RU2664848C2 - Способ изготовления детали путем горячей деформации стальной заготовки - Google Patents

Способ изготовления детали путем горячей деформации стальной заготовки Download PDF

Info

Publication number
RU2664848C2
RU2664848C2 RU2015155181A RU2015155181A RU2664848C2 RU 2664848 C2 RU2664848 C2 RU 2664848C2 RU 2015155181 A RU2015155181 A RU 2015155181A RU 2015155181 A RU2015155181 A RU 2015155181A RU 2664848 C2 RU2664848 C2 RU 2664848C2
Authority
RU
Russia
Prior art keywords
max
steel
temperature
deformation
hot
Prior art date
Application number
RU2015155181A
Other languages
English (en)
Other versions
RU2015155181A (ru
RU2015155181A3 (ru
Inventor
Штефан МЮТЦЕ
Михаэль БРАУН
Манюэль МАЙКРАНЦ-ВАЛЕНТИН
Original Assignee
Зальцгиттер Флахшталь Гмбх
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зальцгиттер Флахшталь Гмбх filed Critical Зальцгиттер Флахшталь Гмбх
Publication of RU2015155181A publication Critical patent/RU2015155181A/ru
Publication of RU2015155181A3 publication Critical patent/RU2015155181A3/ru
Application granted granted Critical
Publication of RU2664848C2 publication Critical patent/RU2664848C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • C21D8/105Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

Изобретение относится к области металлургии, а именно к способу изготовления детали, имеющей бейнитную микроструктуру с минимальной прочностью на разрыв 800 МПа и используемой в автомобильной промышленности. Способ включает нагрев по меньшей мере части стальной заготовки до температуры горячей деформации и ее деформацию. Указанная заготовка изготовлена из стали, имеющей микроструктуру, содержащую по меньшей мере 50% бейнита, а нагрев по меньшей мере части заготовки осуществляют до температуры ниже температуры превращения Ас1. Заготовка изготовлена из стали, имеющей следующий состав, мас.%: С: 0,02-0,3, Si: 0,01-0,5, Mn: 1,0-3,0, P: макс. 0,02, S: макс. 0,01, N: макс. 0,01, Al: до 0,1, Cu: до 0,2, Cr: до 3,0, Ni: до 0,2, Mo: до 0,2, Ti: до 0,2, V: до 0,2, Nb: до 0,1, B: до 0,01, Fe - остальное. Обеспечиваются требуемые механические свойства. 14 з.п. ф-лы, 2 табл.

