авторов Michels et al. имеют дело с геометрией фильер для формования волокон из целлюлозы, растворенной в NMNO. Патент США №4426228 авторов Brandner et al. представляет собой пример из значительного количества патентов, в которых описывается использование различных соединений в качестве стабилизаторов в целях предотвращения разложения целлюлозы и/или растворителя в нагретом растворе NMNO. Патенты США №№4145532 и 4196282 авторов Franks et al. имеют дело с трудностями растворения целлюлозы в растворителях оксидах аминов и достижения повышенных концентраций целлюлозы. Все данные патенты посредством ссылки включены в настоящий документ. Один продукт лиоцелл, полученный в компании Lenzing, в настоящее время коммерчески доступен под наименованием волокна TENCEL®. Способы включения данных целлюлозных волокон в нетканые структуры для содействия достижению целостности продукта хорошо известны, смотрите, например, документ GB 1207352, который посредством ссылки включен в настоящий документ. В одном аспекте волокна лиоцелл составляют 26, 24, 22, 20, 18, 16, 14, 12, 10, 8, 6 или 4 мас.% или любую величину в диапазоне между ними от композитного абсорбирующего изделия. Волокна лиоцелл предпочтительно имеют линейную плотность в диапазоне от приблизительно 0,7; 0,9; 1,1; 1,3; 1,5; 1,7; 1,9; 2,1; 2,3; 2,4; 2,6; 2,8; 3,0; 3,2; 3,4; 3,8; 4,0; 4,2; 4,4; 4,6; 4,8; 5,0; 10; 15; 20; 25 вплоть до 30 децитекс или любой величины в диапазоне между ними. Как продемонстрировано в приведенных ниже примерах, неожиданно было установлено, что в случае включения в композитное абсорбирующее изделие волокон низкой плотности (например, при приблизительно от 1,2 до 1,6 децитекс) при высоких уровнях содержания (например, при приблизительно от 10 до 30 мас.%, предпочтительно приблизительно от 10 до 20 мас.%) прочность во влажном состоянии улучшится, в то время как абсорбционная способность не ухудшится. В одном особенно предпочтительном варианте осуществления волокна TENCEL® в нетканые материалы из этилсульфоната целлюлозы включают при содержании, находящемся в диапазоне приблизительно от 15 до 20 мас.%, например, равном 20 мас.%.
В еще одном аспекте на алкилсульфонат целлюлозы настоящего изобретения наносят один или несколько противомикробных агентов. Предпочтительные агенты включают серебро и/или полигексаметиленбигуанид («ПГМБ»).
Ниже изобретение будет проиллюстрировано при использовании следующих далее неограничивающих примеров.
Пример 1. Метод определения свободной абсорбционной способности волокон
Волокно разрезали на флок 2-3 мм и 0,5 г резаного волокна размещали в банке с навинчивающейся сверху крышкой объемом 100 мл. Добавляли 50 мл испытуемой жидкости (например, 0,9%-ного солевого раствора, обычно использующегося для моделирования ионной силы раневой жидкости) и банку в течение 30 секунд встряхивали для диспергирования флока. После этого дисперсию отфильтровывали через 47-миллиметровую воронку Бюхнера, снабженную фильтровальной бумагой Whatman №4 диаметром 42,5 мм, при использовании вакуумного насоса с установкой вакуума, большего, чем 0,8 бар, в течение одной минуты. После этого дисперсию волокна удаляли и взвешивали. Свободную абсорбционную способность волокна рассчитывали при использовании следующей далее формулы:
Пример 2. Метод определения предела прочности на разрыв и относительного удлинения для одиночных элементарных волокон
Определение сопротивления разрыву и относительного удлинения при разрыве для сухих одиночных элементарных волокон проводили при использовании машины для испытания на растяжение, оснащенной надлежащими захватами для зажимания одиночных элементарных волокон и динамометрическим датчиком надлежащего диапазона.
Образцы кондиционировали в течение, по меньшей мере, четырех часов и подвергали испытанию в стандартной атмосфере для испытания текстилей (20±2°C и 65±2% относительной влажности).
Машину балансировали и калибровали в соответствии с инструкциями производителя. Элементарные волокна случайным образом отбирали из различных частей образца. Линейную плотность элементарного волокна измеряли по надлежащей методике, такой как метод Vibraskop. После этого элементарное волокно размещали между захватами машины для испытания на растяжение и начинали испытание. Использовали следующие далее условия:
Нормированная длина для испытаний: | 20 мм |
Диапазон нагрузок: | 0-10 сн |
Скорость траверсы: | 10 мм/минута |
Скорость записи диаграммы (где это применимо): | 10-20 мм/минута |
Количество испытаний: | 10 |
После разрушения траверсу возвращали, а оборванные концы элементарного волокна проверяли и удаляли из захватов. Делали примечание, если количество разрывов в захватах превышало 10%.
Разрывную нагрузку (сн) и разрывное удлинение (%) каждого элементарного волокна обычно распечатывали совместно со статистикой. В случае распечатывания индивидуальных разрывных нагрузок результаты по индивидуальному сопротивлению разрыву или среднее сопротивление разрыву рассчитывали вручную следующим образом:
Среднее сопротивление разрыву (сн/текс) = средняя разрывная нагрузка в сн × 10 средняя линейная плотность в дтекс
Пример 3. Получение этилсульфоната целлюлозы при использовании двухстадийного способа
3 г образца пряди лиоцелла, известного под торговым наименованием TENCEL® (изготовленного в компании Lenzing), погружали в водный 47%-ный раствор гидроксида натрия на 25 минут при 25°C. После этого избыточный гидроксид натрия удаляли в результате отжатия. Затем к волокну добавляли 25 мл 30%-ного раствора винилсульфоната натрия (Fluka Chemicals) и в течение 90 минут проводили нагревание при 91°C. По истечении данного периода времени реакционную смесь нейтрализовали до значения pH 7 в результате покапельного добавления ледяной уксусной кислоты. После этого избыточную жидкость отжимали из волокна и волокно дважды промывали в смеси промышленного денатурированного спирта («ПДС») и воды (80: 20 (об./об.)). После высушивания до постоянной массы при 60°C волокно подвергали испытанию на абсорбционную способность.
