RU2669271C1 - Углеродные нанотрубки и способ получения углеродных нанотрубок - Google Patents

Углеродные нанотрубки и способ получения углеродных нанотрубок Download PDF

Info

Publication number
RU2669271C1
RU2669271C1 RU2017118180A RU2017118180A RU2669271C1 RU 2669271 C1 RU2669271 C1 RU 2669271C1 RU 2017118180 A RU2017118180 A RU 2017118180A RU 2017118180 A RU2017118180 A RU 2017118180A RU 2669271 C1 RU2669271 C1 RU 2669271C1
Authority
RU
Russia
Prior art keywords
carbon nanotubes
cnts
functional groups
oxidized
grafted
Prior art date
Application number
RU2017118180A
Other languages
English (en)
Inventor
Александр Николаевич Красновский
Петр Сергеевич Кищук
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технологический университет "СТАНКИН" (ФГБОУ ВО "МГТУ "СТАНКИН")
Priority to RU2017118180A priority Critical patent/RU2669271C1/ru
Application granted granted Critical
Publication of RU2669271C1 publication Critical patent/RU2669271C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B1/008Nanostructures not provided for in groups B82B1/001 - B82B1/007
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • B82B3/0095Manufacture or treatments or nanostructures not provided for in groups B82B3/0009 - B82B3/009
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Изобретение относится к нанотехнологии и может быть использовано при изготовлении полимерных композитов. Углеродные нанотрубки окисляют смесью азотной и серной кислот с образованием карбоксильных функциональных групп, ковалентно связанных с их поверхностью. Затем углеродные нанотрубки с окисленной поверхностью дополнительно обрабатывают сначала оксидом пятивалентного фосфора, а затем аммиаком в избытке при 250-280°С. Получают углеродные нанотрубки, модифицированные имидными функциональными группами с замещающим радикал атомом водорода, привитыми к их поверхности, которые могут быть использованы в качестве наномодификатора эпоксидных полимерных матриц, повышающих такие механические свойства, как прочность на растяжение, модуль упругости, относительное удлинение. 2 н.п. ф-лы, 1 табл.