Description

Изобретение относится к способу изготовления детали путем горячей деформации стальной заготовки в соответствии с ограничительной частью п. 1 формулы. Под заготовками следует понимать ниже, например, отрезанные от рулона листы, листовые заготовки или бесшовные или сварные трубы, которые при необходимости могут быть дополнительно подвергнуты холодной вытяжке.
Такие детали используются, главным образом, в автомобильной промышленности, однако могут использоваться также в машиностроении или строительстве.
Рынок, за который ведется ожесточенная борьба, вынуждает автопроизводителей постоянно искать решения по снижению среднего расхода топлива с сохранением максимально возможных комфорта и зашиты пассажиров. При этом решающую роль играет, с одной стороны, уменьшение массы всех компонентов автомобиля, а, с другой стороны, также максимально оптимальное поведение отдельных деталей при высоких статической и динамической нагрузках как при эксплуатации, так и в случае аварии.
Эту необходимость производители исходных материалов пытаются учитывать за счет того, что, получая высоко- и сверхвысокопрочные стали, можно уменьшить толщину стенок, одновременно улучшив поведение деталей при изготовлении и эксплуатации.
Поэтому такие стали должны отвечать относительно высоким требованиям к прочности, растяжимости, вязкости, энергопотреблению и коррозионной стойкости, а также к их обрабатываемости, например при холодной деформации и при сварке.
С учетом вышеназванных аспектов изготовление деталей из горячедеформируемых сталей приобретает все большее значение, поскольку они при меньших материальных затратах идеально отвечают возросшим требованиям к свойствам деталей.
Изготовление деталей посредством охлаждения заготовок из закаливаемых под прессом сталей путем горячей деформации в деформирующем инструменте известно из DE 60119826 Т2. В этом случае заготовка из листового металла, предварительно нагретая выше температуры аустенитизации до 800-1200°C и снабженная, при необходимости, металлическим покрытием из цинка или на основе цинка, деформируется при необходимости в охлаждаемом инструменте путем горячей деформации в деталь, причем во время деформации в результате быстрого отбора тепла лист или деталь испытывает в деформирующем инструменте повышение твердости при закалке (закалку под прессом), достигая за счет этого требуемых микроструктурных и прочностных свойств.
Металлическое покрытие в качестве коррозионной защиты наносится обычно непрерывным методом погружения в расплав на горяче- или холоднокатаную полосу или на изготовленную из нее заготовку, например в виде горячего цинкования или горячего алюминирования.
Затем листовая заготовка вырезается по размеру для деформирующего инструмента, используемого при горячей деформации. Можно также снабдить деформируемую заготовку или выкройку нанесенным методом погружения в расплав покрытием.
Нанесение металлического покрытия на подлежащую деформации заготовку перед горячей деформацией обеспечивает преимущества в этом процессе, поскольку за счет покрытия можно эффективно предотвратить образование окалины на основном металле, а за счет дополнительного смазочного действия - чрезмерный износ инструмента.
Известными горячедеформируемыми сталями для этой области применения являются, например, марганце-борная сталь «22MnB5», а с недавних пор также воздушно-закаливаемые стали по DE 102010024664 A1.
Чтобы получить детали очень высокой прочности более 980 МПа при еще достаточно высокой вязкости, из ЕР 2546375 A1 известны соответствующая деформация стали с ферритной в исходном состоянии микроструктурой посредством закалки под прессом, а за счет ступенчатого ведения процесса установление у готовой детали структуры из бейнита, отпущенного мартенсита и остаточного аустенита. При этом подлежащий деформации лист сначала нагревается до температуры 750-1000°С и выдерживается при этой температуре 5-1000 с, затем Деформируется при 350-900°С и охлаждается до 50-350°С. В заключение осуществляется повторный нагрев до температуры 350-490°С, поддерживаемой в течение 5-1000 с. При этом микроструктура готовой детали состоит из 10-85% мартенсита, 5-40% остаточного аустенита и по меньшей мере 5% бейнита.
Изготовление детали путем горячей деформации посредством закалки под прессом имеет, однако, несколько недостатков.