При использовании метода, обрисованного в примере 1, и водного раствора 0,9% NaCl в качестве испытуемой жидкости добивались величины свободной абсорбционной способности волокна 11,1 г/г.
Пример 4. Получение этилсульфоната целлюлозы при использовании двухстадийного способа (SFM006/69)
2,5 г образца волокна TENCEL® погружали в 47%-ный раствор гидроксида натрия на 30 минут при 20°C, после чего избыточную жидкость удаляли в результате отжатия. На волокно выливали 21 мл винилсульфоната натрия (30%-ного водного раствора). После этого в течение двух часов емкость, содержащую волокно и реагент, нагревали при 83°C, и по истечении данного периода времени образец нейтрализовали в результате покапельного добавления ледяной уксусной кислоты вплоть до достижения значения pH 7. После этого избыточную жидкость отжимали из волокна и волокно дважды промывали в системе ПДС/вода (80:20 (об./об.)) и, в заключение, в 100%-ном ПДС. После высушивания до постоянной массы при 60°C волокно подвергали испытанию на абсорбционную способность в соответствии с методом из примера 1 при использовании 0,9%-ного водного раствора NaCl в качестве испытуемой жидкости. Получали величину свободной абсорбционной способности волокна 9,7 г/г.
Пример 5. Получение этилсульфоната целлюлозы при использовании однореакторного способа и высокого уровня содержания воды
3 г волокна TENCEL® погружали в смесь 10 мл 47%-ного раствора NaOH и 25 мл 30%-ного раствора винилсульфоната натрия и в течение 75 минут проводили нагревание при 83°C. После этого реакционную смесь нейтрализовали в результате добавления уксусной кислоты, после чего волокно удаляли и промывали в смеси ПДС/вода (80:20 (об./об.)) и, в заключение, в 100%-ном ПДС. Высушивание проводили при 60°C.
При использовании метода, обрисованного в примере 1, и водного раствора 0,9% NaCl в качестве испытуемой жидкости для абсорбента добивались величины свободной абсорбционной способности волокна 6,6 г/г.Волокна визуально были менее прочными, чем волокна из примера 6, несмотря на наличие меньшей степени замещения, о чем свидетельствует меньшая величина абсорбционной способности.
Пример 6. Получение этилсульфоната целлюлозы при использовании однореакторного способа и низкого уровня содержания воды (SFM006/145a)
3 г волокна TENCEL® погружали в смесь 13 мл 30%-ного раствора винилсульфоната натрия и 10 мл 47%-ного раствора NaOH и в течение 70 минут проводили нагревание при 83°C. После этого реакционную смесь нейтрализовали в результате добавления уксусной кислоты, после чего волокно удаляли и промывали в смеси ПДС/вода (80: 20 (об./об.)) и, в заключение, в 100%-ном ПДС. Высушивание проводили при 60°C.
При использовании метода, обрисованного в примере 1, и водного раствора 0,9% NaCl в качестве испытуемой жидкости добивались величины свободной абсорбционной способности волокна 11,9 г/г.
Пример 7. Сравнительное испытание на абсорбционную способность для недериватизированной целлюлозы
Волокно TENCEL® из той же самой партии, что и использовавшаяся в качестве исходного материала для примеров 3 и 4, подвергали испытанию на абсорбционную способность, обрисованному в примере 1, при использовании 0,9%-ного водного раствора NaCl в качестве испытуемой жидкости для абсорбента. Получали величину свободной абсорбционной способности волокна 0,9 г/г.
Пример 8. Сопоставление абсорбционной способности при низком значении pH для волокон из этилсульфоната целлюлозы настоящего изобретения и волокон из карбоксиметилцеллюлозы предшествующего уровня техники
Абсорбционную способность волокон из карбоксиметилцеллюлозы (КМЦ), полученных в соответствии с положениями документа EP 0616650, измеряли в соответствии с методом из примера 1 при использовании 0,9%-ного солевого раствора в качестве жидкости для абсорбирования. После этого значение pH солевого раствора последовательно уменьшали в результате добавления 37%-ного раствора HCl и абсорбционную способность измеряли еще раз при каждом значении pH.
Волокна из этилсульфоната целлюлозы получали в соответствии с настоящим изобретением из волокна лиоцелл и их абсорбционную способность измеряли тем же самым образом в диапазоне значений pH.
Результаты графически продемонстрированы на фиг. 1. Ясно то, что волокно из этилсульфоната целлюлозы изобретения сохраняло значительно больше своей абсорбционной способности при низком значении pH, где лечение раны, как представляется, улучшается.
Пример 9. Ткань из этилсульфоната целлюлозы, армированная при использовании 20 мас.% двухкомпонентного волокна при 4,0 децитекс
В данном примере волокно из этилсульфоната целлюлозы, полученное в соответствии с настоящим изобретением, разрезали на штапельное волокно по 50 мм и перемешивали с 20%-ной массовой долей со штапельным двухкомпонентным волокном при 4,0 децитекс и 40 мм (ES-LOWMELT™, изготовленным в компании Fiber Visions) при использовании кардочесальной машины для образца. Получающееся в результате полотно подвергали иглоскреплению, а после этого термоскреплению в результате нагревания в печи с рециркуляцией, выставленной на 125°C, в течение 10 минут. Сравнительную ткань из этилсульфоната целлюлозы, не включающую армирующего волокна, изготавливали подобным образом без проведения стадии термоскрепления.
