RU2684225C2 - Инструмент валидации системы мониторинга авиационного двигателя - Google Patents

Инструмент валидации системы мониторинга авиационного двигателя Download PDF

Info

Publication number
RU2684225C2
RU2684225C2 RU2017119421A RU2017119421A RU2684225C2 RU 2684225 C2 RU2684225 C2 RU 2684225C2 RU 2017119421 A RU2017119421 A RU 2017119421A RU 2017119421 A RU2017119421 A RU 2017119421A RU 2684225 C2 RU2684225 C2 RU 2684225C2
Authority
RU
Russia
Prior art keywords
specified
validation
observation data
monitoring system
amount
Prior art date
Application number
RU2017119421A
Other languages
English (en)
Other versions
RU2017119421A (ru
RU2017119421A3 (ru
Inventor
Жером ЛАКЭЙ
Original Assignee
Сафран Эркрафт Энджинз
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сафран Эркрафт Энджинз filed Critical Сафран Эркрафт Энджинз
Publication of RU2017119421A publication Critical patent/RU2017119421A/ru
Publication of RU2017119421A3 publication Critical patent/RU2017119421A3/ru
Application granted granted Critical
Publication of RU2684225C2 publication Critical patent/RU2684225C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C5/00Registering or indicating the working of vehicles
    • G07C5/08Registering or indicating performance data other than driving, working, idle, or waiting time, with or without registering driving, working, idle or waiting time
    • G07C5/0816Indicating performance data, e.g. occurrence of a malfunction
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/024Quantitative history assessment, e.g. mathematical relationships between available data; Functions therefor; Principal component analysis [PCA]; Partial least square [PLS]; Statistical classifiers, e.g. Bayesian networks, linear regression or correlation analysis; Neural networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/14Testing gas-turbine engines or jet-propulsion engines
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Transportation (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Geometry (AREA)
  • Testing Of Engines (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Группа изобретений относится к инструменту валидации системы мониторинга агрегата авиационного двигателя, системе мониторинга и способу валидации системы мониторинга. Инструмент валидации содержит средства испытания (13), средства обработки (11), средства анализа (12), приспособленные для оценки валидации системы мониторинга. Система мониторинга агрегата авиационного двигателя содержит по меньшей мере один инструмент валидации и выполнена с возможностью получать данные наблюдения и выдавать результат диагностики состояния этого агрегата. Способ валидации заключается в том, что проводят испытания для оценки валидации системы мониторинга, при этом собирают данные наблюдения, относящиеся к агрегату авиационного двигателя, вычисляют текущее значение показателя качества на текущем количестве данных наблюдения, оценивают показатели вероятностной надежности, оценивают минимальное количество данных наблюдения для достижения заданного критерия надежности. Обеспечивается сокращение времени обработки данных и повышение надежности системы мониторинга. 3 н. и 8 з.п. ф-лы, 6 ил.

