RU2667691C1 - Способ диагностирования неисправности и система диагностирования неисправности - Google Patents

Способ диагностирования неисправности и система диагностирования неисправности Download PDF

Info

Publication number
RU2667691C1
RU2667691C1 RU2017132000A RU2017132000A RU2667691C1 RU 2667691 C1 RU2667691 C1 RU 2667691C1 RU 2017132000 A RU2017132000 A RU 2017132000A RU 2017132000 A RU2017132000 A RU 2017132000A RU 2667691 C1 RU2667691 C1 RU 2667691C1
Authority
RU
Russia
Prior art keywords
value
malfunction
state
simulation model
mahalanobis distance
Prior art date
Application number
RU2017132000A
Other languages
English (en)
Inventor
Хацуо МОРИ
Нориеси МИДЗУКОСИ
Такаси ОГАИ
Юсуке МАРУ
Такаюки Ямамото
Синсуке ТАКЕУТИ
Сатоси НОНАКА
Цуйоси ЯГИСИТА
Original Assignee
АйЭйчАй КОРПОРЕЙШН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by АйЭйчАй КОРПОРЕЙШН filed Critical АйЭйчАй КОРПОРЕЙШН
Application granted granted Critical
Publication of RU2667691C1 publication Critical patent/RU2667691C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/52Protection, safety or emergency devices; Survival aids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/02Details or accessories of testing apparatus
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0243Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults model based detection method, e.g. first-principles knowledge model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Computational Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Emergency Medicine (AREA)
  • Software Systems (AREA)
  • Evolutionary Biology (AREA)
  • Databases & Information Systems (AREA)
  • Critical Care (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Algebra (AREA)
  • Geometry (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Изобретение относится к системам диагностики. В способе диагностирования неисправности диагностируют неисправность объекта наблюдения, имеющего рабочее состояние, включающее в себя неустойчивое состояние. Способ также содержит этап генерирования имитационной модели объекта наблюдения. На этапе измерения измеряют величину внутреннего состояния в рабочем состоянии объекта наблюдения и извлекают измеренное значение. На этапе предсказания вводят в имитационную модель аналогичное входное значение управления, используемое в рабочем состоянии объекта наблюдения, и вычисляют предсказанное значение величины внутреннего состояния объекта наблюдения. На этапе вычисления расстояния Махаланобиса вычисляют расстояние Махаланобиса из разности между измеренным значением и предсказанным значением. Далее диагностируют неисправность на основе расстояния Махаланобиса. Диагностируется неисправность в устойчивом и неустойчивом состоянии. 2 н. и 5 з.п. ф-лы, 5 ил.