Прочность во влажном состоянии измеряли в результате отрезания от ткани образцов для испытаний с размерами 2,5 см в ширину × 10 см в длину. Образец устанавливали в машине для испытания на растяжение Instron 3343 при получении расчетной длины образца 5 см. После этого образец смачивали при использовании 2,5 мл раствора A (раствора натрия/кальция), оставляли в покое на одну минуту, а затем подвергали испытанию при 100 мм/мин. Раствор A натрия/кальция получали в результате растворения 16,6 г NaCl и 0,74 г дигидрата CaCl в 2 л воды.
Прозрачность измеряли субъективно в результате размещения под подвергнутым гелеобразованию (гидратированным в 0,9%-ном солевом растворе) образцом отпечатанного типографского жирного шрифта Times New Roman с размером шрифта 12 и субъективного определения балльной оценки прозрачности в диапазоне от 0 (полная непрозрачность, типографский шрифт не виден) до 10 (полная прозрачность, неискаженный типографский шрифт).
Абсорбционную способность измеряли в результате взвешивания квадрата материала образца (W1) с размерами 5 см × 5 см. После этого образец на 30 минут размещали в чашке Петри в растворе A при 37°C. Затем квадрат из чашки Петри поднимали, держа квадрат за один угол, и в течение 30 секунд жидкости давали возможность стечь с образца. После этого образец повторно взвешивали для получения конечной массы (W2). Абсорбционная способность ткани выражается через величину (W2-W1)/W1.
Пример 10. Ткань из этилсульфоната целлюлозы, армированная при использовании 10 мас.% двухкомпонентного волокна при 1,7 децитекс
Ткань из этилсульфоната целлюлозы, полученную в соответствии с настоящим изобретением и содержащую 10 мас.% штапельного двухкомпонентного волокна при 1,7 децитекс и 40 мм (ES-CURE™, изготовленного в компании Fiber Visions), изготавливали по способу, подобному тому, что и в примере 9, за исключением проведения стадии термоскрепления при 135°C вследствие более высокоплавкого компонента оболочки. Ткань, содержащую 10% ES-LOW MELT™ при 4,0 децитекс, получали также, как и в примере 9. Следующая далее таблица демонстрирует результаты:
Пример 11. Ткань из этилсульфоната целлюлозы, армированная при использовании 20 мас.% лиоцелл при 1,4 децитекс
В данном примере в нетканые материалы из этилсульфоната целлюлозы включали волокна TENCEL® при уровне содержания 20 мас.%. Как было установлено, прочность во влажном состоянии значительно улучшается, в то время как абсорбционная способность немного ухудшается. Волокно из этилсульфоната целлюлозы, соответствующее настоящему изобретению, разрезали на штапельное волокно по 50 мм и перемешивали с 20%-ной массовой долей со штапельным волокном TENCEL® при 1,4 децитекс и 50 мм (изготовленным в компании Lenzing AG) при использовании кардочесальной машины для образца. Получающееся в результате полотно подвергали иглоскреплению. Следующая далее таблица демонстрирует результаты:
Прочность, прозрачность и абсорбционную способность ткани определяли так, как это представлено в примере 9.
Пример 12. Способ для смеси с волокном из альгината серебра
В данном примере описывается смесь волокон из альгината серебра с волокнами из этилсульфоната целлюлозы при использовании методик, в общем случае предложенных в документе WO 02/24240, который посредством ссылки включается в настоящий документ.
Волокна из альгината кальция, содержащие приблизительно 24 мас.% серебра, изготавливали в результате погружения волокон из альгината кальция в смесь вода/ацетон/нитрат серебра с последующим промыванием в системе ацетон/вода, а, в заключение, в ацетоне перед высушиванием волокон при 50°C. Данные волокна разрезали на штапельное волокно по 50 мм и перемешивали со штапельными волокнами из этилсульфоната целлюлозы в таком соотношении, чтобы получить приблизительно 1,5% серебра в расчете на массу повязки, после этого смесь подвергали кардочесанию и иглоскреплению для получения иглопробивной ткани при приблизительно 100 г на кв. см. После продолжительного воздействия света ткань имела беловатую окраску.
В одном испытании на противомикробную эффективность поверхности, известном под наименованием Qualiscreen, повязка была признана противомикробной, то есть, ингибирующей образование более, чем 99,9% дочерних клеток (метициллин-устойчивых Staphylococcus aureus).
Пример 13. ПГМБ-этилсульфонат целлюлозы
В данном примере по способу распыления, обрисованному в примере 12, получали ткань из этилсульфоната целлюлозы с введенным ПГМБ при использовании 20%-ного водного раствора ПГМБ для введения в повязку 0,6 мас.% ПМГБ. Образец повязки подвергали «испытанию молоком». Повязка оставалась противомикробной в течение 72 часов, в то время как контрольный образец становился заселенным микроорганизмами по истечении 24 часов.
Пример 14. Повязка с неприлипающим контактным слоем при низком уровне содержания геля
Волокна из этилсульфоната целлюлозы при абсорбционной способности волокна 4,7 г/г согласно измерению по методу из примера 1 разрезали на штапельное волокно по 50 мм, после этого подвергали кардочесанию и иглоскреплению для получения волокна. Абсорбционную способность данной ткани измеряли в результате взвешивания квадрата материала образца (W1) с размерами 5 см × 5 см. После этого образец на 30 минут размещали в чашке Петри в растворе A (растворе натрия/кальция) при 37°C. Затем квадрат из чашки Петри поднимали, держа квадрат за один угол, и в течение 30 секунд жидкости давали возможность стечь с образца, после этого образец повторно взвешивали (W2). Абсорбционная способность ткани выражается через величину (W2-W1)/W1.