Description

Изобретение относится к технологии углеродных наноматериалов, конкретно к технологии получения композиций, содержащих углеродные нанотрубки, диспергируемые в полимерных матрицах.
Углеродные нанотрубки (УНТ) вследствие высокой поверхностной энергии и большого отношения длины к диаметру склонны к образованию агломератов между собой и неравномерному распределению в полимерной матрице, с которой они образуют слабые Ван-дер-Ваальсовые связи. Это препятствует образованию устойчивых дисперсий УНТ в воде и в органических средах, включая полимеры, и снижает эффект наномодифицирования полимерных композиционных материалов. Для получения стабильных дисперсий УНТ в полимерной матрице применяют различные способы модифицирования нанотрубок.
Из уровня техники известны дисперсии УНТ в воде, содержащие УНТ и то или иное поверхностно-активное вещество (анионное, катионное или неионогенное) в качестве вещества, стабилизирующего дисперсию (см., например, Chen L., Xie Н., Li Y., Yu W. Applications of cationic gemini surfactant in preparing multi-walled carbon nanotube contained nanofluids // Colloids and Surfaces A: Physicochem. Eng. Aspects 330 (2008) 176-179; Rastogi R., Kaushal R., Tripathi S.K., Sharma A.L., Kaur I., Bharadwaj L.M. Comparative study of carbon nanotube dispersion using surfactants // Journal of Colloid and Interface Science 328 (2008) 421-428; Vaisman L., Wagner H.D., Marom G. The role of surfactants in dispersion of carbon nanotubes // Advances in Colloid and Interface Science 128-130 (2006) 37-46; Заявка США 20060099135, Углеродные нанотрубки высокой дисперсии твердых тел и их нематические гели, МПК D01F 9/12, 2006).
Общим для УНТ этой группы является наличие в их составе стабилизирующего вещества.
Недостатком этих дисперсий является то, что, как правило, поверхностно-активные вещества не работают в органических растворителях, что не позволяет получить стабильные дисперсии УНТ в органических растворителях. Кроме того, эти дисперсии, вследствие содержания поверхностно-активных веществ (ПАВ), не могут быть непосредственно введены в состав композиционных материалов, потому ПАВ в данном случае представляют собой балластные вещества, которые зачастую ухудшают свойства композиционного материала. Кроме того, при введении водных дисперсий УНТ, стабилизированных ПАВ, в органические системы, как правило, происходит коагуляция углеродных нанотрубок потому, что известные ПАВ не могут быть одинаково эффективными в воде и в органической среде.
Для того чтобы углеродные нанотрубки можно было вводить в различные органические и неорганические среды (воду, различные растворители, полимеры), не меняя существенно имеющиеся технологические линии, желательно создать заранее подготовленные УНТ, которые можно было бы вводить в органические системы при простом смешивании без применения ультразвука или иных методов, требующих применения сложного оборудования.
Из уровня техники известны УНТ, поверхность которых содержит привитые окисные группы (гидроксильные, карбоксильные). Получение таких УНТ с поверхностными оксидными группами осуществляется путем обработки УНТ различными окислителями в жидкой или газовой фазе: в жидкой фазе -азотной кислотой, смесью азотной и серной кислот, смесью перекиси водорода с серной кислотой, персульфатом аммония в нейтральной или аммиачной среде, перманганатом калия в кислой среде; в газовой фазе - парами азотной кислоты, диоксидом азота, озоном, кислородом) (Горский С.Ю., Разработка процесса функционализации углеродных нанотрубок в парах азотной кислоты и перекисиводорода, Диссертация на соискание ученой степени кандидата технических наук, ФГБОУ ВПО «Тамбовский государственный технический университет, Тамбов, 2014, с. 24-32). Из приведенных в источнике наиболее близким техническим решением - прототипом - являются углеродные нанотрубки, включающие функционализированную поверхность, атомы углерода кристаллической решетки которой ковалентно связаны с химически привитыми карбоксильными функциональными группами. Получение таких УНТ с функционализированной поверхностью сводится к окислению углеродных нанотрубок смесью азотной и серной кислот с образованием на поверхности углеродных нанотрубок карбоксильных функциональных групп (Горский С.Ю., Разработка процесса функционализации углеродных нанотрубок в парах азотной кислоты и перекисиводорода, Диссертация на соискание ученой степени кандидата технических наук, ФГБОУ ВПО «Тамбовский государственный технический университет, Тамбов, 2014, с. 27).
Благодаря наличию полярных окисных групп окисленные УНТ лучше смачиваются водой и полярными органическими растворителями, благодаря чему дисперсии обработанных таким образом УНТ в воде или полярных органических растворителях стабильны даже в отсутствие ПАВ. Как правило, эти дисперсии достаточно стабильны в щелочной и слабощелочной среде и нестабильны в нейтральной и кислой среде, потому что в щелочной среде поверхностные карбоксильные группы диссоциируют, вследствие чего на углеродных нанотрубках появляется отрицательный заряд, препятствующий их коагуляции.
Недостатком известных УНТ является их малая концентрация, обычно не более 0,01-0,1%, выше которой дисперсия становится неустойчивой. Это вынуждает при создании композиционных материалов вводить, а затем удалять большое количество балластного растворителя. Кроме того, наблюдается слабая адгезия таких УНТ к эпоксидным матрицам, что является причиной невысоких эксплуатационных/прочностных характеристик модифицированного такими УНТ композиционного материала.
Изобретение направлено на решение задачи получения функционализированных углеродных нанотрубок, имеющих высокое сродство к эпоксидным полимерным матрицам за счет улучшения диспергируемости УНТ и повышения их адгезии к эпоксидным матрицам.
Технический результат - повышение эксплуатационных свойств углеродных нанотрубок в качестве наномодификатора.