Description

Область техники
[0001] Настоящее раскрытие относится к способу диагностирования неисправности и системе диагностирования неисправности. В частности, настоящее раскрытие относится к способу диагностирования неисправности и системе диагностирования неисправности, подходящей для обнаружения неисправности в неустойчивом состоянии, которое изменяется динамически.
Уровень техники
[0002] В области различных установок, таких как газотурбинная силовая установка, ядерная силовая установка, теплосиловая установка, и в области двигателя внутреннего сгорания, такого как реактивный двигатель, диагностирование неисправности установки или двигателя выполняется посредством наблюдения за их рабочим состоянием (включающим в себя пробную работу) для реализации стабильной работы и выходной мощности.
[0003] Например, в патентной литературе 1 раскрыта система наблюдения, в которой может быть автоматизирована серия из процессов от наблюдения за указанием неисправности объекта наблюдения до устранения неисправности. Эта система наблюдения включает в себя блок наблюдения, который получает предопределенные данные объекта наблюдения из объекта наблюдения, вычисляет их расстояние Махаланобиса и обнаруживает неисправность в объекте наблюдения, блок обработки данных, который генерирует предопределенный входной сигнал, посредством извлечения неисправного сигнала, указывающего на указание о неисправности, и связанного сигнала, который связан с данными объекта наблюдения, и блок диагностирования сбоев в работе, который выполняет устранение неисправности в отношении объекта наблюдения на основе входного сигнала.
[0004] Патентная литература 2 раскрывает устройство диагностирования неисправности, которое диагностирует неисправность установки посредством сравнения значений множества переменных, вновь вводимых из установки, с предопределенным пространством единиц. Это устройство диагностирования неисправности включает в себя блок хранения накопленных данных, который хранит в себе накопленные данные, включающие в себя значение каждой из переменных, введенных в прошлом, блок принятия решения, который для каждой из переменных извлекает максимальное значение и минимальное значение в пределах предопределенного периода накопленных данных и назначает центральное значение из них в качестве срединного значения, первый блок вычисления, который вычисляет разность между значением, вновь введенным для каждой из переменных, и срединным значением, второй блок вычисления, который вычисляет расстояние Махаланобиса посредством использования вычисленной разности для каждой из переменных и данных предопределенного пространства единиц, и блок определения, который диагностирует неисправность посредством определения, находится ли расстояние Махаланобиса в пределах порогового диапазона, установленного заранее.
Список библиографических ссылок
Патентная литература
[0005] Патентная литература 1: выложенная заявка на патент Японии № 2011-090382
Патентная литература 2: выложенная заявка на патент Японии № 2014-035282
Сущность изобретения
Техническая проблема
[0006] Объект наблюдения, такой как установка или двигатель внутреннего сгорания, в общем, имеет устойчивое состояние, которое является стабильным рабочим состоянием, и неустойчивое состояние, которое является переходным нестабильным рабочим состоянием до того, как объект наблюдения достигает устойчивого состояния. В неустойчивом состоянии один и тот же объект наблюдения ведет себя по-разному в зависимости от окружающих условий, рабочих условий и подобного в данный момент времени, и почти никогда не показывает одинаковых динамических изменений.
[0007] В системе наблюдения, раскрытой в патентной литературе 1, посредством вычисления расстояния Махаланобиса данных объекта наблюдения, входной сигнал, используемый при устранении неисправности, генерируется из неисправного сигнала, указывающего на указание о неисправности, и связанного сигнала. Однако чтобы определить, имеется ли неисправность или указание о неисправности после вычисления расстояния Махаланобиса данных объекта наблюдения, необходимо заранее подготовить справочные данные. В случае устойчивого состояния, поскольку рабочее состояние и состояние вывода являются стабильными, можно подготовить справочные данные. Однако, в случае неустойчивого состояния, которое изменяется динамически, справочные данные не могут быть сгенерированы только из данных объекта наблюдения, так что диагностирование неисправности не может быть выполнено.
[0008] Также в устройстве диагностирования неисправности, раскрытом в патентной литературе 2, поскольку расстояние Махаланобиса вычисляется посредством использования накопленных данных из прошлого, подобно патентной литературе 1, хотя диагностирование неисправности может быть выполнено для устойчивого состояния посредством сравнения их с прошлыми данными, диагностирование неисправности не может быть выполнено для неустойчивого состояния.
[0009] Это раскрытие было сделано ввиду вышеприведенного обсуждения. Одной из целей настоящего раскрытия является обеспечение способа диагностирования неисправности и системы диагностирования неисправности, которая может выполнять диагностирование неисправности не только в устойчивом состоянии объекта наблюдения, но также и в неустойчивом состоянии.
Решение проблемы
[0010] Первый аспект настоящего раскрытия представляет собой способ диагностирования неисправности, в котором диагностируют неисправность объекта наблюдения, имеющего рабочее состояние, которое включает в себя неустойчивое состояние, причем способ включает в себя: этап генерирования модели, на котором генерируют имитационную модель объекта наблюдения; этап измерения, на котором измеряют величину внутреннего состояния в рабочем состоянии объекта наблюдения и извлекают измеренное значение; этап предсказания, на котором вводят в имитационную модель аналогичное входное значение управления, используемое в рабочем состоянии объекта наблюдения, и вычисляют предсказанное значение величины внутреннего состояния объекта наблюдения; этап вычисления расстояния Махаланобиса, на котором вычисляют расстояние Махаланобиса из разности между измеренным значением и предсказанным значением; и этап диагностирования неисправности, на котором диагностируют на основе расстояния Махаланобиса, является ли рабочее состояние объекта наблюдения неисправным.
[0011] Этап вычисления расстояния Махаланобиса может включать в себя вычисление вектора ошибки, который включает в себя разность и целочисленное значение разности в качестве его компонентов. Более того, этап предсказания может включать в себя вычисление предсказанного значения на основе измеренного значения, которое было измерено непосредственно ранее во временном ряде.