Прочность во влажном состоянии измеряли в результате отрезания от ткани образцов для испытаний с размерами 2,5 см в ширину × 10 см в длину. Образец устанавливали в машине для испытания на растяжение Instron 3343 при получении расчетной длины образца 5 см. После этого образец смачивали при использовании 2,5 мл раствора A (раствора натрия/кальция), оставляли в покое на одну минуту, а затем подвергали испытанию при 100 мм/мин.
Для сопоставления использовали высокоабсорбирующую ткань из примера 11, полученную из волокон из этилсульфоната целлюлозы при свободной абсорбционной способности волокна 12,9 г/г. Результаты по абсорбционной способности и пределу прочности при растяжении продемонстрированы в приведенной ниже таблице:
Таблица 5 | ||
Прочность (н/см/100 г на кв. см) | Абсорбционная способность ткани (г/г) | |
Ткань из этилсульфоната целлюлозы с неприлипающим контактным слоем при низком уровне содержания геля | 1,32 | 16,8 |
Высокоабсорбирующая ткань из этилсульфоната целлюлозы (пример 11) - без армирования | 0,4 | 19,4 |
Как можно видеть, в случае ткани с контактным слоем абсорбционная способность ухудшается, но прочность во влажном состоянии значительно улучшается. Кроме того, ткань с контактным слоем создавала ощущение скольжения, предполагая низкий уровень прилипания к коже.
Пример 15. Этилсульфонат хитозана
3 г волокна из хитозана погружали в 40 мл 47%-ного раствора NaOH на 25 минут при 25°C, после чего избыточную жидкость удаляли в результате отжатия. На волокно выливали 25 мл винилсульфоната (30%-ного водного раствора) и в течение 120 минут проводили нагревание при 83°C. После этого образец нейтрализовали в результате добавления уксусной кислоты, затем промывали в последовательных смесях ПДС/вода (80/20 (об./об.)) и, в заключение, в 100%-ном ПДС. После высушивания до постоянной массы при 60°C волокно подвергали испытанию на абсорбционную способность по методу, обрисованному в примере 1, при использовании 0,9%-ного солевого раствора. Получали величину 3,7 г/г.
Предположительно абсорбционная способность может быть улучшена при определенной оптимизации условий проведения реакции. Например, в результате увеличения концентрации раствора NaOH и/или использования повышенной концентрации винилсульфоната (например, 35%-ного водного раствора).
Как можно видеть из вышеизложенного, данное изобретение является изобретением, хорошо адаптированным для достижения всех целей и задач, а также других преимуществ, которые являются очевидными, и которые присущи изобретению. Поскольку без отклонения от объема изобретения может быть создано множество его возможных вариантов осуществления, необходимо понимать то, что весь материал, представленный в настоящем документе или продемонстрированный на прилагаемом чертеже, должен интерпретироваться в иллюстративном, а не в ограничительном смысле. Несмотря на демонстрацию и обсуждение конкретных вариантов осуществления, само собой разумеется, могут быть сделаны и различные модификации, и изобретение не ограничивается конкретными формами или компоновкой частей и стадий, описанных в настоящем документе, за исключением ограничений, включенных в следующую далее формулу изобретения. Кроме того необходимо понимать то, что определенные признаки и подкомбинации являются применимыми и могут быть использованы без ссылки на другие признаки и подкомбинации. Это поддерживается объемом формулы изобретения и определяет объем охраны.
Claims (12)
1. Абсорбирующее изделие, содержащее в качестве абсорбирующего материала волокна нерастворимого в воде алкилсульфоната целлюлозы, который замещен одним типом алкилсульфоната, где алкил представляет собой С1-С6, и волокна набухают при абсорбции жидкости, причем абсорбирующее изделие не содержит гидрогеля.
2. Изделие по п. 1, где алкилсульфонатный фрагмент представляет собой этилсульфонат, 1-метилэтилсульфонат или 2-метилэтилсульфонат.
3. Изделие по п. 2, где алкилсульфонатный фрагмент представляет собой этилсульфонат.
4. Изделие по любому из пп. 1-3, где абсорбирующий материал дополнительно включает армирующее волокно, смешанное или связанное с упомянутым нерастворимым в воде алкилсульфонатом целлюлозы.
5. Изделие по п. 4, где армирующее волокно включает термопластичное двухкомпонентное волокно, которое термически связано с упомянутым алкилсульфонатом целлюлозы.
6. Изделие по п. 5, где термопластичное двухкомпонентное волокно включает волокно типа «оболочка-ядро», содержащее по меньшей мере два полиолефина.
7. Изделие по п. 6, где упомянутое термопластичное двухкомпонентное волокно составляет от 10 до 30 мас. % от абсорбирующего материала и имеет линейную плотность в диапазоне от 1,7 до 16,7 децитекс.
8. Изделие по п. 4, где упомянутое армирующее волокно включает волокно лиоцелл.
9. Изделие по п. 8, где упомянутое волокно лиоцелл составляет от 10 до 30 мас. % от абсорбирующего материала и имеет линейную плотность в диапазоне от 0,7 до 30 децитекс.
10. Изделие по п. 1, которое дополнительно содержит противомикробный агент.
11. Изделие по п. 10, где упомянутый противомикробный агент выбран из серебра или полигексаметиленбигуанида.