Description

Область техники
Настоящее изобретение относится к области систем мониторинга двигателя летательного аппарата и, в частности, к инструменту валидации системы мониторинга авиационного двигателя.
Уровень техники
Для проверки нормальной работы различных агрегатов авиационного двигателя применяют системы мониторинга. Например, существует одна система мониторинга для анализа поведения двигателя во время процесса зажигания, другая система для анализа траектории газов, еще одна система для обнаружения забивания фильтров, еще одна система для анализа расхода масла и т.д.
Все эти системы мониторинга позволяют повысить безопасность и надежность авиационных двигателей. Они позволяют избежать или ограничить выключение во время полета, сократить задержки или отмены рейсов и, в частности, облегчают обслуживание двигателя, прогнозируя поломки и идентифицируя неисправные компоненты.
В настоящее время существует инструмент разработки системы мониторинга, основанный на показателях, которые сравнивают с порогами, определенными в спецификациях. Этот инструмент описан во французской патентной заявке FR2957170, поданной на имя заявителя.
Валидация системы мониторинга требует проведения тестов, например, на испытательном стенде, чтобы собрать большое количество данных. При этом необходимо задействовать много ресурсов и времени, чтобы осуществить эти тесты, и, кроме того, большое количество собранных данных может потребовать много времени для вычисления.
Кроме того, уровень валидации одной системы мониторинга может отличаться от уровня валидации другой системы мониторинга. Это может усложнить анализ данных, поступающих из различных систем мониторинга двигателя.
Настоящее изобретение призвано предложить инструмент валидации системы мониторинга агрегата авиационного двигателя, позволяющий оптимизировать количество данных, необходимых для валидации, что позволяет уменьшить расходы и сократить время обработки и одновременно повысить надежность системы мониторинга.
Раскрытие изобретения
Объектом настоящего изобретения является инструмент валидации системы мониторинга по меньшей мере одного агрегата авиационного двигателя, содержащий:
- средства обработки, выполненные с возможностью сбора данных наблюдения указанного агрегата,
- средства анализа, выполненные с возможностью вычисления текущего значения по меньшей мере одного показателя качества на текущем количестве данных наблюдения, собранных средствами обработки,
- средства анализа, выполненные с возможностью оценки вероятности того, что указанное текущее значение показателя качества достигнет заранее определенного критерия надежности, определяя таким образом вероятностную закономерность надежности, оцениваемую по совокупности значений показателя качества, связанной с соответствующей совокупностью количеств данных наблюдения, и
- средства анализа, выполненные с возможностью оценки, на основании указанной вероятностной закономерности, минимального количества данных наблюдения, начиная от которого значение показателя качества достигает заранее определенного критерия надежности с вероятностью, превышающей заранее определенное значение,
- средства испытания, выполненные с возможностью оценки валидации указанной системы мониторинга с применением совокупности показателей качества к указанному минимальному количеству данных наблюдения, относящихся к указанному агрегату.
Это позволяет узнать, когда необходимо прекратить сбор данных для оценки системы мониторинга, и, следовательно, снизить стоимость испытаний.
Предпочтительно указанное заранее определенное значение является дополнением ошибки, заранее определенной как допустимая.
Предпочтительно средства анализа выполнены с возможностью вычислять текущее значение показателя качества, применяя метод перекрестной валидации на указанном текущем количестве данных наблюдения. Указанный метод перекрестной валидации можно выбрать из следующих методов: бутстрэп, k-блочная проверка, исключение по одному образцу.
Предпочтительно совокупность показателей качества включает в себя следующие показатели: степень ложной тревоги, степень обнаружения, степень локализации.
Предпочтительно средства анализа выполнены с возможностью применять регрессионный метод на указанной совокупности значения показателя качества для определения функции аппроксимации, отображающей указанную вероятностную закономерность надежности в зависимости от количества данных наблюдения.
Согласно отличительному признаку настоящего изобретения, для показателя качества, соответствующего степени ложной тревоги, указанная функция аппроксимации в зависимости от количества n данных наблюдения выражена следующим отношением:
Figure 00000001
где a, b, c являются постоянными регрессии.
Предпочтительно средства испытания выполнены с возможностью оценивать валидацию указанной системы мониторинга до ее установки на летательном аппарате, применяя совокупность показателей качества на количестве данных наблюдения, собранных на испытательном стенде и/или на парке находящихся в эксплуатации авиационных двигателей. Это позволяет валидировать общую систему мониторинга, выполненную с возможностью контролировать серийный двигатель.
Предпочтительно средства испытания выполнены с возможностью продолжать валидацию и регулирование указанной системы мониторинга после ее установки на серийном двигателе, применяя совокупность показателей качества на количестве данных наблюдения, собранных во время полета. Это позволяет специализировать систему мониторинга, чтобы она была адаптирована к специфике использования двигателя, на котором она установлена, учитывая, что поведение двигателя может зависеть от полетов, маршрутов, обслуживания и т.д.
Объектом изобретения является также система мониторинга по меньшей мере одного агрегата авиационного двигателя, разработанная при помощи инструмента разработки согласно любому из предыдущих признаков, при этом указанная система выполнена с возможностью получать данные наблюдения, специфические для указанного агрегата, и выдавать результат, позволяющий произвести диагностику состояния указанного агрегата.
Объектом изобретения является также способ валидации системы мониторинга по меньшей мере одного агрегата авиационного двигателя, содержащий этапы теста для оценки валидации указанной системы мониторинга с применением совокупности показателей качества к объему данных наблюдения, относящихся к указанному агрегату, при этом указанный способ дополнительно содержит следующие этапы:
- собирают данные наблюдения, относящиеся к указанному агрегату,
- вычисляют текущее значение по меньшей мере одного показателя качества на текущем количестве данных наблюдения, собранных средствами обработки,