[0012] Второй аспект настоящего раскрытия представляет собой систему диагностирования неисправности для диагностирования неисправности объекта наблюдения, имеющего рабочее состояние, которое включает в себя неустойчивое состояние, причем система включает в себя: имитационную модель, сконфигурированную с возможностью имитирования объекта наблюдения; блок измерения, сконфигурированный с возможностью измерения величины внутреннего состояния в рабочем состоянии объекта наблюдения; устройство диагностирования, сконфигурированное с возможностью вычисления расстояния Махаланобиса из разности между предсказанным значением, вычисленным имитационной моделью, и измеренным значением, извлеченным блоком измерения, и диагностирования на основе расстояния Махаланобиса, является ли рабочее состояние объекта наблюдения неисправным; и блок управления, сконфигурированный с возможностью передачи аналогичного входного значения управления по меньшей мере объекту наблюдения и имитационной модели.
[0013] Устройство диагностирования может вычислять расстояние Махаланобиса на основе вектора ошибки, который включает в себя разность и целочисленное значение разности в качестве его компонентов. Более того, имитационная модель может вычислять предсказанное значение на основе измеренного значения, которое было измерено непосредственно ранее во временном ряде. Объект наблюдения представляет собой, например, двигатель для повторно используемого космического аппарата.
Полезные эффекты изобретения
[0014] В способе диагностирования неисправности и в системе диагностирования неисправности согласно настоящему раскрытию генерируется имитационная модель, которая имитирует внутреннее состояние объекта наблюдения, и, является ли объект наблюдения неисправным, диагностируется посредством использования разности между измеренным значением, полученным из объекта наблюдения, и предсказанным значением, вычисленным имитационной моделью. Соответственно, предсказанное значение, которое соответствует окружающим условиям и/или рабочим условиям в момент времени, когда осуществляется диагностирование неисправности, может быть вычислено имитационной моделью, и, поскольку была использована разность, измеренное значение, полученное из объекта наблюдения, может быть заменено значением изменения нормального значения. Соответственно, даже если рабочее состояние объекта наблюдения является неустойчивым состоянием, может быть проведено его динамическое изменение и может быть предпринято действие, и диагностирование неисправности объекта наблюдения может быть выполнено не только в устойчивом состоянии, а также в неустойчивом состоянии. Более того, посредством использования расстояния Махаланобиса в диагностировании неисправности, диагностирование неисправности может быть осуществлено просто и быстро.
Краткое описание чертежей
[0015] [ФИГ. 1] ФИГ. 1 представляет собой общее структурное схематическое представление системы диагностирования неисправности согласно настоящему раскрытию.
[ФИГ. 2] ФИГ. 2 представляет собой блок-схему последовательности операций способа диагностирования неисправности согласно настоящему раскрытию.
[ФИГ. 3] ФИГ. 3(a) и 3(b) представляют собой чертежи для объяснения этапа вычисления расстояния Махаланобиса, где ФИГ. 3(a) показывает вектор ошибки и ФИГ. 3(b) показывает пример способа вычисления предсказанного значения.
[ФИГ. 4] ФИГ. 4(a) и 4(b) представляют собой чертежи для объяснения этапа диагностирования неисправности, где ФИГ. 4(a) представляет собой концептуальное представление расстояния Махаланобиса и ФИГ. 4(b) представляет собой концептуальное представление диагностирования неисправности.
[ФИГ. 5] ФИГ. 5(a)-5(c) представляют собой объяснительные чертежи для проверки эффективности, когда настоящее раскрытие применяется к двигателю для повторно используемого космического аппарата, где результат диагностирования неисправности, основанный на входном значении управления, показан на ФИГ. 5(a), то же самое, основанное на имитированных данных измеренного значения, показано на ФИГ. 5(b), и то же самое, основанное на расстоянии Махаланобиса, показано на ФИГ. 5(c).
Описание вариантов осуществления
[0016] Примерные варианты осуществления согласно настоящему раскрытию поясняются ниже по тексту посредством использования прилагаемых чертежей. ФИГ. 1 представляет собой общее структурное схематическое представление системы диагностирования неисправности согласно настоящему раскрытию. ФИГ. 2 представляет собой блок-схему последовательности операций способа диагностирования неисправности согласно настоящему раскрытию. ФИГ. 3(a) и 3(b) представляют собой чертежи для объяснения этапа вычисления расстояния Махаланобиса, где ФИГ. 3(a) показывает вектор ошибки и ФИГ. 3(b) показывает пример способа вычисления предсказанного значения. ФИГ. 4(a) и 4(b) представляют собой чертежи для объяснения этапа диагностирования неисправности, где ФИГ. 4(a) представляет собой концептуальное представление расстояния Махаланобиса и ФИГ. 4(b) представляет собой концептуальное представление диагностирования неисправности.
[0017] Система 1 диагностирования неисправности согласно одному варианту осуществления настоящего раскрытия представляет собой, как показано на ФИГ. 1, систему диагностирования неисправности для диагностирования объекта 2 наблюдения, имеющего рабочее состояние, которое включает в себя неустойчивое состояние. Система 1 диагностирования неисправности включает в себя имитационную модель 3, которая имитирует объект 2 наблюдения, блок 4 измерения, который измеряет предопределенную величину внутреннего состояния в рабочем состоянии объекта 2 наблюдения, устройство 5 диагностирования, которое вычисляет расстояние Махаланобиса MD из разности (x^-x) между предсказанным значением x, вычисленным имитационной моделью 3, и измеренным значением x^ (^ (циркумфлексом или "шляпкой") на x. То же самое сохраняется в приведенном ниже по тексту объяснении.) извлеченное из блока 4 измерения, и которое диагностирует на основе расстояния Махаланобиса MD, является ли рабочее состояние объекта 2 наблюдения неисправным, и блок 6 управления, который передает аналогичное входное значение u управления и объекту 2 наблюдения, и имитационной модели 3.
[0018] Объект 2 наблюдения представляет собой, например, двигатель для повторно используемого космического аппарата. Однако объект 2 наблюдения не ограничивается двигателем для повторно используемого космического аппарата и может быть каким-либо другим двигателем внутреннего сгорания, таким как реактивный двигатель, различными установками, такими как газотурбинная силовая установка, ядерная силовая установка, теплосиловая установка, химическая установка и тому подобное. В частности, желательно, чтобы объект 2 наблюдения имел устойчивое состояние, которое является стабильным рабочим состоянием, и неустойчивое состояние, которое является переходным нестабильным рабочим состоянием до достижения устойчивого состояния.