12. Применение набухающих при абсорбции жидкости волокон нерастворимого в воде алкилсульфоната целлюлозы, в котором целлюлоза замещена одним типом алкилсульфоната, где алкил представляет собой С1-С6, в качестве абсорбирующего материала.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0821675A GB0821675D0 (en) | 2008-11-27 | 2008-11-27 | Absorbent material |
GB0821675.6 | 2008-11-27 | ||
EP08171355.4 | 2008-12-11 | ||
EP08171355A EP2196224A1 (en) | 2008-12-11 | 2008-12-11 | Absorbent material |
US12/574,322 US9221963B2 (en) | 2008-11-27 | 2009-10-06 | Absorbent material |
US12/574,322 | 2009-10-06 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011126177/15A Division RU2011126177A (ru) | 2008-11-27 | 2009-11-27 | Абсорбирующий материал |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2014122324A RU2014122324A (ru) | 2015-12-10 |
RU2669557C2 true RU2669557C2 (ru) | 2018-10-12 |
Family
ID=42224337
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011126177/15A RU2011126177A (ru) | 2008-11-27 | 2009-11-27 | Абсорбирующий материал |
RU2014122324A RU2669557C2 (ru) | 2008-11-27 | 2014-06-02 | Абсорбирующий материал |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011126177/15A RU2011126177A (ru) | 2008-11-27 | 2009-11-27 | Абсорбирующий материал |
Country Status (13)
Country | Link |
---|---|
US (2) | US9221963B2 (ru) |
EP (1) | EP2376132B1 (ru) |
JP (1) | JP5581328B2 (ru) |
KR (1) | KR101679440B1 (ru) |
CN (2) | CN102292112B (ru) |
AU (1) | AU2009321305B2 (ru) |
BR (1) | BRPI0920905B1 (ru) |
CA (1) | CA2744465C (ru) |
IL (1) | IL213067A (ru) |
RU (2) | RU2011126177A (ru) |
SG (1) | SG10201406075RA (ru) |
WO (1) | WO2010061225A2 (ru) |
ZA (1) | ZA201103830B (ru) |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0525504D0 (en) | 2005-12-14 | 2006-01-25 | Bristol Myers Squibb Co | Antimicrobial composition |
KR101070358B1 (ko) | 2009-12-24 | 2011-10-05 | 한국생산기술연구원 | 의료용 부직포 및 그의 제조방법 |
CN102462860A (zh) * | 2010-11-10 | 2012-05-23 | 广东百合医疗科技有限公司 | 一种具有抗菌作用的纤维类伤口敷料及其制备方法 |
GB201020236D0 (en) | 2010-11-30 | 2011-01-12 | Convatec Technologies Inc | A composition for detecting biofilms on viable tissues |
CN102743786B (zh) | 2011-04-20 | 2015-03-18 | 佛山市优特医疗科技有限公司 | 具有抑菌性和吸湿性的伤口敷料 |
KR101798060B1 (ko) | 2011-06-03 | 2017-11-15 | 삼성전자주식회사 | 수술 장치 |
GB201109991D0 (en) * | 2011-06-14 | 2011-07-27 | Lantor Uk Ltd | Process and device |
GB201209745D0 (en) | 2012-05-31 | 2012-07-18 | Convatec Technologies Inc | Wound dressing |
GB2506653B (en) * | 2012-10-05 | 2017-09-27 | Speciality Fibres And Mat Ltd | Absorbent materials |
JP2016507663A (ja) | 2012-12-20 | 2016-03-10 | コンバテック・テクノロジーズ・インコーポレイテッドConvatec Technologies Inc | 化学修飾セルロース系繊維の加工 |
CN103074699A (zh) * | 2012-12-28 | 2013-05-01 | 佛山市优特医疗科技有限公司 | 化学改性的海丝纤维、由其制成的伤口敷料及其制备方法 |
US11001944B2 (en) * | 2013-06-12 | 2021-05-11 | Kimberly-Clark Worldwide, Inc. | Porous polyolefin fibers |
CN103755817B (zh) * | 2013-12-11 | 2016-08-17 | 江苏科技大学 | 一种纳米微晶纤维素的制备方法 |
JP2020503131A (ja) * | 2016-12-28 | 2020-01-30 | シスタジェニックス ウンド マネージメント,リミテッドSystagenix Wound Management,Limited | 抗菌性創傷被覆材 |
WO2018184050A1 (en) | 2017-04-03 | 2018-10-11 | Lenzing Ag | A nonwoven web designed for use in a wound care product |
GB201800057D0 (en) | 2018-01-03 | 2018-02-14 | Smith & Nephew Inc | Component Positioning And stress Relief For Sensor Enabled Wound Dressings |
AU2018269113A1 (en) | 2017-05-15 | 2019-11-21 | Smith & Nephew Plc | Negative pressure wound therapy system using eulerian video magnification |
EP3635732A1 (en) | 2017-05-15 | 2020-04-15 | Smith & Nephew plc | Wound analysis device and method |
CN110753512A (zh) | 2017-06-23 | 2020-02-04 | 史密夫及内修公开有限公司 | 实施传感器的伤口监测或治疗的传感器定位 |
GB201809007D0 (en) | 2018-06-01 | 2018-07-18 | Smith & Nephew | Restriction of sensor-monitored region for sensor-enabled wound dressings |
GB201803496D0 (en) | 2018-03-05 | 2018-04-18 | Smith & Nephew | Skewing pads for impedance measurement |
GB201804502D0 (en) | 2018-03-21 | 2018-05-02 | Smith & Nephew | Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings |
SG11202000913XA (en) | 2017-08-10 | 2020-02-27 | Smith & Nephew | Positioning of sensors for sensor enabled wound monitoring or therapy |
US11759144B2 (en) | 2017-09-10 | 2023-09-19 | Smith & Nephew Plc | Systems and methods for inspection of encapsulation and components in sensor equipped wound dressings |
GB201804971D0 (en) | 2018-03-28 | 2018-05-09 | Smith & Nephew | Electrostatic discharge protection for sensors in wound therapy |
EP3687380A1 (en) | 2017-09-27 | 2020-08-05 | Smith & Nephew plc | Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses |
