RU2663750C2 - Способ изготовления композитного материала - Google Patents

Способ изготовления композитного материала Download PDF

Info

Publication number
RU2663750C2
RU2663750C2 RU2015152050A RU2015152050A RU2663750C2 RU 2663750 C2 RU2663750 C2 RU 2663750C2 RU 2015152050 A RU2015152050 A RU 2015152050A RU 2015152050 A RU2015152050 A RU 2015152050A RU 2663750 C2 RU2663750 C2 RU 2663750C2
Authority
RU
Russia
Prior art keywords
fibers
matrix
binder
temperature
substrate
Prior art date
Application number
RU2015152050A
Other languages
English (en)
Other versions
RU2015152050A (ru
Inventor
Эрик Джон КИИЛУНЕН
Кеннет Брайан КЕРАНЕН
Мэттью Пол КЕРО
Original Assignee
Неувокас Корпорейшн
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Неувокас Корпорейшн filed Critical Неувокас Корпорейшн
Publication of RU2015152050A publication Critical patent/RU2015152050A/ru
Application granted granted Critical
Publication of RU2663750C2 publication Critical patent/RU2663750C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/521Pultrusion, i.e. forming and compressing by continuously pulling through a die and impregnating the reinforcement before the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/04Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds
    • B29C43/06Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles using movable moulds continuously movable in one direction, e.g. mounted on chains, belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • B29C70/526Pultrusion dies, e.g. dies with moving or rotating parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/50Shaping or impregnating by compression not applied for producing articles of indefinite length, e.g. prepregs, sheet moulding compounds [SMC] or cross moulding compounds [XMC]
    • B29C70/52Pultrusion, i.e. forming and compressing by continuously pulling through a die
    • B29C70/525Component parts, details or accessories; Auxiliary operations
    • B29C70/528Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/542Placing or positioning the reinforcement in a covering or packaging element before or during moulding, e.g. drawing in a sleeve

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Moulding By Coating Moulds (AREA)
  • Nonwoven Fabrics (AREA)
  • Laminated Bodies (AREA)

Abstract

Изобретение относится к способу изготовления композитных материалов, конкретнее к способу изготовления полимерных материалов, армированных волокнами. Способ изготовления конструктивного элемента включает в себя этапы, на которых предварительно нагревают множество волокон до первой температуры, перемещают предварительно нагретые волокна вдоль сборочной линии, наносят связующее на по меньшей мере одно из предварительно нагретых волокон, обеспечивают матрицей, имеющей форму для приема предварительно нагретых волокон, причем матрица перемещается вместе с предварительно нагретыми волокнами вдоль по меньшей мере участка сборочной линии, поддерживают температуру множества волокон на уровне температуры, по существу подобной первой температуре, и сжимают множество волокон внутри матрицы при поддержании температуры. Изобретение обеспечивает экономически эффективный способ изготовления изделий, армированных волокнами. 21 з.п. ф-лы, 16 ил.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к способу изготовления композитных материалов и, конкретнее, к способу изготовления полимерных материалов, армированных волокнами.
Уровень техники
Полимеры, армированные волокнами, включают в себя волокнистый материал, связанный матрицей, обычно обеспеченной связующим, например, смолой. Полимеры, армированные волокнами, традиционно изготавливаются с использованием процесса пултрузии, пример которого проиллюстрирован на Фиг. 1.
В процессе пултрузии входящее волокно 5 протягивается через производственную линию 10 тянущим механизмом 15, например, парой приводных роликов 20. Волокно 5 втягивается в ванну 25, содержащую одно из множества связующих. После смачивания волокно 5 протягивается через неподвижную матрицу 30, которая может иметь одну или более зон нагрева, чтобы инициировать отверждение связующего. В процессе пултрузии матрица 30 выполняет несколько функций. Она создает давление для содействия смачиванию волокна 5, нагревает связующее и волокно 5, управляет отверждением связующего и управляет конечной формой изделия, получаемого пултрузией.