- оценивают вероятность того, что указанное текущее значение может достигнуть заранее определенного критерия надежности, определяя таким образом вероятностную закономерность надежности, оцениваемую по совокупности значений показателя качества, относящейся к соответствующей совокупности количеств данных наблюдения, и
- на основании указанной вероятностной закономерности надежности оценивают минимальное количество данных наблюдения, начиная от которого значение показателя качества достигает заранее определенного критерия надежности с вероятностью, превышающей заранее определенное значение, при этом указанное минимальное количество данных наблюдения соответствует указанному объему данных наблюдения, предназначенному для использования с целью оценки валидации указанной системы мониторинга.
Краткое описание чертежей
Другие отличительные признаки и преимущества инструмента и способа в соответствии с изобретением будут более очевидны из нижеследующего описания, представленного в качестве не ограничительного примера, со ссылками на прилагаемые чертежи, на которых:
фиг. 1 - схематичный вид инструмента валидации системы мониторинга агрегата авиационного двигателя согласно варианту выполнения изобретения;
фиг. 2 - блок-схема способа определения минимального числа данных наблюдения и валидации системы мониторинга по меньшей мере одного агрегата авиационного двигателя согласно варианту выполнения изобретения;
фиг. 3 - график, показывающий кривые, относящиеся к теоретической закономерности надежности и к ее функции аппроксимации в соответствии с изобретением;
фиг. 4 - график, показывающий измерения наблюдения вокруг кривой, относящейся к теоретической закономерности надежности;
фиг. 5 - схематичный вид инструмента валидации системы мониторинга агрегата авиационного двигателя согласно первому предпочтительному варианту выполнения изобретения;
фиг. 6 - схематичный вид инструмента валидации системы мониторинга агрегата авиационного двигателя согласно второму предпочтительному варианту выполнения изобретения.
Осуществление изобретения
Настоящим изобретением предложен инструмент, позволяющий оценивать и прогнозировать количество данных, необходимых для валидации системы мониторинга.
На фиг. 1 схематично показан инструмент 1 валидации системы 3 мониторинга агрегата авиационного двигателя 5 согласно предпочтительному варианту выполнения изобретения.
Система 3 мониторинга может включать в себя модули 31-34, и каждый модуль выполняет конкретную задачу, используя специальный алгоритм. Такая система мониторинга описана в патентной заявке FR2957170, поданной на имя заявителя, и может содержать модуль 31 сбора данных, модуль 32 нормализации, модуль 33 диагностики или обнаружения аномалии, модуль 34 классификации для идентификации ошибок и т.д.
Модуль 31 сбора данных выполнен с возможностью получать специфические измерения или данные 71, считываемые датчиками на авиационном двигателе 5 или определяемые бортовым вычислительным устройством, и выдавать специфические данные или переменные с информацией о физических или логических элементах агрегата двигателя 5. Эти данные 71 выделяют из временных необработанных измерений (температура, давление, расход топлива, обороты валов и т.д.).
Например, специфические данные могут соответствовать времени, необходимому для того, чтобы вал двигателя достиг максимального ускорения после каждого запуска двигателя, градиенту температур отработавших газов двигателя, времени зажигания, времени открывания клапана, тенденции скорости и т.д.
Модуль 32 нормирования выполнен с возможностью получать специфические данные от модуля 31 сбора, чтобы нормировать эти специфические данные, и выдавать стандартизованные данные, независимые от контекста.
На основании стандартизованных данных осуществляют диагностику аномалии, затем определяют специфическую неисправность и, возможно, соответствующий физический компонент.
Так, модуль 33 обнаружения аномалии выполнен с возможностью получать стандартизованные данные от модуля 32 нормирования, чтобы построить сигнатуру, характеризующую поведение двигателя 5, и чтобы произвести диагностику, если сигнатура свидетельствует об аномалии. Кроме того, модуль 33 обнаружения аномалии выполнен с возможностью выдавать итоговый результат, характеризующий сигнатуру. В зависимости от значения итогового результата относительно заранее определенного порога, модуль 33 обнаружения может генерировать или не генерировать тревожный сигнал, указывающий на обнаружение аномалии.
Модуль 34 классификации выполнен с возможностью выдавать измерение идентификации неисправностей. После идентификации неисправностей, например, вычисляя для каждой из них вероятность наступления, система 3 мониторинга может использовать эту вероятность для обнаружения подверженных неисправностям компонентов.
Таким образом, в зависимости от типа применения, система 3 мониторинга выполнена с возможностью решения нескольких задач, которые могут включать в себя сбор данных, нормализацию данных, обнаружение аномалий и, возможно, классификацию обнаруженных аномалий.
Однако перед вводом в эксплуатацию система 3 мониторинга должна пройти фазу квалификации или валидации.
Следовательно, используют инструмент валидации, чтобы проверять валидацию системы мониторинга. Согласно изобретению, инструмент 1 валидации содержит средства 11 обработки, средства 12 анализа и средства 13 испытания. Эти средства 11-13 применяются устройствами, которые обычно находятся в компьютере: центральный блок обработки и вычисления, средства запоминания, периферийные устройства ввода, а также периферийные устройства вывода.
Средства 11 обработки выполнены с возможностью собирать данные 7 наблюдения, относящиеся к контролируемому агрегату двигателя 5. Эти данные 7 наблюдения содержат специфические измерения 71, считываемые датчиками на авиационном двигателе 5 или бортовым вычислительным устройством и предназначенные для использования системой 3 мониторинга с целью обнаружения ошибок или аномалий. Кроме того, данные 7 наблюдения могут включать в себя данные, получаемые в результате тестов, проводимых на испытательном стенде, или получаемые на рабочем двигателе, или, возможно, данные моделирования.
Кроме того, средства 13 испытания выполнены с возможностью оценивать валидацию системы мониторинга, применяя совокупность показателей качества KPI (Key Performance Indicators) на объеме данных 7 наблюдения, относящихся к этому агрегату.
В частности, средства 13 испытания применяют показатель или несколько показателей качества KPI к результату системы 3 мониторинга для проверки обнаружения ошибок. Это дает оценку, позволяющую валидировать систему 3 мониторинга по объему данных 7 наблюдения.