WO2019072531A1 (en) | 2017-09-28 | 2019-04-18 | Smith & Nephew Plc | NEUROSTIMULATION AND MONITORING USING A SENSOR ACTIVATED WOUND SURVEILLANCE AND TREATMENT APPARATUS |
GB201718851D0 (en) | 2017-11-15 | 2017-12-27 | Smith & Nephew | Flocked conformable circuit boards for sensor enabled wound therapy dressings and systems |
CN108498842B (zh) * | 2018-05-15 | 2021-01-05 | 唐山市博世德医疗器械有限公司 | 一种用于体外创伤护理的医用敷料及其制备方法 |
GB201809914D0 (en) | 2018-06-18 | 2018-08-01 | Smith & Nephew | Foot Loading Monitoring Apparatus |
GB201814011D0 (en) | 2018-08-29 | 2018-10-10 | Smith & Nephew | Componet positioning and encapsulation for sensor enabled wound dressings |
GB2592508B (en) | 2018-09-12 | 2022-08-31 | Smith & Nephew | Device, apparatus and method of determining skin perfusion pressure |
GB2592502B (en) | 2018-09-28 | 2023-03-22 | Smith & Nephew | Optical fibers for optically sensing through wound dressings |
GB201816838D0 (en) | 2018-10-16 | 2018-11-28 | Smith & Nephew | Systems and method for applying biocompatible encapsulation to sensor enabled wound monitoring and therapy dressings |
US20210338486A1 (en) | 2018-10-18 | 2021-11-04 | T.J.Smith And Nephew,Limited | Tissue treatment device |
GB201817052D0 (en) | 2018-10-19 | 2018-12-05 | Smith & Nephew | Tissue treatment device |
US11584111B2 (en) | 2018-11-05 | 2023-02-21 | Windmoeller & Hoelscher Kg | Breathable thermoplastic film with reduced shrinkage |
GB201818824D0 (en) | 2018-11-19 | 2019-01-02 | Smith & Nephew | Absorbent yarn |
GB201818829D0 (en) | 2018-11-19 | 2019-01-02 | Smith & Nephew | Absorbent component |
GB201818811D0 (en) | 2018-11-19 | 2019-01-02 | Smith & Nephew | Method of immobilising a protein on a substrate |
GB201901242D0 (en) | 2019-01-30 | 2019-03-20 | Smith & Nephew | Optical sensing systems and methods for sensing enabled wound dressings and systems |
GB2611914B (en) | 2019-01-30 | 2023-09-20 | Smith & Nephew | Sensor integrated dressings and systems |
GB2614490B (en) | 2019-03-18 | 2023-12-06 | Smith & Nephew | Design rules for sensor integrated substrates |
US20220151506A1 (en) | 2019-03-19 | 2022-05-19 | Smith & Nephew Plc | Systems and methods for measuring tissue impedance |
GB201909947D0 (en) | 2019-07-11 | 2019-08-28 | Smith & Nephew | Sensor sheet with digital distributed data acquisition for wound monitoring and treatment |
GB201912071D0 (en) | 2019-08-22 | 2019-10-09 | Smith & Nephew | Wound dressing |
GB201912076D0 (en) | 2019-08-22 | 2019-10-09 | Smith & Nephew | Absorbent component |
GB201914443D0 (en) | 2019-10-07 | 2019-11-20 | Smith & Nephew | Sensor enabled negative pressure wound monitoring apparatus with different impedances inks |
GB201915248D0 (en) | 2019-10-22 | 2019-12-04 | Smith & Nephew | Pressure injury prevention and treatment using redirection in a virtual reality, augmented reality, or mixed reality environment |
EP4076181A1 (en) | 2019-12-16 | 2022-10-26 | T.J.Smith and Nephew,Limited | Monitoring and therapy devices and methods of using same |
GB201918856D0 (en) | 2019-12-19 | 2020-02-05 | Smith & Nephew | Sensor integrated dressings and systems |
GB202003203D0 (en) | 2020-03-05 | 2020-04-22 | Smith & Nephew | Sensor integrated dressings and systems |
GB202003586D0 (en) | 2020-03-12 | 2020-04-29 | Smith & Nephew | Device, apparatus and method of determining skin perfusion pressure |
GB202005867D0 (en) | 2020-04-22 | 2020-06-03 | Smith & Nephew | Tissue treatment device |
GB202100527D0 (en) | 2021-01-15 | 2021-03-03 | Smith & Nephew | Systems and methods for managing operation of wound dressings or wound treatment devices |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0210756A2 (en) * | 1985-06-28 | 1987-02-04 | The Procter & Gamble Company | Absorbent structures and disposable absorbent products containing them |
US5278304A (en) * | 1991-04-27 | 1994-01-11 | Bayer Aktiengesellschaft | Water-soluble sulfoethyl cellulose ethers of very high solution quality and a process for their production |
RU2260471C1 (ru) * | 2001-08-24 | 2005-09-20 | Вейерхойзер Компани | Сверхабсорбирующий полимер |
US20060142477A1 (en) * | 2004-12-29 | 2006-06-29 | Glasser Wolfgang G | Method for making sulfoalkylated cellulose polymer network |
Family Cites Families (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2580352A (en) | 1949-03-31 | 1951-12-25 | Hercules Powder Co Ltd | Preparation of sulfoethyl ethers of polysaccharides |
US2811519A (en) | 1954-02-05 | 1957-10-29 | Eastman Kodak Co | Mixed cellulose ethers and their preparation |
GB769799A (en) | 1954-08-30 | 1957-03-13 | Permachem Corp | Improvements in or relating to articles treated so as to have microbicidal properties |