Связующие имеют профили отверждения, которые диктуются химическими реакциями (отверждение, сшивание, высушивание и т.д.). Эти профили отверждения представляют собой функции химической активности связующего, температуры процесса и времени выдержки при температуре процесса. Когда скорости производства увеличиваются, становится все более трудным обеспечивать подходящее отверждение связующего.
Традиционный процесс пултрузии, проиллюстрированный на Фиг. 1, имеет присущие ему ограничения, которые значительно препятствуют скорости процесса. Длина матрицы 30 является основным ограничением на скорость процесса с температурой процесса, трением при процессе и удалением технологического газа, обеспечивающими другие предельные ограничения. Ванна 25 для связующего имеет свои собственные недостатки, включая трудности смешивания и поддержания многокомпонентных реактивных связующих, излишнее количество отходов и высокие эксплуатационные расходы из-за обычно большого объема связующего, необходимого для заполнения ванны 25. Прежде изготовление изделий, армированных волокнами, не было экономически эффективным, в особенности, если один или более быстроотверждающихся термореактивных полимеров и/или многокомпонентный термореактивный полимер использовались в качестве части связующего по меньшей мере по причинам, перечисленным выше.
Сущность изобретения
В некоторых вариантах выполнения изобретение предлагает способ изготовления конструктивного элемента. Способ включает в себя этапы, на которых предварительно нагревают множество волокон до первой температуры, перемещают предварительно нагретые волокна вдоль сборочной линии и наносят связующее на по меньшей мере одно из предварительно нагретых волокон, причем, когда связующее наносят, волокна расположены на расстоянии друг от друга и проходят через первую область. Способ дополнительно включает в себя этап, на котором обеспечивают матрицей, имеющей первый участок с первым диаметром, расположенный с возможностью приема предварительно нагретых волокон, и второй участок со вторым диаметром, расположенный после первого участка, причем первый диаметр больше второго диаметра, и причем матрица сужается между первым участком и вторым участком. После нанесения связующего способ дополнительно включает в себя этап, на котором направляют множество волокон вдоль матрицы. Способ дополнительно включает в себя этап, на котором уменьшают расстояние между множеством волокон с помощью матрицы, причем после уменьшения расстояния между множеством волокон волокна проходят через вторую область, которая меньше, чем первая область, и после уменьшения поддерживают температуру множества волокон на уровне температуры, по существу подобной первой температуре. Способ дополнительно включает в себя этапы, на которых при поддержании температуры формуют множество волокон с помощью первой станции формования, при поддержании температуры формуют множество волокон с помощью второй станции формования, расположенной на расстоянии от первой станции формования, и при поддержании температуры формуют множество волокон с помощью третьей станции формования, расположенной на расстоянии от первой и второй станций формования.
В некоторых вариантах выполнения изобретение предлагает способ изготовления конструктивного элемента. Способ включает в себя этапы, на которых предварительно нагревают множество волокон до первой температуры, перемещают предварительно нагретые волокна вдоль сборочной линии и наносят связующее на по меньшей мере одно из предварительно нагретых волокон, причем, когда связующее наносят, волокна расположены на расстоянии друг от друга и проходят через первую область. Нанесение связующего включает в себя по меньшей мере один из следующих этапов: этапа, на котором распыляют связующее на по меньшей мере одно из множества волокон, и этапа, на котором экструдируют связующее из камеры под давлением и перемещают по меньшей мере одно волокно через экструдированное связующее. После нанесения связующего способ дополнительно включает в себя этап, на котором направляют предварительно нагретые волокна вдоль матрицы и уменьшают расстояние между множеством волокон с помощью матрицы, причем после уменьшения расстояния между множеством волокон волокна проходят через вторую область, которая меньше, чем первая область. После уменьшения способ дополнительно включает в себя этап, на котором поддерживают температуру множества волокон на уровне температуры, по существу подобной первой температуре. Способ дополнительно включает в себя этапы, на которых формуют множество волокон с помощью первой станции формования при поддержании температуры, формуют множество волокон с помощью второй станции формования, расположенной на расстоянии от первой станции формования при поддержании температуры, и формуют множество волокон с помощью третьей станции формования, расположенной на расстоянии от первой и второй станций формования при поддержании температуры.