Предпочтительно совокупность показателей качества KPI содержит измерение степени обнаружения POD (Probability of Detection), измерение степени ложной тревоги PFA (Probability of False Alarm), измерение степени локализации PCL (Probability of Class Localization) и т.д. Следует отметить, что каждый из показателей качества можно использовать независимо от другого показателя или в комбинации в зависимости от типа применения системы 3 мониторинга.
Степень обнаружения POD, называемая также возможностью обнаружения, является вероятностью обнаружения ошибки, когда контролируемый агрегат реально имеет ошибку. Ее можно оценить, как отношение числа обнаруженных ошибок к общему числу ошибок. Таким образом, степень обнаружения POD позволяет с высокой надежностью валидировать результат системы 3 мониторинга.
Степень ложной тревоги PFA определяют как вероятность того, что контролируемый агрегат является нормальным, когда система 3 мониторинга обнаруживает ошибку. Степень ложной тревоги PFA можно рассчитать при помощи байесовских правил. Р(обнаруженное) обозначает маргинальную вероятность того, что система 3 мониторинга обнаруживает аномалию, и Р(нормальное) обозначает маргинальную вероятность того, что агрегат является апостериори нормальным, хотя обнаружена ошибка.
Степень ложной тревоги PFA является очень важным фактором в области авиации. Действительно, возможность того, что агрегат является нормальным, когда система 3 мониторинга обнаруживает ошибку, является феноменом, который необходимо ограничивать, так как он может кардинально изменить картину правдоподобия, которую пользователь может иметь о системе 3 мониторинга.
Показатель качества данных является измерением степени локализации PCL (Probability of Class Localization), определяемой как вероятность того, что локализация является нормальной, когда наблюдается аномалия агрегата.
Степень локализации PCL, которая является информацией о качестве локализации, позволяет валидировать с высокой эффективностью результат системы 3 мониторинга. Это позволяет локализовать конкретный элемент (например, генератор, кабель, жгут и т.д.) агрегата, имеющий аномалию.
В целом степень обнаружения POD позволяет обнаружить, содержит ли агрегат аномальный элемент, после чего степень локализации PCL указывает на эффективность, с которой можно локализовать или идентифицировать этот элемент.
По меньшей мере часть совокупности показателей качества применяют к данным 7 наблюдения, собираемым средствами 11 обработки, чтобы валидировать систему 3 мониторинга.
Однако точность показателей качества зависит от количества данных 7 наблюдения. Поэтому важно знать, начиная от какого числа данных 7 наблюдения, точность показателей является приемлемой, чтобы эти показатели отвечали заранее определенным требованиям качества.
На фиг. 2 представлена блока-схема способа определения минимального числа данных наблюдения и валидации системы мониторинга по меньшей мере одного агрегата авиационного двигателя в соответствии с изобретением.
Этап Е1 относится к сбору текущего количества данных 7 наблюдения, собираемых средствами 11 обработки.
На этапе Е2 для каждого текущего количества (или текущего числа) данных 7 наблюдения, собранных средствами 11 обработки, средства 12 анализа вычисляют текущее значение по меньшей мере одного показателя качества.
Иначе говоря, для каждого текущего числа n данных 7 наблюдения средства 12 анализа вычисляют текущее значение KPI(n) показателя качества KPI.
Предпочтительно текущее значение KPI(n) показателя качества вычисляют, применяя метод перекрестной валидации к текущему количеству n данных 7 наблюдения.
Метод перекрестной валидации можно выбрать из следующих методов: «бутстрэп», «k-блочная проверка» и «исключение по одному образцу». Он состоит в создании новых наборов данных на основании главного набора текущего размера n. Для каждого набора данных средства 12 анализа могут произвести испытание i и вычислить соответствующее значение KPI(n).
В частности, метод «бутстрэп» состоит в произвольном выборе с повторением n наблюдений для калибровки и в вычислении KPI на первоначальном наборе.
«К-блочная проверка» состоит в создании наборов данных калибровки путем выбора заранее определенного количества данных наблюдения и в тестировании остальной части. Эту операцию повторяют К раз.
«Исключение по одному образцу» состоит в калибровке на n-1 данных и в тестировании на последней данной, при этом получают n элементарных результатов.
Таким образом, перекрестная валидация позволяет создать объем массива данных Xi=KPI(n/опыт i), полученных для каждого опыта. Этот объем массива данных (Xi)i=1..K дает эмпирическую картину текущего значения KPI(n).
На этапе Е3 средства 13 анализа оценивают вероятность P(KPI(n) ∈ I) = P(n), определяемую как вероятность того, что текущее значение KPI(n) показателя качества KPI может достичь заранее определенного критерия качества, который соответствует заранее определенному интервалу I.
Таким образом, средства 12 анализа итеративно (то есть, для n = Ni,…,Nm) формируют вероятностную закономерность надежности P(n), оцениваемую по совокупности вычисленных текущих значений произвольных переменных KPI(Ni),…, KPI(Nm) показателя качества, относящегося к соответствующей совокупности текущих значений Ni,…,Nm данных 7 наблюдения.
Предпочтительно средства 12 анализа выполнены с возможностью применять регрессионный метод к совокупности значений переменных KPI(Ni),…, KPI(Nm) показателя качества с целью определения эмпирической функции, характеризующей вероятностную закономерность надежности P(n) в зависимости от количества данных 7 наблюдения.
Кроме того, на этапе Е4 средства 12 анализа оценивают на основании вероятностной закономерности надежности P(n) минимальное количество (то есть минимальное число) N0 данных наблюдения, начиная от которого значение показателя качества KPI(n)n≥N0 достигает заранее определенного критерия надежности с вероятностью Р(KPI(n)n≥N0 ∈ I), превышающей заранее определенное значение 1-ε, при этом заранее определенное значение 1-ε является дополнением допустимой ошибки ε. Иначе говоря, средства 12 анализа определяют первое N0, при котором P(KPI(N0) ∈ I) > 1 - ε.
Например, для степени обнаружения POD находят первое N0, которое отвечает следующему отношению:
P(POD(N0) > 1 - β) > 1 - ε
Кроме того, для степени ложной тревоги PFA находят первое N0, которое отвечает следующему отношению:
P(PFA(N0) < α) > 1 - ε
1-β и α отображают требования надежности, относящиеся соответственно к POD и к PFA.
Чтобы оценить минимальное количество N0, предпочтительно средства 12 анализа могут построить кривую вероятностной закономерности надежности P(n) при n=Ni,…Nm. Затем эту кривую экстраполируют, пока она не пересечет ось ординат на заранее определенном значении 1-ε. Эта даст на оси абсцисс оценку искомого минимального числа N0 данных 7 наблюдения.