[0019] Имитационная модель 3 представляет собой модель, которая позволяет оценивать величину внутреннего состояния объекта 2 наблюдения. Имитационная модель 3 генерируется, например, посредством применения методики численного моделирования. При генерировании имитационной модели выражение рекуррентного соотношения (ARMA) может быть использовано с учетом процесса реального времени. Когда объект 2 наблюдения является, например, двигателем для повторно используемого космического аппарата, в качестве величины внутреннего состояния могут быть выбраны, например, давление сгорания Pc, выходная температура регенеративного охлаждения Tjmf, частота вращения топливного насоса Nf, частота вращения насоса окислителя No, выходное давление топливного насоса Pdf, выходное давление насоса окислителя Pdo и подобное. Соответственно генерируется имитационная модель, которая позволяет вычислять эти величины внутреннего состояния. Имитационная модель 3 может быть одной имитационной моделью, которая имитирует весь объект 2 наблюдения, или может быть образована множеством имитационных моделей, каждая из которых вычисляет различную величину внутреннего состояния.
[0020] Блок 4 измерения установлен в объекте 2 наблюдения. Блок 4 измерения является, например, датчиком, который измеряет одну или более из величин внутреннего состояния, таких как давление сгорания Pc, выходная температура регенеративного охлаждения Tjmf, частота вращения топливного насоса Nf, частота вращения насоса окислителя No, выходное давление топливного насоса Pdf, выходное давление насоса окислителя Pdo. Блок 4 измерения является, например, манометром, термометром, вращающимся датчиком и подобным. Однако блок 4 измерения не ограничивается этими устройствами и может быть выбран соответствующим образом на основе типа объекта 2 наблюдения и/или измеряемой величины внутреннего состояния.
[0021] Блок 6 управления является устройством, которое передает объекту 2 наблюдения входное значение u управления, необходимое для оперирования объектом 2 наблюдения. Рабочее состояние объекта 2 наблюдения может быть фактической работой или может быть пробной работой. Более того, блок 6 управления также передает имитационной модели 3 входное значение u управления, необходимое для оперирования объектом 2 наблюдения. Имитационная модель 3 вычисляет величину внутреннего состояния на основе этого входного значения u управления, а также вычисляет предсказанное значение x для каждой из величин внутреннего состояния. Допустимо измерять выходное значение y объекта 2 наблюдения, который оперируется посредством использования входного значения u управления, и извлекать наружу выходное значение y.
[0022] Устройство 5 диагностирования является устройством, которое принимает данные измеренного значения х^, измеренного блоком 4 измерения, и данные предсказанного значения х, вычисленного имитационной моделью 3, и выполняет диагностирование неисправности объекта 2 наблюдения посредством использования принятых данных. Устройство 5 диагностирования выполняет процесс на основе, например, блок-схемы последовательности операций, показанной на ФИГ. 2. Результат диагностирования и данные диагностирования могут выводиться наружу из устройства 5 диагностирования различными способами, такими как отображение на мониторе, печатание на бумаге, вывод в форме данных.
[0023] Как показано на ФИГ. 2, блок-схема последовательности операций имеет следующие этапы: этап генерирования модели (этап 1), на котором генерируют имитационную модель 3 объекта 2 наблюдения, этап начала работы (этап 2), на котором начинают работу объекта 2 наблюдения, этап измерения (этап 3), на котором измеряют величину внутреннего состояния в рабочем состоянии объекта 2 наблюдения и извлекают измеренное значение x^, этап предсказания (этап 4), на котором вводят в имитационную модель 3 аналогичное входное значение u управления, используемое в рабочем состоянии объекта 2 наблюдения, и вычисляют предсказанное значение x величины внутреннего состояния объекта 2 наблюдения, этап вычисления расстояния Махаланобиса (этап 5), на котором вычисляют расстояние Махаланобиса MD из разности (x^-x) между измеренным значением x^ и предсказанным значением x, и этап диагностирования неисправности (этап 6), на котором диагностируют на основе расстояния Махаланобиса MD, является ли рабочее состояние объекта 2 наблюдения неисправным.
[0024] Устройство 5 диагностирования выполняет этап вычисления расстояния Махаланобиса (этап 5) и этап диагностирования неисправности (этап 6). В способе диагностирования неисправности согласно настоящему варианту осуществления, независимо от того, являются ли полученные данные (измеренное значение x^) неисправными, диагностируется на основе анализа с переменными параметрами, который использует расстояние Махаланобиса. Корреляция между множеством переменных может быть обработана за один раз посредством использования расстояния Махаланобиса. То есть, поскольку нет необходимости отдельно выполнять диагностирование на переменную, чтобы решить, является ли переменная неисправной, диагностирование неисправности может быть сделано просто и быстро.
[0025] Этап вычисления расстояния Махаланобиса (этап 5), как показано на ФИГ. 2, может включать в себя этап вычисления разности (этап 51), на котором вычисляют разность (x^-x) между измеренным значением x^ и предсказанным значением x, этап вычисления вектора ошибки (этап 52), на котором вычисляют вектор ε ошибки, имеющий разность (x^-x) и целочисленное значение Σε ошибки в качестве его компонентов, а также этап расчета расстояния Махаланобиса (этап 53), на котором вычисляют расстояние Махаланобиса MD на основе вектора ε ошибки.
[0026] Вектор ε ошибки может быть выражен способом, показанным на ФИГ. 3(а). Когда вектор ошибки, который изменяется со временем, вычисляется непрерывно, целочисленное значение Σε, которое составляет компонент вектора ε ошибки, может быть вычислено как так называемое целочисленное значение. Чтобы вычислить вектор ε ошибки за определенный период времени (интервал), целочисленное значение Σε может быть вычислено как общая сумма разности (x^-x). Таким образом, чувствительность к оценке накопленных ошибок в одном и том же направлении может быть предотвращена от ослабления посредством использования целочисленного значения Σε ошибки (разности).
[0027] Когда давление сгорания Pc, выходная температура регенеративного охлаждения Tjmf, частота вращения топливного насоса Nf, частота вращения насоса окислителя No, выходное давление топливного насоса Pdf и выходное давление насоса окислителя Pdo выбираются в качестве величины внутреннего состояния, например, вектора ε ошибки может быть записан как матрица из (ΔPc, ΔTjmf, ΔNf, ΔNo, ΔPdf, ΔPdo, ΣΔPc, ΣΔTjmf, ΣΔNf, ΣΔNo, ΣΔPdf, ΣΔPdo), как показано на ФИГ. 3(a). В этом примере, поскольку вектор ε ошибки включает в себя 12 переменных, вектор ε ошибки содержится в векторном пространстве R12, сформированном этими переменными.
[0028] Этап предсказания (этап 4) включает в себя этап ввода (этап 41), на котором вводят в имитационную модель 3 такое же входное значение u управления, что и работа объекта 2 наблюдения, и этап вычисления предсказанного значения (этап 42), на котором вычисляют предсказанное значение х величины внутреннего состояния на основе входного значения u управления. На этапе вычисления предсказанного значения (этап 42) (этап предсказания (этап 4)), как показано на ФИГ. 3(b), можно вычислять предсказанное значение xn на основе измеренного значения xn-1^, которое было измерено непосредственно ранее во временном ряде (то есть, последнего значения, ранее измеренного во временном ряде). То есть, предсказанное значение xn вычисляется на основе измеренного значения xn-1^, а предсказанное значение xn+1 вычисляется на основе измеренного значения xn^. С помощью этого способа накопление ошибки может быть заблокировано, точность предсказанного значения xn может быть улучшена, и, следовательно, точность диагностирования неисправности может быть улучшена.