В некоторых вариантах выполнения изобретение включает в себя способ изготовления непрерывного конструктивного элемента. Способ включает в себя этапы, на которых предварительно нагревают множество волокон до первой температуры, перемещают предварительно нагретые волокна вдоль сборочной линии, наносят связующее на по меньшей мере одно из предварительно нагретых волокон, обеспечивают матрицей, имеющей форму для приема предварительно нагретых волокон, причем матрица перемещается вместе с предварительно нагретыми волокнами вдоль по меньшей мере участка сборочной линии, поддерживают температуру множества волокон на уровне температуры, по существу подобной первой температуре и сжимают множество волокон внутри матрицы при поддержании температуры.
Другие признаки и аспекты изобретения станут очевидными при рассмотрении следующего далее подробного описания и сопровождающих чертежей.
Краткое описание чертежей
Фиг. 1 представляет собой схематическое представление типичного процесса пултрузии.
Фиг. 2 представляет собой схематическое представление сборочной линии согласно некоторым вариантам выполнения изобретения.
Фиг. 3 представляет собой вид в перспективе участка сборочной линии на Фиг. 2.
Фиг. 4 представляет собой вид в перспективе участка сборочной линии на Фиг. 2.
Фиг. 5 иллюстрирует узел нанесения связующего согласно одному варианту выполнения для использования в сборочной линии на Фиг. 2.
Фиг. 6 и 7 иллюстрируют узел нанесения связующего согласно некоторым вариантам выполнения для использования в сборочной линии на Фиг. 2.
Фиг. 8 представляет собой вид в перспективе другого участка сборочной линии на Фиг. 2, иллюстрирующий матрицу, свернутую по длине смоченных волокон.
Фиг. 9 представляет собой представление в перспективе матрицы, сворачиваемой по длине смоченных волокон.
Фиг. 10 представляет собой вид с торца станции формования сборочной линии на Фиг. 2.
Фиг. 11 представляет собой схематическое представление станции формования согласно некоторым вариантам выполнения.
Фиг. 12 представляет собой схематическое представление станции формования согласно некоторым вариантам выполнения.
Фиг. 13 представляет собой схематическое представление станции формования согласно некоторым вариантам выполнения.
Фиг. 14 представляет собой схематическое представление станции формования согласно некоторым вариантам выполнения.
Фиг. 15 представляет собой схематическое представление станции формования согласно некоторым вариантам выполнения.
Фиг. 16 представляет собой схематическое представление станции формования согласно некоторым вариантам выполнения.
Прежде чем какие-либо варианты выполнения изобретения буду подробно объяснены, следует понимать, что изобретение не ограничивается в своем применении деталями конструкции и расположением компонентов, изложенными в нижеследующем описании или проиллюстрированными на следующих чертежах. Изобретение может иметь другие варианты выполнения и быть выполнено на практике или осуществлено различными способами. Также следует понимать, что фразеология и терминология, используемые в данном описании, употребляются здесь с целью описания и их не следует рассматривать в качестве ограничений.
Подробное описание
Фиг. 2 и 3 иллюстрируют сборочную линию 100 для изготовления конструкционных композитов из полимера, армированного волокнами (FRP), (т.е. матричных композитов). Конструкционные композиты могут образовывать широкое множество конструктивных элементов, таких как арматура, двутавровые балки, C-образные каналы, трубы, конструкционные многослойные материалы и т.п. Проиллюстрированная сборочная линия 100 включает в себя станцию 105 ровинга, станцию 110 нанесения связующего и множество станций 115 формования. В некоторых вариантах выполнения дополнительные или альтернативные станции могут быть включены в сборочную линию 100. Сборочная линия 100 в общем является линейной и определяет центральную ось 120, вдоль которой производится конструкционный композит (Фиг. 3). Как описано здесь более подробно, сборочная линия 100 позволяет конструкционным композитам из FRP непрерывно изготавливаться при высокой скорости.