В варианте, чтобы определить первое N0, позволяющее достичь поставленной задачи, можно построить кривую ошибки ε(n), отображающую дополнение 1- P(n) закономерности P(n), и экстраполировать кривую, пока она не пересечет ось ординат на значении допустимой ошибки ε.
Следует отметить, что для степени ложной тревоги PFA вероятностная закономерность надежности P(n) представляет собой среднюю величину из n булевых опытов для параметра р, характеризующего истинное значение PFA. Следовательно, его закономерность является закономерностью биномиального распределения, поделенного на n, и сходится к нормальной закономерности средней величины р и дисперсии σn = p(1-p)/n следующего вида:
Figure 00000002
Предпочтительно, чтобы упростить метод оценки теоретической закономерности P(n), используют предположение об изменении этой закономерности. Например, когда α меньше р, теоретическая закономерность P(n) экспоненциально стремится к нулю.
Таким образом, для степени ложной тревоги PFA теоретическую закономерность надежности P(n) можно представить как функцию аппроксимации f(n) следующего вида:
Figure 00000003
где a, b, c являются постоянными, которые можно определить при помощи регрессионного метода по совокупности значений PFA(Ni),…,PFA(Nm) степени ложной тревоги PFA. Следует отметить, что член по log(n)служит для коррекции уменьшения по
Figure 00000004
функции аппроксимации f(n), что позволяет уменьшить ошибку аппроксимации и получить оценку, более соответствующую теоретической закономерности P(n).
На фиг. 3 представлен график, показывающий кривые ошибки ε(n), относящиеся к теоретической закономерности надежности P(n) в отношении PFA и к ее соответствующей функции аппроксимации f(n).
Теоретическая кривая С1 показывает тенденцию ε(n) = 1 - P(n) для параметра р=4% и для требования надежности α=5%, а пунктирная кривая С2 показывает аппроксимацию 1-f(n). Обе кривые С1 и С2 являются практически идентичными, и, следовательно, можно использовать дополнение функции аппроксимации f(n) для определения минимального количества данных наблюдения.
Например, если требуется точность 0,9 (то есть ошибка ε(n) = 0,1) при теоретической степени ложной тревоги р = 4% и при требовании α = 5%, необходимо по меньшей мере 650 измерений, как показано на графике. Иначе говоря, для степени ложной тревоги менее 5% и для вероятности или уверенности 90% необходимо собрать примерно 650 данных наблюдения.
Кроме того, точность на данных наблюдения повышается с увеличением числа данных.
Действительно, на фиг. 4 представлен график, показывающий измерения наблюдения вокруг кривой, отображающей ошибку ε(n). Эти измерения образуют зону доверия 41 вокруг кривой С1 или С2, показывающую, что в начале опытов точность является низкой, затем зона сужается по мере увеличения числа данных.
Наконец, на этапе Е5 средства 13 теста применяют показатели качества KPI на минимальном числе N0 данных, чтобы оптимально оценить валидацию системы 3 мониторинга.
На фиг. 5 схематично показан инструмент валидации системы мониторинга агрегата авиационного двигателя согласно первому предпочтительному варианту выполнения изобретения.
Этот первый вариант выполнения относится к валидации общей системы 3 мониторинга на испытательном стенде 43 перед ее установкой на летательном аппарате.
Действительно, технические требования к системе 3 мониторинга представляют собой спецификацию потребностей, которая, в свою очередь, выражается в требованиях и задачах. Требование или задачу удовлетворяют, когда имеют возможность провести тест, позволяющий подтвердить ожидаемые характеристики. Этот тест применяют по меньшей мере на части совокупности показателей качества KPI, которые сравнивают с порогами, указанными в спецификации. Показатели KPI вычисляют при помощи сценариев валидации, адаптированных к проблемам, затронутым требованием или задачей. Сценарии опираются на данные наблюдения, обеспечивающие разумный охват потребности.
Таким образом, средства 11 обработки собирают данные 7 наблюдения, относящиеся к контролируемому агрегату и получаемые на испытательном стенде 43. В варианте данные 7 наблюдения собирают на летательных аппаратах, на которых тестируют систему 3 мониторинга.
Как было указано выше, средства 12 анализа вычисляют значение каждого показателя качества на текущем количестве данных 7 наблюдения. Затем они оценивают минимальное число данных наблюдения, начиная от которого значение показателя качества отвечает заранее определенному критерию надежности с вероятностью, превышающей заранее определенное значение. Это минимальное число данных наблюдения гарантирует достаточный охват, чтобы показатели имели смысл, и, следовательно, позволяет узнать, в какой момент можно остановить испытания на стенде 43.
Затем средства 13 теста оценивают валидацию системы 3 мониторинга, применяя показатели качества KPI к минимальному числу данных 7 наблюдения, относящихся к этому агрегату.
На фиг. 6 схематично показан инструмент валидации системы мониторинга агрегата авиационного двигателя согласно второму предпочтительному варианту выполнения изобретения.
Этот второй вариант выполнения относится к валидации и к регулировке системы 3 мониторинга после ее установки на серийном двигателе 5 летательного аппарата 45 с применением по меньшей мере части совокупности показателей качества к минимальному количеству данных наблюдения, собранных в полете.
Система 3 мониторинга уже предварительно калибрована по набору измерений наблюдения, произведенных на испытательном стенде 41 согласно первому варианту выполнения, или на летательных аппаратах, принадлежащих компаниям, согласившимся участвовать в разработке систем мониторинга.
Следует отметить, что летательный аппарат 43, на котором установлена система 3 мониторинга, будет выполнять задачи, для которых он предназначен, а также будет иметь право на операции обслуживания, характерные для логики компании-владельца. Таким образом, валидация учитывает специфику эксплуатации двигателя, на которой установлена система.
Как было указано выше, средства 12 обработки собирают данные 7 наблюдения, относящиеся к контролируемому агрегату, на находящемся в эксплуатации двигателе. Средства 12 анализа оценивают минимальное число данных наблюдения, начиная от которого значение показателя качества достигает заранее определенного критерия надежности с вероятностью, превышающей заранее определенное значение. Это позволяет узнать, в какой момент можно остановить тест валидации, а также когда его возобновить, если операции, осуществляемые на летательном аппарате, меняются или если в результате операций обслуживания меняется конфигурация двигателя.