[0029] На этапе расчета расстояния Махаланобиса (этап 53) для вычисления расстояния Махаланобиса MD из вектора ε ошибки, сначала, вектор ε ошибки стандартизуется посредством использования выражения 1 для преобразования вектора ε ошибки в состояние такое, чтобы вектор ε ошибки не зависел от единицы физической величины. Чтобы стандартизовать вектор ε ошибки, целый вектор среднего значения во время периода работы
[Уравнение 1]
Figure 00000001
и отклонение
[Уравнение 2]
Figure 00000002
используются.
[0030] [Уравнение 3]
Figure 00000003
... (Выражение 1)
где
[Уравнение 4]
Figure 00000004
Вектор εn" ошибки, стандартизованный на основе выражения 1, выражается как εn и используется в последующем вычислении.
[0031] Затем расстояние Махаланобиса MD вычисляется посредством использования выражения 2. Здесь εT указывает транспонированную матрицу вектора ε ошибки, и dim(ε) указывает размерность вектора ε ошибки. Более того, может быть выведена ковариационная матрица, например, из накопленных данных прошлого, которые были диагностированы как нормальные.
[0032] [Уравнение 5]
Figure 00000005
...(Выражение 2)
где
[Уравнение 6]
Figure 00000006
является ковариационной матрицей.
[0033] Посредством вычисления расстояния Махаланобиса MD и соединения эквидистантных точек, например, может быть вычислена корреляция между величинами внутреннего состояния, показанными на ФИГ. 4(a). Ошибка становится большой, когда одна удаляется от центра по существу эллиптической области, показанной на этом чертеже. Поэтому можно диагностировать, что имеется неисправность, когда значение находится за пределами этой области. Корреляция, показанная на ФИГ. 4(а), представляет собой корреляцию между двумя переменными, то есть, величинами D1 и D2 внутреннего состояния, чтобы способствовать интуитивному пониманию. Из этой корреляции можно понять, что допустимое значение ошибки является большим вдоль главной оси этой по существу эллиптической области, и допустимое значение ошибки является маленьким вдоль малой оси этой по существу эллиптической области. Хотя на этом чертеже не показано, 12-мерная корреляция получается, когда используются 12 переменных, как упомянуто выше по тексту.
[0034] На этапе 6 диагностирования неисправности, например, как показано на ФИГ. 4(b), расстояние Махаланобиса MD вычисляется в отношении ошибки (разности), которая изменяется со временем, каждый раз при выполнении диагностирования. Более того, делается определение, находится ли ошибка (разность) в пределах расстояния Махаланобиса MD, каждый раз, когда вычисляется расстояние Махаланобиса MD. Например, расстояние Махаланобиса MD1 в момент времени t1, расстояние Махаланобиса MD2 в момент времени t2, расстояние Махаланобиса MD3 в момент времени t3, расстояние Махаланобиса MD4 в момент времени t4 и расстояние Махаланобиса MD5 в момент времени t5 время от времени изменяются на основе окружающих условий, рабочих условий и подобного в данный момент времени. График с ФИГ. 4 (b) показан, чтобы способствовать интуитивному пониманию способа диагностирования неисправности согласно настоящему варианту осуществления.
[0035] В способе диагностирования неисправности и в системе 1 диагностирования неисправности согласно настоящему варианту осуществления генерируется имитационная модель 3, которая имитирует внутреннее состояние объекта 2 наблюдения, и, является ли объект 2 наблюдения неисправным, диагностируется посредством использования разности (x^-x) между измеренным значением x^, полученным объектом 2 наблюдения, и предсказанным значением x, вычисленным имитационной моделью 3. Соответственно, предсказанное значение х, которое соответствует окружающим условиям и/или рабочим условиям в момент времени, когда осуществляется диагностирование неисправности, может быть вычислено имитационной моделью 3. Более того, поскольку была использована разность, измеренное значение x^, полученное объектом 2 наблюдения, может быть заменено значением изменения нормального значения. Соответственно, даже если рабочее состояние объекта 2 наблюдения является неустойчивым состоянием, может быть проведено его динамическое изменение и может быть предпринято действие, и диагностирование неисправности объекта 2 наблюдения может быть выполнено не только в устойчивом состоянии, а также в неустойчивом состоянии.
[0036] ФИГ. 5(a)-5(c) представляют собой объяснительные чертежи для проверки эффективности, когда настоящее раскрытие применяется к двигателю повторно используемого космического аппарата, и результат диагностирования неисправности, основанный на входном значении управления, показан на ФИГ. 5(a), то же самое, основанное на имитированных данных измеренного значения, показано на ФИГ. 5(b), и то же самое, основанное на расстоянии Махаланобиса, показано на ФИГ. 5(c). На ФИГ. 5(а) и ФИГ. 5(b) значение тяги показано непрерывной линией, значение топлива показано пунктирной линией, значение окислителя показано альтернативной длинной и короткой штриховой линией, и значение давления сгорания показано посредством двухточечной цепной линии. На ФИГ. 5(а) участок кривой тяги, которая выступает вверх (по существу трапецеидальный участок), имитирует неустойчивое состояние.
[0037] Количество топлива и окислителя контролируются для получения тяги, показанной на ФИГ. 5(а). Здесь, чтобы проверить эффективность диагностирования неисправности, выполненного посредством использования расстояния Махаланобиса MD, как показано на ФИГ. 5(b), посредством установки значение смещения (участка α на чертеже) относительно нормального измеренного значения, были сгенерированы имитированные данные измеренного значения, которое намеренно включает в себя неисправное значение. Когда этап 5 вычисления расстояния Махаланобиса выполняется посредством использования имитированных данных измеренного значения и предсказанного значения, вычисленного имитационной моделью 3, получается результат, показанный на ФИГ. 5(c).
[0038] На фиг. 5(c), непрерывная линия показывает изменение расстояния Махаланобиса MD с течением времени, и черные точки показывают моменты времени, когда диагностирование считается неисправным. Из этого результата проверки следует понимать, что расстояние Махаланобиса MD частей, соответствующих смещенным участкам, в которых были намеренно установлены неисправные значения, были диагностированы как неисправные. Соответственно, можно подтвердить, что способ диагностирования неисправности и система 1 диагностирования неисправности согласно настоящему варианту осуществления способны выполнять диагностирование неисправности, когда рабочее состояние включает в себя неустойчивое состояние.
[0039] Настоящее раскрытие не ограничивается вышеупомянутыми вариантами осуществления и может быть реализовано посредством внесения различных изменений в объем, который не отклоняется от сути настоящего раскрытия.