Во-первых, из-за нагрева заготовки до температуры аустенитизации и при превращении феррита в аустенит этот способ требует очень много энергии, что делает способ дорогим и вызывает возникновение значительных количеств СО2.
Кроме того, во избежание чрезмерного образования окалины на поверхности листа, как сказано выше, требуется дополнительный металлический защитный слой или защитный слой на лаковой основе или значительная последующая обработка поверхности, покрытой окалиной, полученной в результате нагрева и деформации.
Поскольку деформация осуществляется при температурах выше точки Ас3, как правило, заметно выше 800°C, к этим слоям к тому же предъявляются крайне высокие требования в отношении температурной стабильности.
Другим недостатком является то, что для достижения соответствующей прочности детали после закалки под прессом могут использоваться только деформационно-пригодные стали с достаточной деформационной инерцией, которые должны иметь соответственно дорогие легирующие добавки для достижения желаемых микроструктуры и твердости после деформации.
Резюмируя вышесказанное, следует констатировать, что известный способ изготовления деталей из стали путем горячей деформации выше температуры аустенитизации из-за требуемых больших печей, связанных с длительным временем нагрева, приводит к высоким производственным расходам и высокой стоимости энергии и, тем самым, к высокой стоимости деталей.
Для повышения деформационной способности высокопрочных сталей из DE 102004028236 В1 известна, кроме того, обработка заготовок в деталь путем не холодной, а горячей деформации при температурах 400-700°C (полугорячая деформация). При этом недостаток в том, что в противоположность закаленным под прессом деталям деформированная деталь за счет нагрева ниже температуры превращения испытывает размягчение, т.е. прочность уменьшается по сравнению с исходным состоянием.
Из DE 102011108162 A1 известен способ изготовления детали путем полугорячей деформации стальной заготовки ниже температуры превращения Ас1 при котором повышение прочности детали достигается за счет холодной деформации заготовки перед нагревом до температуры деформации. Дополнительного повышения прочности детали можно при необходимости достичь за счет использования материалов повышенной прочности, таких как бейнитные, мартенситные, микролегированные и двух- или более фазные стали. При этом недостатком являются дополнительные затраты из-за необходимой холодной деформации перед нагревом до температуры деформации. Кроме того, двухфазные стали имеют при горячей деформации в качестве недостатка восприимчивость к вызванному порывом кромок разрушению во время деформации.
Указания на конкретно соблюдаемые составы сплава или на заданные параметры микроструктуры заготовки для целенаправленного установления механических свойств детали после полугорячей деформации при использовании сталей повышенной прочности не раскрыты.
Задачей изобретения является создание способа изготовления детали путем горячей деформации стальной заготовки при температурах ниже точки превращения Ac1, который был бы недорог в осуществлении и с помощью которого достигались бы сопоставимые или улучшенные свойства деформированной детали, как при известной горячей деформации путем закалки под прессом. В частности, должна достигаться прочность готовой детали при более 800 МПа при пределе текучести выше 700 МПа и удлинение при разрыве A80 более 8%, а также наблюдаться вязкое разрушение детали.
Эта задача решается согласно изобретению посредством способа изготовления детали путем горячей деформации стальной заготовки, в котором заготовку нагревают до температуры деформации, а затем деформируют, причем деталь после деформации имеет бейнитную микроструктуру с минимальной прочностью на разрыв 800 МПа, который отличается тем, что указанную заготовку нагревают до температуры ниже температуры превращения А1, причем указанная заготовка изготовлена из стали, которая уже имеет микроструктуру с по меньшей мере 50% бейнита, и причем указанная заготовка имеет следующий состав сплава в мас. %:
С: 0,02-0,3
Si: 0,01-0,5
Μn: 1,0-3,0
Ρ: макс.0,02
S: макс.0,01
Ν: макс.0,01
Al: до 0,1
Cu: до 0,2
Cr: до 3,0
Ni: до 0,2
Mo: до 0,2
Ti: до 0,2
V: до 0,2
Nb: до 0,1
В: до 0,01.