Claims (21)

1. Инструмент валидации системы (3) мониторинга по меньшей мере одного агрегата авиационного двигателя (5), содержащий средства (13) испытания, выполненные с возможностью оценки валидации указанной системы (1) мониторинга с применением совокупности показателей качества к объему данных (7) наблюдения, относящихся к указанному агрегату, причем инструмент содержит:
средства (11) обработки, выполненные с возможностью сбора данных наблюдения, относящихся к указанному агрегату,
средства (12) анализа, выполненные с возможностью вычисления текущего значения по меньшей мере одного показателя качества на текущем количестве данных наблюдения, собранных средствами (11) обработки,
средства (12) анализа, выполненные с возможностью оценки вероятности того, что указанное текущее значение показателя качества достигнет заданного критерия надежности, определяя тем самым вероятностную закономерность надежности, оцениваемую по совокупности значений показателя качества, связанной с соответствующей совокупностью количеств данных наблюдения, и
средства (12) анализа, выполненные с возможностью оценки, на основании указанной вероятностной закономерности, минимального количества данных наблюдения, начиная с которого значение показателя качества достигает заданного критерия надежности с вероятностью, превышающей заданное значение, при этом указанное минимальное количество данных наблюдения соответствует указанному объему данных наблюдения, подлежащему использованию для оценки валидации указанной системы мониторинга.
2. Инструмент валидации по п. 1, в котором указанное заданное значение является значением, дополнительным к ошибке, заранее определенной как допустимая.
3. Инструмент валидации по п. 1 или 2, в котором средства (12) анализа выполнены с возможностью вычислять текущее значение показателя качества посредством метода перекрестной валидации на указанном текущем количестве данных наблюдения.
4. Инструмент валидации по п. 3, в котором указанный метод перекрестной валидации выбран из следующих методов: бутстрэп, k-блочная проверка, исключение по одному образцу.
5. Инструмент валидации по любому из пп. 1-4, в котором совокупность показателей качества включает в себя следующие показатели: степень ложной тревоги, степень обнаружения, степень локализации.
6. Инструмент валидации по любому из пп. 1-5, в котором средства (12) анализа выполнены с возможностью применять регрессионный метод на указанной совокупности значений показателя качества для определения функции аппроксимации, представляющей указанную вероятностную закономерность надежности в зависимости от количества данных наблюдения.
7. Инструмент валидации по п. 6, в котором для показателя качества, соответствующего степени ложной тревоги, указанная функция аппроксимации в зависимости от количества n данных наблюдения выражена следующей формулой:
Figure 00000005
,
где a, b, c являются постоянными регрессии.
8. Инструмент валидации по любому из пп. 1-7, в котором средства испытания выполнены с возможностью оценивать валидацию указанной системы мониторинга до ее установки на летательном аппарате с использованием совокупности показателей качества на количестве данных наблюдения, собранных на испытательном стенде и/или на парке находящихся в эксплуатации авиационных двигателей.
9. Инструмент валидации по п. 8, в котором средства (13) испытания выполнены с возможностью продолжать валидацию и регулирование указанной системы мониторинга после ее установки на серийном двигателе (5) с использованием совокупности показателей качества на количестве данных наблюдения, собранных во время полета.
10. Система мониторинга по меньшей мере одного агрегата авиационного двигателя, разработанная при помощи инструмента по любому из пп. 1-9, характеризующаяся тем, что выполнена с возможностью получать данные наблюдения, специфические для указанного агрегата, и выдавать результат, содержащий диагностику состояния указанного агрегата.
11. Способ валидации системы мониторинга по меньшей мере одного агрегата авиационного двигателя, содержащий этапы испытания для оценки валидации указанной системы мониторинга с применением совокупности показателей качества к объему данных наблюдения, относящихся к указанному агрегату, при этом указанный способ содержит этапы, на которых:
собирают данные наблюдения, относящиеся к указанному агрегату,
вычисляют текущее значение по меньшей мере одного показателя качества на текущем количестве данных наблюдения, собранных средствами обработки,
оценивают вероятность того, что указанное текущее значение может достигнуть заданного критерия надежности, тем самым определяя вероятностную закономерность надежности, оцениваемую на совокупности значений показателя качества, относящейся к соответствующей совокупности количеств данных наблюдения, и
на основании указанной вероятностной закономерности надежности оценивают минимальное количество данных наблюдения, начиная с которого значение показателя качества достигает заданного критерия надежности с вероятностью, превышающей заданное значение, при этом указанное минимальное количество данных наблюдения соответствует указанному объему данных наблюдения, подлежащему использованию для оценки валидации указанной системы мониторинга.
RU2017119421A 2014-11-05 2015-10-28 Инструмент валидации системы мониторинга авиационного двигателя RU2684225C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1460668 2014-11-05
FR1460668A FR3028067B1 (fr) 2014-11-05 2014-11-05 Outil de validation d'un systeme de surveillance d'un moteur d'aeronef
PCT/FR2015/052905 WO2016071605A1 (fr) 2014-11-05 2015-10-28 Outil de validation d'un système de surveillance d'un moteur d'aéronef