Claims (16)

1. Способ диагностирования неисправности, в котором диагностируют неисправность объекта наблюдения, имеющего рабочее состояние, которое включает в себя неустойчивое состояние, причем способ диагностирования неисправности содержит:
этап генерирования модели, на котором генерируют имитационную модель объекта наблюдения;
этап измерения, на котором измеряют величину внутреннего состояния в рабочем состоянии объекта наблюдения и извлекают измеренное значение;
этап предсказания, на котором вводят в имитационную модель аналогичное входное значение управления, используемое в рабочем состоянии объекта наблюдения, и вычисляют предсказанное значение величины внутреннего состояния объекта наблюдения;
этап вычисления расстояния Махаланобиса, на котором вычисляют расстояние Махаланобиса из разности между измеренным значением и предсказанным значением; и
этап диагностирования неисправности, на котором диагностируют на основе расстояния Махаланобиса, является ли рабочее состояние объекта наблюдения неисправным.
2. Способ диагностирования неисправности по п. 1, при этом этап вычисления расстояния Махаланобиса включает в себя вычисление вектора ошибки, который включает в себя разность и целочисленное значение разности в качестве его компонентов.
3. Способ диагностирования неисправности по п. 2, при этом этап предсказания включает в себя вычисление предсказанного значения на основе измеренного значения, которое было измерено непосредственно ранее во временном ряде.
4. Система диагностирования неисправности для диагностирования неисправности объекта наблюдения, имеющего рабочее состояние, которое включает в себя неустойчивое состояние, причем система диагностирования неисправности содержит:
имитационную модель, которая имитирует объект наблюдения;
блок измерения, сконфигурированный с возможностью измерения величины внутреннего состояния в рабочем состоянии объекта наблюдения;
устройство диагностирования, которое вычисляет расстояние Махаланобиса из разности между предсказанным значением, вычисленным имитационной моделью, и измеренным значением, извлеченным блоком измерения, и диагностирует на основе расстояния Махаланобиса, является ли рабочее состояние объекта наблюдения неисправным; и
блок управления, сконфигурированный с возможностью передачи аналогичного входного значения управления по меньшей мере объекту наблюдения и имитационной модели.
5. Система диагностирования неисправности по п. 4, при этом устройство диагностирования вычисляет расстояние Махаланобиса на основе вектора ошибки, который включает в себя разность и целочисленное значение разности в качестве его компонентов.
6. Система диагностирования неисправности по п. 5, при этом имитационная модель вычисляет предсказанное значение на основе измеренного значения, которое было измерено непосредственно ранее во временном ряде.
7. Система диагностирования неисправности по п. 4, при этом объект наблюдения является двигателем для повторно используемого космического аппарата.
RU2017132000A 2015-02-18 2016-02-17 Способ диагностирования неисправности и система диагностирования неисправности RU2667691C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015029249A JP6610987B2 (ja) 2015-02-18 2015-02-18 異常診断方法及び異常診断システム
JP2015-029249 2015-02-18
PCT/JP2016/054579 WO2016133121A1 (ja) 2015-02-18 2016-02-17 異常診断方法及び異常診断システム