По сравнению с известным из DE 60119826 Т2 или ЕР 2546375 A1 способом изготовления детали посредством закалки под прессом предложенный способ имеет то преимущество, что при заметно меньшей потребности в энергии для нагрева за счет использования уже бейнитной в исходном состоянии стали изготавливается деталь с механическими свойствами, равными или даже лучшими, чем механические свойства в исходном состоянии заготовки. Благодаря этому экономятся затраты на энергию.
По сравнению с DE 102011108162 A1 можно с помощью предложенного состава сплава и заготовки, уже в исходном состоянии имеющей микроструктуру с по меньшей мере 50% бейнита, отказаться от дополнительной операции холодной деформации заготовки для повышения прочности и целенаправленно установить требуемые механические свойства детали после полугорячей деформации.
Использование для заготовки стали с указанным составом сплава, которая уже является бейнитной, имеет большое преимущество, поскольку уже исходный материал имеет высокие прочность на разрыв и относительное удлинение, которые сохраняются или даже становятся выше после деформации (без превращения).
Используемая для осуществления способа согласно изобретению бейнитная сталь приобретает свою микроструктуру за счет соответствующего температурного профиля еще в процессе изготовления заготовки. В случае горячекатаной полосы обеспечение указанной микроструктуры может осуществляться, например, за счет термомеханической прокатки, а в случае холоднокатаной полосы, например, за счет процесса отжига после холодной прокатки или при горячем цинковании.
Наблюдаемого у других сталей повышенной прочности «размягчения» после. деформации у этой бейнитной стали не наблюдалось. «Размягчение» нередко сопутствует микроструктурному превращению и является, тем самым, критическим по времени и температуре. Напротив, используемая в соответствии с изобретением заготовка из бейнитной стали является в значительной степени невосприимчивой, так что намеренные или случайные изменения времени и температуры при нагреве и деформации не вызывают никаких ухудшений механических свойств. Благодаря этому выгодному поведению материала можно также осуществлять воспроизводимые многоступенчатые этапы процесса.
Особое преимущество использования этого состава сплава и бейнитной микроструктуры заключается в очень тонкой и однородной микроструктуре с по меньшей мере 50% бейнита и лишь небольшими долями феррита, остаточного аустенита и мартенсита.
Особенно предпочтительно для достижения требуемых механических свойств, если микроструктура содержит по меньшей мере 70% бейнита, а доли остаточного аустенита и мартенсита составляют менее 10%, а остаток состоит из феррита.
Особенно однородные и гомогенные свойства материала могут быть достигнуты в том случае, если бейнитная сталь заготовки имеет следующий состав сплава в мас. %:
С: 0,02-0,11
Si: 0,01-0,5
Μn: 1,0-2,0
Ρ: макс. 0,02
S: макс. 0,01
Ν: макс. 0,01
Alмин: 0,015-0,1
В: макс. 0,004
Nb+V+Ti: макс.0,2
В одном варианте осуществления изобретения сталь заготовки имеет следующий состав сплава в мас. %:
С: 0,05-0,11
Si: 0,1-0,5
Μn: 1,0-2,0
Ρ: макс. 0,02
S: макс. 0,01
Ν: 0,003-0,01
Alмин: 0,03-0,1
В: макс. 0,004
Mo: 0,04-0,2
Ti: 0,04-0,2
Nb+V+Ti: 0,1-0,2.
Добавка азота в количестве по меньшей мере 0,003-0,01 мас. % в комбинации с углеродом и минимальным содержанием титана 0,04-0,2 мас. % за счет образования карбонитридов титана обеспечивает мелкозернистую микроструктуру с высокими прочностными и вязкостными свойствами. За счет добавки молибдена в количестве 0,04-0,2 мас. % выгодным образом на очень низком уровне поддерживаются образующиеся выделения.
Сравнительные исследования проводились на сталях с приведенными в таблице 1 составами сплава. Результаты для механических свойств до и после полугорячей деформации приведены в таблице 2.
Исследовались листы толщиной 1,8-2,5 мм, которые нагревались в печи при температуре 600°C в течение 3 минут, а затем охлаждались в деформационном прессе между двумя плоскими компонентами.
Исследованные материалы обозначены в таблицах 1 и 2 буквами a, b, c, d, е, f. Составы материалов соответствуют составу согласно изобретению, причем, однако, микроструктуры в исходном состоянии были установлены по-разному. Сталь а имела в исходном состоянии перед нагревом до температуры деформации ферритно-бейнитную основную микроструктуру «FB», сталь b - бейнитную «В» микроструктуру, сталь с - смешанную микроструктуру из мартенсита, бейнита и феррита «MBF», причем доля мартенсита преобладала. Стали d и е имели ферритную основную микроструктуру «F», а сталь f - мартенситную «М» микроструктуру. У сталей а и с доля бейнита в микроструктуре составляла менее 50%, а у стали b - более 50%. Из таблицы 2 видно, что только сталь b с доминирующей бейнитной исходной микроструктурой заготовки отвечает после полугорячей деформации требованиям к механическим свойствам с минимальной прочностью на разрыв 800 МПа и минимальным относительным удлинением при разрыве А80 более 8%.