Поставленная задача решается, а заявленный технический результат достигается тем, что в функционализированных углеродных нанотрубках атомы углерода кристаллической решетки ковалентно связаны с химически привитыми функциональными группами, в качестве функциональных привиты имидные группы с замещающим радикал атомом водорода, при этом в способе получения функционализированных углеродных нанотрубок, включающем окисление углеродных нанотрубок смесью азотной и серной кислот с образованием на поверхности углеродных нанотрубок карбоксильных функциональных групп, углеродные нанотрубки с окисленной поверхностью дополнительно обрабатывают сначала оксидом пятивалентного фосфора, а затем аммиаком в избытке при температуре в диапазоне от 250°С до 280°С.
Изобретение основано на следующем.
Имидная группа с замещающим радикал атомом водорода проявляет следующие свойства. В аминогруппе NH атом азота ковалентно соединен с атомом водорода, который способен образовать дополнительную связь с атомом кислорода, входящим в состав эпоксигруппы в эпоксидной смоле, образующей матрицу, при этом аминогруппы способны раскрыть эпоксидную группу, образовав ковалентную связь со стенками нанотрубки.
Кислород имидной группы обусловливает химическое и электростатическое взаимодействие нанотрубок с полимерными матрицами, повышает электрические и механические свойства нанотрубок.
Очевидно, что функционализированные таким образом нанотрубки совмещают в себе свойства амидных и кислородосодержащих групп. Вышесказанное объясняет улучшение диспергируемости УНТ и повышение их адгезии к полимерным, в том числе - к эпоксидным, матрицам, что находит подтверждение в нижеприведенной таблице.
Способ получения вышеописанных функционализированных углеродных нанотрубок осуществляется следующим образом.
Углеродные нанотрубки окисляются кислотами (аналогично прототипу, дополнительных пояснений не требуется). В результате образуются углеродные нанотрубки, содержащие на своей поверхности карбоксильные группы (I).
Figure 00000001
Затем окисленные УНТ вступают в реакцию с оксидом пятивалентного фосфора (реакция протекает в нормальных условиях при обычном смешивании компонентов) с образованием O=С-O-С=O группы на поверхности углеродной нанотрубки (II).
Figure 00000002
Далее УНТ вступают в реакцию с аммиаком в избытке (определение химической реакции в избытке/недостатке общеизвестно, например, https://www.tutoronline.ru/blog/kolichestvennye-raschety-v-himii-izbytok-i-nedostatok-reagentov-prakticheskij-vyhod-produkta-massovaja-dolja-vewestva-v-smesi) при соблюдении температурного интервала от 250°С до 280°С. В результате на поверхности УНТ образуются имидные группы (III).
Figure 00000003
При температурном режиме ниже 250°С и/или недостаточности аммиака реакция III завершается получением на поверхности УНТ карбоксильных и амидных групп (IV).
Figure 00000004
Такая структура не проявляет заявленного технического результата, крайне не стабильна и, вследствие сказанного, нежелательна.
При превышении 280°С в III происходит деструкция УНТ.
Пример осуществления способа получения углеродных нанотрубок.
Углеродные нанотрубки (многостенные) помещаются в раствор кислоты и выдерживаются в течение 10 часов. Такое время выбрано вследствие того, что это наиболее оптимальная продолжительность окисления, при котором не будет происходить значительной деструкции стенок нанотрубки.
После этого углеродные нанотрубки отфильтровываются, высушиваются до постоянной массы и выдерживаются при температуре 100°С (температура повышена до 100°С в целях ускорении реакции) в течение 1 часа в присутствии оксида пятивалентного фосфора. Затем нанотрубки отфильтровываются до нейтральной среды, высушивается до постоянной массы, и реагируют с аммиаком в газовой фазе (обусловлена применяемым температурным режимом) при температуре 250-280°С в течение двух часов.
Полученные УНТ с заданной структурой сравнивались с прототипом путем диспергирования тех и других УНТ в эпоксидной матрице для получения эпоксинанокомпозитов с последующим измерением физико-механических свойств полученных образцов. Данные приведены в Таблице.
Figure 00000005
Из представленной таблицы следует, что физико-механические свойства образца с заявленными УНТ, равно как и допустимый процент содержания УНТ в матрице без коагуляции выше чем в прототипе, что свидетельствует о том, что поставленная задача изобретения - получение функционализированных углеродных нанотрубок, имеющих высокое сродство к эпоксидным полимерным матрицам за счет создания ковалентных и водородных связей и обладающих высокой диспергируемостью УНТ в эпоксидных матрицах - решена, а заявленный технический результат - повышение эксплуатационных свойств углеродных нанотрубок в качестве наномодификатора - достигнут.
Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в независимых пунктах формулы изобретения признаки являются существенными и взаимосвязаны между собой с образованием устойчивых совокупностей неизвестных на дату приоритета из уровня техники необходимых признаков, достаточных для получения требуемого синергетического (сверхсуммарного) технического результата.
Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:
- объекты, воплощающие заявленное техническое решение, при их осуществлении относятся к технологии углеродных наноматериалов, конкретно к технологии получения композиций, содержащих углеродные нанотрубки, диспергируемые в полимерных матрицах;
- для заявленных объекта в том виде, как он охарактеризован в независимых пунктах формулы изобретения, подтверждена возможность его осуществления с помощью вышеописанных в материалах заявки и известных из уровня техники на дату приоритета средств и методов;
- объекты, воплощающие заявленное техническое решение, при их осуществлении способны обеспечить достижение усматриваемого заявителем технического результата.
Следовательно, заявленные объекты соответствуют требованиям условиям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