Publications (3)

Publication Number Publication Date
RU2017119421A RU2017119421A (ru) 2018-12-05
RU2017119421A3 RU2017119421A3 (ru) 2019-02-20
RU2684225C2 true RU2684225C2 (ru) 2019-04-04

Family

ID=52345362

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017119421A RU2684225C2 (ru) 2014-11-05 2015-10-28 Инструмент валидации системы мониторинга авиационного двигателя

Country Status (8)

Country Link
US (1) US10032322B2 (ru)
EP (1) EP3215903B1 (ru)
CN (1) CN107077134B (ru)
BR (1) BR112017008507B1 (ru)
CA (1) CA2966306C (ru)
FR (1) FR3028067B1 (ru)
RU (1) RU2684225C2 (ru)
WO (1) WO2016071605A1 (ru)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3058422B1 (fr) 2016-11-08 2021-05-28 Intelligence Artificielle Applications Procede et dispositif pour la pose de disques, tels que des disques d'antibiotiques
CN109335021B (zh) * 2018-11-21 2022-03-25 中国航发西安动力控制科技有限公司 一种试验用油门杆自适应控制方法
CN109474327B (zh) * 2018-11-26 2021-08-24 中电科航空电子有限公司 一种民用宽体客机机载信息系统
CN111746820B (zh) * 2019-03-28 2022-07-12 中国航发商用航空发动机有限责任公司 航空发动机飞行试验系统和试验方法
FR3094350B1 (fr) * 2019-04-01 2021-03-12 Safran Aircraft Engines Procédé de surveillance d’au moins un moteur d’aéronef
FR3095424A1 (fr) * 2019-04-23 2020-10-30 Safran Système et procédé de surveillance d’un moteur d’aéronef
US11615657B2 (en) * 2020-03-17 2023-03-28 Pratt & Whitney Canada Corp. Aircraft engine graphical diagnostic tool
CN112761818B (zh) * 2021-01-15 2023-01-31 北京动力机械研究所 一种可重复使用冲压发动机的状态监视系统
CN115577542B (zh) * 2022-10-17 2023-11-10 中国航发沈阳发动机研究所 一种模型数据驱动的航空复杂结构和可靠性融合设计方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1811600A3 (ru) * 1991-06-10 1993-04-23 Kиebckий Иhctиtуt Иhжehepob Гpaждahckoй Abиaции Cпocoб диaгhoctиpobahия abиaциohhoгo гaзotуpбиhhoгo дbигateля co cboбoдhoй tуpбиhoй
EP1936461A1 (en) * 2006-12-22 2008-06-25 United Technologies Corporation Gas turbine engine performance data validation
RU2389999C1 (ru) * 2008-10-14 2010-05-20 Открытое акционерное общество "Авиадвигатель" Способ диагностики технического состояния авиационного двигателя
FR2957170A1 (fr) * 2010-03-03 2011-09-09 Snecma Outil de conception d'un systeme de surveillance d'un moteur d'aeronef
RU2442126C2 (ru) * 2010-01-11 2012-02-10 Открытое акционерное общество "СТАР" Способ контроля технического состояния газотурбинного двигателя
WO2013171427A1 (fr) * 2012-05-16 2013-11-21 Snecma Procédé de surveillance d'une dégradation d'un dispositif embarque d'un aéronef avec détermination automatique d'un seuil de décision