Figure 00000001
Figure 00000002
Типичными областями применения для использования высокого потенциала прочности при одновременном уменьшении массы детали являются строительство самоходных подъемных кранов, продольные и поперечные балки грузовых автомобилей и прицепов, части шасси легковых автомобилей и вагоностроение.
Сталь согласно изобретению или изготовленная из нее деталь отличается очень высокими пределом текучести и прочностью при растяжении свыше 800 МПа при соответственно высоком удлинении. Кроме того, химический состав обеспечивает очень хорошую свариваемость.
Описанная сталь может быть дополнительно снабжена известным образом тормозящим окалинообразование или коррозию слоем на лаковой основе или металлическим покрытием. Последнее может содержать цинк и/или магний и/или алюминий и/или кремний.
В противоположность распространенным технологическим маршрутам горяче- или холоднокатаная полоса с обработанной поверхностью может использоваться для деформации вслед за нагревом, поскольку адгезия и вязкость выдерживают полугорячую деформацию с небольшими степенями. Металлическое покрытие является стойким к кратковременному повторному нагреву комбинации подложка/покрытие (стальная полоса/покрытие) ниже температуры Ac1 подложки, чтобы выдержать повторный нагрев перед полугорячей деформацией и собственно во время нее.
Благодаря сравнительно небольшому количеству тепла можно отказаться от громоздких агрегатов для повторного нагрева, например туннельных или камерных печей или, в пользу систем быстрого или прямого действия (индуктивных, кондуктивных и, в частности, систем излучения).
Кроме того, в новом описанном способе можно обойтись значительно меньшей тепловой энергией, или энергетический к.п.д. выше, чем при закалке под прессом. За счет этого затраты на процесс ниже, а выброс CO2 уменьшается.
Предпочтительно повторный нагрев перед полугорячей деформацией осуществляется посредством излучения, поскольку в этом случае к.п.д. заметно выше, чем при нагреве в печи или при кондуктивном нагреве, а ввод энергии в материал в зависимости от характера поверхности происходит быстрее и эффективнее.
Материал также очень хорошо подходит для частичного нагрева. За счет использования, например, излучателей можно целенаправленно нагревать отдельные участки деформируемой заготовки, чтобы получить зоны оптимальной деформируемости. Это выгодным образом позволяет использовать традиционные прессы для холодной деформации, так что можно отказаться от сложной установки повторного нагрева, как это необходимо при закалке под прессом.
Для транспортировки между источником тепла и деформирующим инструментом также может быть целесообразным, особенно в случае очень тонких листов (например, <0,8 мм), предусмотреть профилирование листовых материалов для повышения локальной жесткости. Это невозможно при традиционной закалке под прессом, поскольку достигаемая прочность требует резкого охлаждения, которое исключается из-за внутренней поверхности в инструменте вследствие профилирования.
В предложенном способе заготовка нагревается до температуры ниже 720°C, предпочтительно в температурном диапазоне 400-700°C, а затем деформируется в деталь. Оптимальная температура деформации зависит от требуемой прочности детали и составляет приблизительно 500-700°C. Длительного времени выдержки для получения бейнитной структуры, как описано в ЕР 2546375 A1, не требуется, так что заметно сокращается время процесса для изготовления детали.
В одном предпочтительном варианте осуществления изобретения при нагреве заготовки до температуры деформации осуществляется локальное превышение температурного диапазона полугорячей деформации в диапазон аустенитизации для целенаправленно локальных изменений свойств (например, локальная закалка), которые в комбинации с повышением прочности остального материала приведены в соответствие с последующими требованиями к детали.