Claims (2)

1. Углеродные нанотрубки, включающие функционализированную поверхность, атомы углерода кристаллической решетки которой ковалентно связаны с химически привитыми функциональными группами, отличающиеся тем, что в качестве функциональных привиты имидные группы с замещающим радикал атомом водорода.
2. Способ получения углеродных нанотрубок, включающий окисление углеродных нанотрубок смесью азотной и серной кислот с образованием на поверхности углеродных нанотрубок карбоксильных функциональных групп, отличающийся тем, что углеродные нанотрубки с окисленной поверхностью дополнительно обрабатывают сначала оксидом пятивалентного фосфора, а затем аммиаком в избытке при температуре в диапазоне от 250°C до 280°C.
RU2017118180A 2017-05-25 2017-05-25 Углеродные нанотрубки и способ получения углеродных нанотрубок RU2669271C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017118180A RU2669271C1 (ru) 2017-05-25 2017-05-25 Углеродные нанотрубки и способ получения углеродных нанотрубок

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017118180A RU2669271C1 (ru) 2017-05-25 2017-05-25 Углеродные нанотрубки и способ получения углеродных нанотрубок

Publications (1)

Publication Number Publication Date
RU2669271C1 true RU2669271C1 (ru) 2018-10-09

Family

ID=63798348

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017118180A RU2669271C1 (ru) 2017-05-25 2017-05-25 Углеродные нанотрубки и способ получения углеродных нанотрубок

Country Status (1)

Country Link
RU (1) RU2669271C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687447C1 (ru) * 2018-12-26 2019-05-13 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ "ИНСТИТУТ ХИМИЧЕСКИХ РЕАКТИВОВ И ОСОБО ЧИСТЫХ ХИМИЧЕСКИХ ВЕЩЕСТВ НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО ЦЕНТРА "КУРЧАТОВСКИЙ ИНСТИТУТ" (НИЦ "Курчатовский институт - ИРЕА") Способ получения легированных йодом углеродных нанотрубок

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853877A (en) * 1996-05-31 1998-12-29 Hyperion Catalysis International, Inc. Method for disentangling hollow carbon microfibers, electrically conductive transparent carbon microfibers aggregation film amd coating for forming such film
US20060099135A1 (en) * 2002-09-10 2006-05-11 Yodh Arjun G Carbon nanotubes: high solids dispersions and nematic gels thereof
CN103257176A (zh) * 2013-05-23 2013-08-21 西北师范大学 基于硫堇功能化的碳纳米管的传感器同时检测苯二酚三种同分异构体的方法
WO2015108486A1 (en) * 2014-01-14 2015-07-23 Nanyang Technological University Nanocomposite, electrode containing the nanocomposite, and method of making the nanocomposite
RU2593875C2 (ru) * 2014-07-03 2016-08-10 Рябых Виктор Владимирович Способ получения углеродных наноструктур, модифицированных металлом, лигатура для композиционных материалов на основе алюминия или алюминиевого сплава и способ ее получения