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629626A (en) * 1994-07-12 1997-05-13 Geo-Centers, Inc. Apparatus and method for measuring buried ferromagnetic objects with a high accuracy of position and in synchronization with a sync pulse provided by a global positioning system
US6943699B2 (en) * 2003-07-23 2005-09-13 Harris Corporation Wireless engine monitoring system
US7079984B2 (en) * 2004-03-03 2006-07-18 Fisher-Rosemount Systems, Inc. Abnormal situation prevention in a process plant
FR2965915B1 (fr) 2010-10-11 2013-08-02 Snecma Systeme de surveillance d'un banc d'essai de moteur d'aeronef
US9026273B2 (en) * 2012-06-06 2015-05-05 Harris Corporation Wireless engine monitoring system with multiple hop aircraft communications capability and on-board processing of engine data
US9799229B2 (en) * 2012-12-13 2017-10-24 The Boeing Company Data sharing system for aircraft training
FR3011946B1 (fr) 2013-10-11 2016-07-08 Snecma Surveillance d'un moteur d'aeronef pour anticiper les operations de maintenance
FR3012636B1 (fr) 2013-10-24 2015-12-25 Snecma Procede de non-regression d'un outil de conception d'un systeme de surveillance de moteur d'aeronef
FR3037170B1 (fr) 2015-06-03 2017-06-23 Snecma Procede et systeme de prediction du fonctionnement d'un aeronef par analyse de similarite utilisant des capacites de stockage et de calcul reparties

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1811600A3 (ru) * 1991-06-10 1993-04-23 Kиebckий Иhctиtуt Иhжehepob Гpaждahckoй Abиaции Cпocoб диaгhoctиpobahия abиaциohhoгo гaзotуpбиhhoгo дbигateля co cboбoдhoй tуpбиhoй
EP1936461A1 (en) * 2006-12-22 2008-06-25 United Technologies Corporation Gas turbine engine performance data validation
RU2389999C1 (ru) * 2008-10-14 2010-05-20 Открытое акционерное общество "Авиадвигатель" Способ диагностики технического состояния авиационного двигателя
RU2442126C2 (ru) * 2010-01-11 2012-02-10 Открытое акционерное общество "СТАР" Способ контроля технического состояния газотурбинного двигателя
FR2957170A1 (fr) * 2010-03-03 2011-09-09 Snecma Outil de conception d'un systeme de surveillance d'un moteur d'aeronef
WO2013171427A1 (fr) * 2012-05-16 2013-11-21 Snecma Procédé de surveillance d'une dégradation d'un dispositif embarque d'un aéronef avec détermination automatique d'un seuil de décision

Also Published As

Publication number Publication date
RU2017119421A (ru) 2018-12-05
WO2016071605A1 (fr) 2016-05-12
BR112017008507B1 (pt) 2022-09-06
BR112017008507A2 (pt) 2017-12-26
US10032322B2 (en) 2018-07-24
CN107077134A (zh) 2017-08-18
FR3028067A1 (fr) 2016-05-06
CA2966306C (fr) 2022-06-14
US20170352205A1 (en) 2017-12-07
CN107077134B (zh) 2019-09-13
CA2966306A1 (fr) 2016-05-12
EP3215903A1 (fr) 2017-09-13
RU2017119421A3 (ru) 2019-02-20
FR3028067B1 (fr) 2016-12-30
EP3215903B1 (fr) 2019-12-18

Similar Documents

Publication Publication Date Title
RU2684225C2 (ru) Инструмент валидации системы мониторинга авиационного двигателя
US8437904B2 (en) Systems and methods for health monitoring of complex systems
US8682616B2 (en) Identifying failures in an aeroengine
CN102375452B (zh) 改善故障代码设定和隔离故障的事件驱动的数据挖掘方法
US9754429B2 (en) System for monitoring a set of components of a device
US11321628B2 (en) Decision aid system and method for the maintenance of a machine with learning of a decision model supervised by expert opinion
JP6610987B2 (ja) 異常診断方法及び異常診断システム
RU2694105C1 (ru) Диагностика неисправностей во время испытания турбинной установки
GB2450241A (en) Bayesian probability analysis for health monitoring and failure prediction of complex systems
US8671315B2 (en) Prognostic analysis system and methods of operation
EP3839684B1 (en) Method and system for diagnosing an engine or an aircraft
US10775270B2 (en) System and method for monitoring a turbomachine, with indicator merging for the synthesis of an alarm confirmation
Dzakowic et al. Advanced Techniques for the verification and validation of prognostics & health management capabilities
KR102470112B1 (ko) 원전의 지능형 상태감시 방법 및 시스템
WO2018003028A1 (ja) ボイラーの故障判定装置、故障判定方法およびサービス方法
Capata An artificial neural network-based diagnostic methodology for gas turbine path analysis—part II: case study
Dekate Prognostics and engine health management of vehicle using automotive sensor systems
Xue et al. Time receiver operating characteristic (troc) curves: A new tool for evaluating the performance of diagnostic systems
Clarkson et al. Path Classification and Remaining Life Estimation for Systems having Complex Modes of Failure
RU2626168C2 (ru) Способ технического диагностирования оборудования локомотива и устройство для его осуществления