Claims (53)

1. Способ изготовления детали, имеющей бейнитную микроструктуру с минимальной прочностью на разрыв 800 МПа, включающий нагрев по меньшей мере части стальной заготовки до температуры горячей деформации и ее деформацию, отличающийся тем, что указанная заготовка изготовлена из стали, имеющей микроструктуру, содержащую по меньшей мере 50% бейнита, а нагрев по меньшей мере части заготовки осуществляют до температуры ниже температуры превращения Ас1, причем указанная заготовка имеет следующий состав стали, мас.%:
С: 0,02-0,3
Si: 0,01-0,5
Mn: 1,0-3,0
P: макс. 0,02
S: макс. 0,01
N: макс. 0,01
Al: до 0,1
Cu: до 0,2
Cr: до 3,0
Ni: до 0,2
Mo: до 0,2
Ti: до 0,2
V: до 0,2
Nb: до 0,1
B: до 0,01
Fe - остальное.
2. Способ по п. 1, отличающийся тем, что стальная заготовка имеет микроструктуру, содержащую по меньшей мере 70% бейнита, менее 10% остаточного аустенита и мартенсита, а остаток представляет собой феррит.
3. Способ по п. 1, отличающийся тем, что указанная стальная заготовка имеет следующий состав стали, мас.%:
C: 0,02-0,11
Si: 0,01-0,5
Mn: 1,0-2,0
P: макс. 0,02
S: макс. 0,01
N: макс. 0,01
Al: 0,015-0,1
B: макс. 0,004
Nb+V+Ti: макс. 0,2
Fe - остальное.
4. Способ по п. 1, отличающийся тем, что указанная стальная заготовка имеет следующий состав стали, мас.%:
C: 0,05-0,11
Si: 0,1-0,5
Mn: 1,0-2,0
P: макс. 0,02
S: макс. 0,01
N: 0,003-0,01
Al: 0,03-0,1
B: макс. 0,004
Mo: 0,04-0,2
Ti: 0,04-0,2
Nb+V+Ti: 0,1-0,2
Fe - остальное.
5. Способ по п. 1, отличающийся тем, что нагрев заготовки до температуры горячей деформации осуществляют лишь частично, а частичный нагрев, при необходимости, осуществляют выше температуры превращения Ас1.
6. Способ по п. 1, отличающийся тем, что указанную заготовку нагревают до температуры ниже 720°С.
7. Способ по п. 6, отличающийся тем, что указанную заготовку нагревают до температуры в диапазоне 400-700°С.
8. Способ по п. 7, отличающийся тем, что указанную заготовку нагревают до температуры в диапазоне 500-700°С.
9. Способ по п. 1, отличающийся тем, что перед нагревом указанную заготовку снабжают металлическим или лакообразным покрытием.
10. Способ по п. 9, отличающийся тем, что указанное металлическое покрытие содержит Zn, и/или Mg, и/или Si.
11. Способ по п. 1, отличающийся тем, что нагрев до температуры деформации осуществляют индуктивно, кондуктивно и/или посредством излучения.
12. Способ по любому из пп. 1-11, отличающийся тем, что в качестве указанной заготовки используют листовую заготовку или трубу.
13. Способ по п. 12, отличающийся тем, что указанная листовая заготовка образована из горяче- и/или холоднокатаной полосы.
14. Способ по п. 12, отличающийся тем, что указанная труба представляет собой бесшовную горячекатаную трубу или изготовленную из горяче- и/или холоднокатаной полосы сварную трубу.
15. Способ по п. 14, отличающийся тем, что указанная труба представляет собой бесшовную горячекатаную трубу или изготовленную из горяче- и/или холоднокатаной полосы сварную трубу, дополнительно подвергнутую одному или нескольким процессам волочения и/или отжига.
RU2015155181A 2013-05-28 2014-04-30 Способ изготовления детали путем горячей деформации стальной заготовки RU2664848C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102013009232.9 2013-05-28
DE102013009232.9A DE102013009232A1 (de) 2013-05-28 2013-05-28 Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus Stahl
PCT/DE2014/000233 WO2014190957A1 (de) 2013-05-28 2014-04-30 Verfahren zur herstellung eines bauteils durch warmumformen eines vorproduktes aus stahl