Publications (1)

Publication Number Publication Date
RU2667691C1 true RU2667691C1 (ru) 2018-09-24

Family

ID=56689028

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017132000A RU2667691C1 (ru) 2015-02-18 2016-02-17 Способ диагностирования неисправности и система диагностирования неисправности

Country Status (5)

Country Link
US (1) US10408707B2 (ru)
EP (1) EP3229093B1 (ru)
JP (1) JP6610987B2 (ru)
RU (1) RU2667691C1 (ru)
WO (1) WO2016133121A1 (ru)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6332154B2 (ja) * 2015-06-11 2018-05-30 横河電機株式会社 プラント運転支援装置、プラント運転支援方法、及びプログラム
FR3061324B1 (fr) * 2016-12-22 2019-05-31 Electricite De France Procede de caracterisation d'une ou plusieurs defaillances d'un systeme
US10845792B2 (en) * 2017-03-24 2020-11-24 Kabushiki Kaisha Toshiba Failure diagnosis apparatus, monitoring apparatus, failure diagnosis method and recording medium
JP7179444B2 (ja) * 2017-03-29 2022-11-29 三菱重工業株式会社 予兆検知システム及び予兆検知方法
CN108984382B (zh) * 2018-07-26 2022-05-13 广西防城港核电有限公司 核电站模拟机i/o通道故障模拟方法及装置
JP7110047B2 (ja) * 2018-09-21 2022-08-01 株式会社東芝 プラント監視システム
CN110334395B (zh) * 2019-05-28 2020-11-27 中国地质大学(武汉) 基于jade的初始化em算法的卫星动量轮故障诊断方法及系统
JP7417256B2 (ja) * 2020-02-04 2024-01-18 国立研究開発法人宇宙航空研究開発機構 宇宙機液体推進システムの故障診断システム、及び宇宙機液体推進システムの故障診断方法
CN112000081B (zh) * 2020-08-31 2021-10-08 江南大学 基于多块信息提取和马氏距离的故障监测方法及系统
CN112362987B (zh) * 2020-10-28 2022-06-14 广东电网有限责任公司佛山供电局 一种基于稳健估计的避雷器故障诊断方法
CN115691144B (zh) * 2023-01-03 2023-03-31 西南交通大学 一种异常交通状态监测方法、装置、设备及可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103481A (ja) * 1992-09-17 1994-04-15 Mitsubishi Electric Corp プラント運転監視システム
RU2385456C2 (ru) * 2005-04-18 2010-03-27 Юропиан Аэронотик Дефенс Энд Спейс Компани Эадс Франс Способ и устройство контроля состояния конструкции самолета
RU2413976C1 (ru) * 2009-09-25 2011-03-10 Открытое акционерное общество "Головной центр сервисного обслуживания и ремонта Концерна ПВО "Алмаз-Антей" "Гранит" Способ формирования контрольно-диагностических тестов
JP2011090382A (ja) * 2009-10-20 2011-05-06 Mitsubishi Heavy Ind Ltd 監視システム
RU2441271C1 (ru) * 2011-03-01 2012-01-27 Открытое акционерное общество "Головной центр сервисного обслуживания и ремонта Концерна ПВО "Алмаз-Антей" "Гранит" Способ формирования тестов для контроля работоспособности и диагностики неисправной аппаратуры
WO2012052696A1 (fr) * 2010-10-22 2012-04-26 Snecma Procede et dispositif de surveillance d'une boucle d'asservissement d'un systeme d'actionnement de geometries variables d'un turboreacteur.
JP2014035282A (ja) * 2012-08-09 2014-02-24 Ihi Corp 異常診断装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6898554B2 (en) * 2000-06-12 2005-05-24 Scientific Monitoring, Inc. Fault detection in a physical system
US6687596B2 (en) * 2001-08-31 2004-02-03 General Electric Company Diagnostic method and system for turbine engines
US6868760B1 (en) * 2003-02-12 2005-03-22 Pratt-Read Corporation Tool locking mechanism
US7110917B2 (en) * 2003-11-14 2006-09-19 Ricoh Company, Ltd. Abnormality determining method, and abnormality determining apparatus and image forming apparatus using same
US7203431B2 (en) * 2003-12-26 2007-04-10 Ricoh Company, Ltd. Abnormality determining method, abnormality determining apparatus, and image forming apparatus
US7062370B2 (en) * 2004-03-30 2006-06-13 Honeywell International Inc. Model-based detection, diagnosis of turbine engine faults
US7243048B2 (en) * 2005-11-28 2007-07-10 Honeywell International, Inc. Fault detection system and method using multiway principal component analysis
US20080183444A1 (en) * 2007-01-26 2008-07-31 Grichnik Anthony J Modeling and monitoring method and system
WO2009107805A1 (ja) 2008-02-27 2009-09-03 三菱重工業株式会社 プラント状態監視方法、プラント状態監視用コンピュータプログラム、及びプラント状態監視装置
JP4875661B2 (ja) 2008-05-14 2012-02-15 三菱重工業株式会社 航空機の健全性診断装置及び方法並びにプログラム
FR2939170B1 (fr) 2008-11-28 2010-12-31 Snecma Detection d'anomalie dans un moteur d'aeronef.
FR2939924B1 (fr) * 2008-12-15 2012-10-12 Snecma Identification de defaillances dans un moteur d'aeronef
US8306778B2 (en) * 2008-12-23 2012-11-06 Embraer S.A. Prognostics and health monitoring for electro-mechanical systems and components
US8862433B2 (en) * 2010-05-18 2014-10-14 United Technologies Corporation Partitioning of turbomachine faults
JP2011106467A (ja) 2011-02-28 2011-06-02 Hitachi Ltd ガスタービンの性能診断システムにおける表示画面の表示方法
JP5817323B2 (ja) 2011-08-18 2015-11-18 株式会社Ihi 異常診断装置
FR2983528B1 (fr) * 2011-12-05 2014-01-17 Snecma Methode de surveillance d'une chaine de mesure d'un turboreacteur
JP6340236B2 (ja) * 2014-04-15 2018-06-06 三菱重工工作機械株式会社 工作機械の診断方法及びシステム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103481A (ja) * 1992-09-17 1994-04-15 Mitsubishi Electric Corp プラント運転監視システム
RU2385456C2 (ru) * 2005-04-18 2010-03-27 Юропиан Аэронотик Дефенс Энд Спейс Компани Эадс Франс Способ и устройство контроля состояния конструкции самолета
RU2413976C1 (ru) * 2009-09-25 2011-03-10 Открытое акционерное общество "Головной центр сервисного обслуживания и ремонта Концерна ПВО "Алмаз-Антей" "Гранит" Способ формирования контрольно-диагностических тестов
JP2011090382A (ja) * 2009-10-20 2011-05-06 Mitsubishi Heavy Ind Ltd 監視システム
WO2012052696A1 (fr) * 2010-10-22 2012-04-26 Snecma Procede et dispositif de surveillance d'une boucle d'asservissement d'un systeme d'actionnement de geometries variables d'un turboreacteur.
RU2441271C1 (ru) * 2011-03-01 2012-01-27 Открытое акционерное общество "Головной центр сервисного обслуживания и ремонта Концерна ПВО "Алмаз-Антей" "Гранит" Способ формирования тестов для контроля работоспособности и диагностики неисправной аппаратуры
JP2014035282A (ja) * 2012-08-09 2014-02-24 Ihi Corp 異常診断装置