GB813900A (en) | 1956-11-09 | 1959-05-27 | Mo Och Domsjoe Ab | Sulphomethylcelluloses |
GB1073183A (en) | 1963-02-05 | 1967-06-21 | Ici Ltd | Leather-like materials |
DD53043A (ru) | 1963-03-01 | 1900-01-01 | ||
GB1207352A (en) | 1967-10-16 | 1970-09-30 | David Torr | Disposable absorbent products |
US4200557A (en) | 1973-12-07 | 1980-04-29 | Personal Products Company | Absorbent product including grafted insolubilized cellulose ether |
CA1045127A (en) | 1975-05-27 | 1978-12-26 | Robert F. Schwenker (Jr.) | Absorbent cellulosic product |
US4783448A (en) | 1983-06-07 | 1988-11-08 | Perstorp Ab | Method for cleansing an infected sore |
DE3408131A1 (de) * | 1984-03-06 | 1985-09-12 | Chemiefaser Lenzing Ag, Lenzing | Desodorierendes und mikrobistatisches fasermaterial |
EP0171806A3 (en) | 1984-08-16 | 1987-06-16 | Chicopee | An entangled nonwoven fabric including bicomponent fibers and the method of making same |
EP0172437B1 (de) * | 1984-08-18 | 1989-09-06 | Akzo Patente GmbH | Dialysemembran aus modifizierter Cellulose mit verbesserter Biokompatibilität |
US4834735A (en) * | 1986-07-18 | 1989-05-30 | The Proctor & Gamble Company | High density absorbent members having lower density and lower basis weight acquisition zones |
DE3742104A1 (de) | 1987-12-11 | 1989-06-22 | Wolff Walsrode Ag | Sulfoethylcellulose mit hervorragender loesungsqualitaet und verfahren zu ihrer herstellung |
DK245488D0 (da) | 1988-05-05 | 1988-05-05 | Danaklon As | Syntetisk fiber samt fremgangsmaade til fremstilling deraf |
US5252340A (en) | 1989-12-14 | 1993-10-12 | Isolyser Company, Inc. | Method of producing an absorbent composition |
JPH04117401A (ja) | 1990-09-07 | 1992-04-17 | Dic Hercules Chem Inc | スルフォン化キトサンの製造法 |
GB9126193D0 (en) | 1991-12-10 | 1992-02-12 | Courtaulds Plc | Cellulosic fibres |
US5681300A (en) * | 1991-12-17 | 1997-10-28 | The Procter & Gamble Company | Absorbent article having blended absorbent core |
CA2126441C (en) | 1991-12-30 | 1999-12-21 | David F. Erkoboni | Microcrystalline cellulose spheronization composition |
DE4243281A1 (de) | 1992-12-21 | 1994-06-23 | Wolff Walsrode Ag | Hochsubstituierte Sulfoalkylcellulosederivate, insbesondere Sulfoethylcelluloseether, Verfahren zu deren Herstellung und deren Verwendung als Verdickungsmittel für Textildruckfarbpasten |
WO1994016746A1 (en) | 1993-01-22 | 1994-08-04 | Courtaulds Plc | Wound dressings |
GB9400994D0 (en) | 1994-01-20 | 1994-03-16 | Bristol Myers Squibb Co | Wound dressing |
ES2126794T3 (es) | 1994-01-29 | 1999-04-01 | Dystar Textilfarben Gmbh & Co | Fibras sinteticas celulosicas aminadas. |
US5522967A (en) | 1994-05-27 | 1996-06-04 | Kimberly-Clark Corporation | Sulfonated cellulose and method of preparation |
DE19519025C1 (de) | 1995-05-24 | 1996-12-05 | Hoechst Ag | Hochgradig mit Alkylsulfonsäureresten veretherte Stärke |
US5703225A (en) | 1995-12-13 | 1997-12-30 | Kimberly-Clark Worldwide, Inc. | Sulfonated cellulose having improved absorbent properties |
DE19628617A1 (de) | 1996-07-16 | 1998-01-22 | Basf Ag | Direkttablettierhilfsmittel |
US7601145B2 (en) * | 1997-03-27 | 2009-10-13 | The Procter & Gamble Company | Disposable absorbent articles having multiple absorbent core components including replaceable components |
US7670324B2 (en) * | 1997-03-27 | 2010-03-02 | The Procter And Gamble Company | Disposable absorbent articles with replaceable absorbent core components having regions of permeability and impermeability on same surface |
US5981410A (en) * | 1997-04-08 | 1999-11-09 | Fibervisions A/S | Cellulose-binding fibres |
AU746901B2 (en) * | 1997-11-13 | 2002-05-02 | Procter & Gamble Company, The | Highly efficient absorbent article for use with menstrual pant |
US6605751B1 (en) | 1997-11-14 | 2003-08-12 | Acrymed | Silver-containing compositions, devices and methods for making |
US6562742B2 (en) * | 1999-01-11 | 2003-05-13 | Bki Holding Corporation | High-performance absorbent structure |
US6716895B1 (en) | 1999-12-15 | 2004-04-06 | C.R. Bard, Inc. | Polymer compositions containing colloids of silver salts |
WO2001052911A2 (en) | 2000-01-19 | 2001-07-26 | Weyerhaeuser Company | Superabsorbent cellulosic fiber |
US6444214B1 (en) * | 2000-05-04 | 2002-09-03 | Kimberly-Clark Worldwide, Inc. | Ion-sensitive, water-dispersible polymers, a method of making same and items using same |
GB2370226A (en) | 2000-09-21 | 2002-06-26 | Acordis Speciality Fibres Ltd | Wound dressing |
AU1993702A (en) | 2000-11-29 | 2002-06-11 | Bristol Myers Squibb Co | Light stabilized antimicrobial materials |