Publications (3)

Publication Number Publication Date
RU2015155181A RU2015155181A (ru) 2017-06-30
RU2015155181A3 RU2015155181A3 (ru) 2018-03-14
RU2664848C2 true RU2664848C2 (ru) 2018-08-23

Family

ID=50980089

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015155181A RU2664848C2 (ru) 2013-05-28 2014-04-30 Способ изготовления детали путем горячей деформации стальной заготовки

Country Status (6)

Country Link
US (1) US20160130675A1 (ru)
EP (1) EP3004401B1 (ru)
KR (1) KR20160014658A (ru)
DE (1) DE102013009232A1 (ru)
RU (1) RU2664848C2 (ru)
WO (1) WO2014190957A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2788982C1 (ru) * 2019-07-16 2023-01-26 Арселормиттал Стальная деталь и способ ее получения

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016151345A1 (fr) * 2015-03-23 2016-09-29 Arcelormittal Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication
WO2017006144A1 (en) 2015-07-09 2017-01-12 Arcelormittal Steel for press hardening and press hardened part manufactured from such steel
DE102016104800A1 (de) 2016-03-15 2017-09-21 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines warmumgeformten Stahlbauteils und ein warmumgeformtes Stahlbauteil
DE102016107141A1 (de) * 2016-04-18 2017-10-19 Benteler Steel/Tube Gmbh Kraftfahrzeuganhänger, Fahrwerkachse, insbesondere für einen Kraftfahrzeuganhänger und Verwendung der Fahrwerksachse und eines Werkstoffes
DE102016107143A1 (de) * 2016-04-18 2017-10-19 Benteler Steel/Tube Gmbh Kraftfahrzeug, Fahrwerkkomponente, insbesondere für eine Fahrwerkkomponente und Verwendung der Fahrwerkkomponente und eines Werkstoffes
DE102016107152B4 (de) 2016-04-18 2017-11-09 Salzgitter Flachstahl Gmbh Bauteil aus pressformgehärtetem, auf Basis von Aluminium beschichtetem Stahlblech und Verfahren zur Herstellung eines solchen Bauteils und dessen Verwendung
ES2906276T3 (es) * 2017-01-20 2022-04-18 thyssenkrupp Hohenlimburg GmbH Producto plano de acero laminado en caliente que está constituido por un acero de fase compleja con estructura predominantemente bainítica y procedimiento para la fabricación de un producto plano de acero de este tipo
EP3658692B1 (en) 2017-07-25 2021-11-10 Tata Steel IJmuiden B.V. Steel strip, sheet or blank for producing a hot formed part, part, and method for hot forming a blank into a part
DE102018102974A1 (de) 2018-02-09 2019-08-14 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus manganhaltigem Stahl und ein warmumgeformtes Stahlbauteil
DE102018207205A1 (de) * 2018-05-09 2019-11-14 Thyssenkrupp Ag Hybrides Stahl-Kunststoffgehäuse für Leistungselektronik
DE102018207211A1 (de) * 2018-05-09 2019-11-14 Thyssenkrupp Ag Hybrides Stahl-Kunststoffhalbzeug mit Abschirmeigenschaften
DE102019123334A1 (de) * 2019-08-30 2021-03-04 Mannesmann Precision Tubes Gmbh Stahlwerkstoff für eine Antriebswelle, Verfahren zur Herstellung einer Antriebswelle aus diesem Stahlwerkstoff und Antriebswelle hieraus
KR102359303B1 (ko) * 2020-06-18 2022-02-07 국방과학연구소 이차경화형 마르텐사이트 합금 및 이의 제조방법
CN116234932A (zh) * 2020-10-16 2023-06-06 日本制铁株式会社 热冲压用钢板及其制造方法以及热冲压构件及其制造方法
DE102022202607A1 (de) 2022-03-16 2023-09-21 Volkswagen Aktiengesellschaft Verfahren zur Herstellung eines Stahlblechbauteils und Kraftfahrzeug mit Stahlblechbauteil
CN117568569A (zh) 2022-08-08 2024-02-20 通用汽车环球科技运作有限责任公司 制备高性能冲压硬化钢部件的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010137317A1 (ja) * 2009-05-27 2010-12-02 新日本製鐵株式会社 疲労特性と伸び及び衝突特性に優れた高強度鋼板、溶融めっき鋼板、合金化溶融めっき鋼板およびそれらの製造方法
WO2011105600A1 (ja) * 2010-02-26 2011-09-01 住友金属工業株式会社 熱処理鋼材とその製造方法並びにその素材鋼材
RU2469102C2 (ru) * 2007-02-23 2012-12-10 Тата Стил Эймейден Б.В. Способ термомеханического придания формы конечному продукту с очень высокой прочностью и полученный таким образом продукт
DE102011108162B4 (de) * 2011-07-20 2013-02-21 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus Stahl

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4318931C1 (de) * 1993-06-03 1994-12-01 Mannesmann Ag Verfahren zur Herstellung von geschweißten Rohren
FR2807447B1 (fr) 2000-04-07 2002-10-11 Usinor Procede de realisation d'une piece a tres hautes caracteristiques mecaniques, mise en forme par emboutissage, a partir d'une bande de tole d'acier laminee et notamment laminee a chaud et revetue
DE102004028236B3 (de) 2004-06-11 2005-11-17 Rolf-Josef Schwartz Verfahren und Vorrichtung zum Erwärmen von Werkstücken vor der Warm- oder Halbwarmumformung
DE112006003169B4 (de) * 2005-12-01 2013-03-21 Posco Stahlbleche zum Warmpressformen mit ausgezeichneten Wärmebehandlungs- und Schlageigenschaften, daraus hergestellte Warmpressteile und Verfahren zu deren Herstellung
DE102010024664A1 (de) 2009-06-29 2011-02-17 Salzgitter Flachstahl Gmbh Verfahren zum Herstellen eines Bauteils aus einem lufthärtbaren Stahl und ein damit hergestelltes Bauteil
JP5327106B2 (ja) 2010-03-09 2013-10-30 Jfeスチール株式会社 プレス部材およびその製造方法
WO2012048841A1 (en) * 2010-10-12 2012-04-19 Tata Steel Ijmuiden B.V. Method of hot forming a steel blank and the hot formed part
US9475113B2 (en) * 2011-04-28 2016-10-25 Kobe Steel, Ltd. Process for producing hot press-formed product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2469102C2 (ru) * 2007-02-23 2012-12-10 Тата Стил Эймейден Б.В. Способ термомеханического придания формы конечному продукту с очень высокой прочностью и полученный таким образом продукт
WO2010137317A1 (ja) * 2009-05-27 2010-12-02 新日本製鐵株式会社 疲労特性と伸び及び衝突特性に優れた高強度鋼板、溶融めっき鋼板、合金化溶融めっき鋼板およびそれらの製造方法
WO2011105600A1 (ja) * 2010-02-26 2011-09-01 住友金属工業株式会社 熱処理鋼材とその製造方法並びにその素材鋼材
DE102011108162B4 (de) * 2011-07-20 2013-02-21 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Bauteils durch Warmumformen eines Vorproduktes aus Stahl