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853877A (en) * 1996-05-31 1998-12-29 Hyperion Catalysis International, Inc. Method for disentangling hollow carbon microfibers, electrically conductive transparent carbon microfibers aggregation film amd coating for forming such film
US20060099135A1 (en) * 2002-09-10 2006-05-11 Yodh Arjun G Carbon nanotubes: high solids dispersions and nematic gels thereof
CN103257176A (zh) * 2013-05-23 2013-08-21 西北师范大学 基于硫堇功能化的碳纳米管的传感器同时检测苯二酚三种同分异构体的方法
WO2015108486A1 (en) * 2014-01-14 2015-07-23 Nanyang Technological University Nanocomposite, electrode containing the nanocomposite, and method of making the nanocomposite
RU2593875C2 (ru) * 2014-07-03 2016-08-10 Рябых Виктор Владимирович Способ получения углеродных наноструктур, модифицированных металлом, лигатура для композиционных материалов на основе алюминия или алюминиевого сплава и способ ее получения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГОРСКИЙ С.Ю. Разработка процесса функционализации углеродных нанотрубок в парах азотной кислоты и перекиси водорода. Диссертация на соискание учёной степени кандидата технических наук, Тамбов, 2014, с.с. 24-32. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2687447C1 (ru) * 2018-12-26 2019-05-13 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ "ИНСТИТУТ ХИМИЧЕСКИХ РЕАКТИВОВ И ОСОБО ЧИСТЫХ ХИМИЧЕСКИХ ВЕЩЕСТВ НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО ЦЕНТРА "КУРЧАТОВСКИЙ ИНСТИТУТ" (НИЦ "Курчатовский институт - ИРЕА") Способ получения легированных йодом углеродных нанотрубок

Similar Documents

Publication Publication Date Title
Špitalský et al. Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites
Liang et al. Multi-walled carbon nanotubes functionalized with a ultrahigh fraction of carboxyl and hydroxyl groups by ultrasound-assisted oxidation
Salavagione Promising alternative routes for graphene production and functionalization
Poutrel et al. Effect of pre and post-dispersion on electro-thermo-mechanical properties of a graphene enhanced epoxy
WO2014135455A1 (en) Concentrated water dispersion of graphene and method for the preparation thereof
KR20120123108A (ko) 디번들링된 나노튜브들의 분산 및 회수
JP2009242209A (ja) 有機化グラファイト材料の製造方法
Li et al. A new and acid-exclusive method for dispersing carbon multi-walled nanotubes in aqueous suspensions
Kuznetsov et al. Detonation nanodiamonds dispersed in polydimethylsiloxane as a novel electrorheological fluid: Effect of nanodiamonds surface
Huang et al. A multifunctional carbon nanotube reinforced nanocomposite modified via soy protein isolate: A study on dispersion, electrical and mechanical properties
RU2669271C1 (ru) Углеродные нанотрубки и способ получения углеродных нанотрубок
Zhang et al. Enhanced mechanical properties of ammonia-modified graphene nanosheets/epoxy nanocomposites
Bian et al. HDPE composites strengthened–toughened synergistically by l‐aspartic acid functionalized graphene/carbon nanotubes hybrid nanomaterials
Zhang et al. The critical contribution of oxidation debris on the acidic properties of graphene oxide in an aqueous solution
Sabri et al. Dispersion and stability of multiwalled carbon nanotubes (MWCNTs) in different solvents
US20100197832A1 (en) Isolated nanotubes and polymer nanocomposites
JP6755020B2 (ja) 表面修飾ナノダイヤモンド、前記表面修飾ナノダイヤモンドを含む分散液及び複合材料
Kim et al. Crucial role of oxidation debris of carbon nanotubes in subsequent end-use applications of carbon nanotubes
Sydlik Effects of graphene and carbon nanotube fillers on the shear properties of epoxy
KR101300606B1 (ko) 기계적 특성 및 물성이 우수한 탄소나노튜브/폴리올레핀 복합재료의 제조방법
Li et al. Facile and controllable assembly of multiwalled carbon nanotubes on polystyrene microspheres
JP6651185B2 (ja) 無機粒子複合体およびその製造方法、並びに無機粒子複合体分散液
Ahmed et al. Controlled surface modification of CNTs using mild acids through powerful sonication technique
Bagheri et al. New procedure for preparation of highly stable and well separated carbon nanotubes in an aqueous modified polyacrylonitrile
KR20080088271A (ko) 탄소나노튜브/구리 나노복합재 분말을 제조하는 방법