Also Published As

Publication number Publication date
EP3229093A1 (en) 2017-10-11
JP2016151909A (ja) 2016-08-22
WO2016133121A1 (ja) 2016-08-25
US10408707B2 (en) 2019-09-10
EP3229093B1 (en) 2020-01-01
JP6610987B2 (ja) 2019-11-27
EP3229093A4 (en) 2018-08-08
US20170328811A1 (en) 2017-11-16

Similar Documents

Publication Publication Date Title
RU2667691C1 (ru) Способ диагностирования неисправности и система диагностирования неисправности
Yildirim et al. Aircraft gas turbine engine health monitoring system by real flight data
US6898554B2 (en) Fault detection in a physical system
RU2694105C1 (ru) Диагностика неисправностей во время испытания турбинной установки
Zarei et al. Sensor fault detection and diagnosis of a process using unknown input observer
JP2004150440A (ja) システム上で診断を行うための方法
RU2684225C2 (ru) Инструмент валидации системы мониторинга авиационного двигателя
JP3968656B2 (ja) プラント機器の保守支援装置
Garcia et al. On the monitoring task of solar thermal fluid transfer systems using NN based models and rule based techniques
US20230092472A1 (en) Method and System for Intelligent Monitoring of State of Nuclear Power Plant
Gholizadeh et al. Fault detection and identification using combination of ekf and neuro-fuzzy network applied to a chemical process (cstr)
JP4611061B2 (ja) 検出器の校正支援装置及びその方法
RU2393450C1 (ru) Способ контроля и диагностирования жидкостного ракетного двигателя
CN105279553A (zh) 一种高加给水系统故障程度识别方法
Abid et al. Adaptive data-driven approach for the remaining useful life estimation when few historical degradation sequences are available
Rincón Multiple fault detection and diagnosis in a Gas Turbine using principal component analysis and structured residuals
Singer et al. A pattern-recognition-based, fault-tolerant monitoring and diagnostic technique
JP2650914B2 (ja) プロセス異常診断装置
Zarate et al. Computation and monitoring of the deviations of gas turbine unmeasured parameters
KR101372489B1 (ko) 스마트 센서를 이용한 원전 저압 터빈 온라인 감시 시스템
RU2781738C2 (ru) Способ функционального диагностирования жидкостного ракетного двигателя при огневом испытании
JP7121592B2 (ja) プラント監視システムおよびプラント監視方法
RU2750874C1 (ru) Способ контроля характеристик агрегатов жидкостного ракетного двигателя при огневом испытании
CN117687379A (zh) 基于未知输入观测器的航空发动机控制系统执行机构故障检测方法
CN117418936A (zh) 燃气轮机传感器故障诊断方法及装置