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2788982C1 (ru) * 2019-07-16 2023-01-26 Арселормиттал Стальная деталь и способ ее получения
RU2795257C1 (ru) * 2020-03-02 2023-05-02 Арселормиттал Высокопрочный холоднокатаный и отожжённый оцинкованный стальной лист и способ его изготовления

Also Published As

Publication number Publication date
WO2014190957A1 (de) 2014-12-04
RU2015155181A (ru) 2017-06-30
US20160130675A1 (en) 2016-05-12
KR20160014658A (ko) 2016-02-11
EP3004401A1 (de) 2016-04-13
EP3004401B1 (de) 2017-05-31
DE102013009232A1 (de) 2014-12-04
RU2015155181A3 (ru) 2018-03-14

Similar Documents

Publication Publication Date Title
RU2664848C2 (ru) Способ изготовления детали путем горячей деформации стальной заготовки
CN110088342B (zh) 具有高成形性的高强度冷轧钢板及其制造方法
RU2627068C2 (ru) ВЫСОКОПРОЧНАЯ МНОГОФАЗНАЯ СТАЛЬ И СПОСОБ ДЛЯ ИЗГОТОВЛЕНИЯ ПОЛОСЫ ИЗ ЭТОЙ СТАЛИ С МИНИМАЛЬНЫМ ПРЕДЕЛОМ ПРОЧНОСТИ ПРИ РАСТЯЖЕНИИ 580 МПа
EP3260569A1 (en) Steel plate used for hot stamping forming, forming process of hot stamping and hot-stamped component
CA3135015A1 (en) Steel sheet having excellent toughness, ductility and strength, and manufacturing method thereof
CN111936657B (zh) 高强度钢板及其制造方法
RU2725939C1 (ru) Способ изготовления подвергнутой повторному формованию детали из плоского стального продукта с содержанием марганца и деталь такого типа
KR20180025930A (ko) 초 고강도 다중상 강철 및 그로부터 냉간 압연 강 스트립을 제조하는 방법
US20180044759A1 (en) High-strength air-hardening multi-phase steel comprising outstanding processing properties and method for the production of a steel strip from said steel
US20180347018A1 (en) High-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel
KR20180099867A (ko) 고강도 강판 및 그 제조 방법
CN112585284A (zh) 由钢形成的具有高抗拉强度的板材成型件及其制造方法
US10246758B2 (en) Method for producing a component from steel by hot forming
JP7239685B2 (ja) 穴広げ率の高い熱間圧延鋼板及びその製造方法
CN110088336B (zh) 高温延伸特性优异的高强度钢板、温压成型部件以及它们的制造方法
KR101657842B1 (ko) 버링성이 우수한 고강도 냉연강판 및 그 제조방법
KR20130106142A (ko) 연신율 및 굽힘가공성이 우수한 초고강도 냉연강판 및 이의 제조방법
JP2016141888A (ja) 高強度高延性鋼板の製造方法
KR102294760B1 (ko) 열간 성형된 강재 구성성분을 생산하기 위한 방법 및 열간 성형된 강재 구성성분
KR102164092B1 (ko) 버링성이 우수한 고강도 냉연강판 및 합금화 용융아연도금강판
CA3182944A1 (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
CN108467997B (zh) 一种屈服强度为1100MPa级的沉淀强化型铁素体钢及生产方法
WO2019154753A1 (de) Verfahren zur herstellung eines bauteils durch warmumformen eines vorproduktes aus manganhaltigem stahl und ein warmumgeformtes stahlbauteil
CN113195773B (zh) 冲缘加工性优异的高强度冷轧钢板和合金化热浸镀锌钢板及其制造方法
CN114761584A (zh) 经热处理的冷轧钢板及其制造方法