HUP0303178A3 (en) | 2001-02-05 | 2008-03-28 | R P Scherer Technologies | Methods and compositions for reducing the taste of pharmaceutically active agents |
US20050058683A1 (en) * | 2003-09-12 | 2005-03-17 | Levy Ruth L. | Absorbent articles with antimicrobial zones on coverstock |
US20050283004A1 (en) | 2004-06-18 | 2005-12-22 | Hopax Chemicals Manufacturing Co., Ltd. | Alkylsulfonated polyaminosaccharides |
US20050288647A1 (en) * | 2004-06-29 | 2005-12-29 | Ellingson Alissa R | Topographical composite liners |
US9289378B2 (en) | 2004-09-20 | 2016-03-22 | Avent, Inc. | Antimicrobial amorphous compositions |
US20060142560A1 (en) | 2004-12-29 | 2006-06-29 | Glasser Wolfgang G | Sulfoalkylated cellulose |
US20060142484A1 (en) | 2004-12-29 | 2006-06-29 | Glasser Wolfgang G | Sulfoalkylated cellulose polymer network |
JP2010507676A (ja) | 2006-10-27 | 2010-03-11 | エフ エム シー コーポレーション | 乾式顆粒化結合剤、生成物およびその使用 |
US20080147026A1 (en) | 2006-12-15 | 2008-06-19 | Jian Qin | Absorbent fiber with a low absorbent capacity and slow absorption rate |
JP2009018260A (ja) | 2007-07-12 | 2009-01-29 | Toyota Motor Corp | プラズマ励起ガス洗浄方法及びプラズマ励起ガス洗浄装置 |
US20090259157A1 (en) * | 2008-04-14 | 2009-10-15 | Tom Thomas | Method for imparting antimicrobial characteristics to hydrophilic fabrics |
-
2009
- 2009-10-06 US US12/574,322 patent/US9221963B2/en active Active
- 2009-11-27 AU AU2009321305A patent/AU2009321305B2/en active Active
- 2009-11-27 BR BRPI0920905A patent/BRPI0920905B1/pt active IP Right Grant
- 2009-11-27 CN CN200980155341.3A patent/CN102292112B/zh active Active
- 2009-11-27 CN CN201410851404.1A patent/CN104623717A/zh not_active Withdrawn
- 2009-11-27 SG SG10201406075RA patent/SG10201406075RA/en unknown
- 2009-11-27 KR KR1020117014776A patent/KR101679440B1/ko active IP Right Grant
- 2009-11-27 CA CA2744465A patent/CA2744465C/en active Active
- 2009-11-27 WO PCT/GB2009/051608 patent/WO2010061225A2/en active Application Filing
- 2009-11-27 JP JP2011538056A patent/JP5581328B2/ja active Active
- 2009-11-27 RU RU2011126177/15A patent/RU2011126177A/ru not_active Application Discontinuation
- 2009-11-27 EP EP09760290.8A patent/EP2376132B1/en active Active
-
2011
- 2011-05-23 IL IL213067A patent/IL213067A/en active IP Right Grant
- 2011-05-25 ZA ZA2011/03830A patent/ZA201103830B/en unknown
-
2014
- 2014-06-02 RU RU2014122324A patent/RU2669557C2/ru active
-
2015
- 2015-11-16 US US14/941,906 patent/US20160114074A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0210756A2 (en) * | 1985-06-28 | 1987-02-04 | The Procter & Gamble Company | Absorbent structures and disposable absorbent products containing them |
US5278304A (en) * | 1991-04-27 | 1994-01-11 | Bayer Aktiengesellschaft | Water-soluble sulfoethyl cellulose ethers of very high solution quality and a process for their production |
RU2260471C1 (ru) * | 2001-08-24 | 2005-09-20 | Вейерхойзер Компани | Сверхабсорбирующий полимер |
US20060142477A1 (en) * | 2004-12-29 | 2006-06-29 | Glasser Wolfgang G | Method for making sulfoalkylated cellulose polymer network |
Also Published As
Publication number | Publication date |
---|---|
AU2009321305B2 (en) | 2015-10-29 |
SG10201406075RA (en) | 2014-11-27 |
CA2744465A1 (en) | 2010-06-03 |
ZA201103830B (en) | 2016-08-31 |
AU2009321305A1 (en) | 2010-06-03 |
US20100129633A1 (en) | 2010-05-27 |
KR101679440B1 (ko) | 2016-11-24 |
US20160114074A1 (en) | 2016-04-28 |
BRPI0920905B1 (pt) | 2018-10-30 |
CN104623717A (zh) | 2015-05-20 |
EP2376132B1 (en) | 2019-02-27 |
JP5581328B2 (ja) | 2014-08-27 |
WO2010061225A3 (en) | 2010-08-12 |
BRPI0920905A2 (pt) | 2017-05-30 |
IL213067A (en) | 2016-11-30 |
IL213067A0 (en) | 2011-07-31 |
US9221963B2 (en) | 2015-12-29 |
JP2012509731A (ja) | 2012-04-26 |
RU2014122324A (ru) | 2015-12-10 |
CN102292112A (zh) | 2011-12-21 |
WO2010061225A2 (en) | 2010-06-03 |
CN102292112B (zh) | 2015-06-10 |
KR20110110134A (ko) | 2011-10-06 |
RU2011126177A (ru) | 2013-01-10 |
CA2744465C (en) | 2017-09-19 |
EP2376132A2 (en) | 2011-10-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2669557C2 (ru) | Абсорбирующий материал | |
KR100320636B1 (ko) | 환부보호대 | |
JP4499669B2 (ja) | 外傷包帯 | |
JP5612551B2 (ja) | 傷手当用品及びその製造並びにその使用に適切な材料の製造 | |
US20050058694A1 (en) | Wound care device | |
CN104768584A (zh) | 吸收材料 | |
US9144625B2 (en) | Cellulose ethylsulfonate-based absorbent material | |
AU2017218300B2 (en) | Sheet for covering wound | |
EP2196224A1 (en) | Absorbent material | |
AU2015203676A1 (en) | Absorbent Material | |
CN109925532A (zh) | 一种复合止血防粘连敷料及其制备方法和应用 | |
EP2663687A1 (en) | Process for the manufacture of a dressing and dressing obtained | |
US20150246154A1 (en) | Process and dressing | |
WO2012152877A1 (en) | Process and dressing |