Станция 105 ровинга включает в себя множество катушек или бобин 125, которые поддерживают и выдают пряди или ровинги волокна 130, включаемого в конструкционный композит. В проиллюстрированном варианте выполнения волокно 130 включает в себя базальт; однако волокно 130 может включать в себя стекло, арамид, углерод или любой другой требуемый волокнистый материал. Бобины 125 могут быть соединены с системой силового привода, которая управляет скоростью подачи волокна. В таких вариантах выполнения натяжные валики или другие автоматические устройства натяжения (не показаны) могут быть выполнены с возможностью поддержания стабильного натяжения на волокнах 130.
После выдачи с бобин 125 волокна 130 проходят через направляющий узел 135, который размещает волокна 130 для смачивания на станции 110 нанесения связующего (Фиг. 3 и 4). В некоторых вариантах выполнения направляющий узел 135 может размещать волокна 130 в плоскости для обеспечения относительно большой прямоугольной площади поверхности для смачивания. Альтернативно, направляющий узел 135 может размещать волокна 130 в другие узоры, например, цилиндрические, трубчатые или спиральные узоры.
В некоторых вариантах выполнения станция 105 ровинга включает в себя один или более нагревательных элементов (не показаны) для предварительного нагрева волокон 130 до требуемой температуры, прежде чем они будут выданы к станции 110 нанесения связующего. Нагревательные элементы могут быть расположены внутри самих бобин 125 или могут быть внешними по отношению к бобинам 125. Например, нагретый воздух может быть направлен над волокнами 130, когда они покидают станцию 105 ровинга. Предварительный нагрев волокон 130 может уменьшать подвод энергии, требуемый на станции 110 нанесения связующего, и может помогать стабилизировать процесс отверждения связующего, описанный более подробно ниже.
За счет относительно небольшого диаметра волокон (по сравнению с диаметром сгруппированных волокон в матрице и станциях формования) меньше времени и/или энергии требуется для предварительного нагрева отдельных волокон, чем требовалось бы для нагрева сгруппированных волокон в одной или более станциях формования. Станции формования выполнены с возможностью поддержания повышенной температуры предварительно нагретых волокон. В некоторых вариантах выполнения связующее нагревается до нанесения на волокна 130.
На Фиг. 2 и 3 станция 110 нанесения связующего расположена после станции 105 ровинга так, что волокна 130, выходящие из направляющего узла 135, втягиваются в станцию 110 нанесения связующего для смачивания связующим, например, смолой. В проиллюстрированном варианте выполнения связующее представляет собой термореактивный полимер, такой как фенольная смола или эпоксидная смола. В других вариантах выполнения связующее может включать в себя полиэфир, виниловый эфир, портландцемент или любое другое подходящее связующее.
Станция 110 нанесения связующего выполнена с возможностью нанесения требуемого количества связующего на волокна точно дозированным образом. Конкретно, в зависимости от требуемого соотношения связующего и волокон соответствующее количество связующего может быть нанесено непосредственно на волокна. Это прямо противоположно ванне для связующего, показанной на Фиг. 1, которая не управляет количеством связующего, которое наносится на волокна. Избыток связующего должен быть удален, и, таким образом, создается больше отходов. Также вся ванна для связующего должна поддерживаться при соответствующей температуре, что является пустой тратой энергии для нагрева дополнительного связующего, в особенности когда часть нагретого связующего удаляется с волокон. Также изделие, производимое с помощью ванны для связующего, может быть непостоянным, так как соотношение волокон и связующего не регулируется. В настоящем изобретении количество связующего, наносимого на волокна, может регулироваться для обеспечения требуемого качества и однородности производимого изделия.
Фиг. 3-5 иллюстрируют один вариант выполнения станции 110 нанесения связующего. В проиллюстрированном варианте выполнения станция 110 нанесения связующего включает в себя резервуар 140 под давлением. Резервуар 140 под давлением принимает связующее от источника 145 связующего, такого как бункер или емкость для хранения (Фиг. 2). Резервуар 140 включает в себя концевую пластину 150, имеющую впускное отверстие 155, через которое связующее может вводиться (Фиг. 5). Связующее далее экструдируется под давлением через множество каналов 160, проходящих радиально наружу от впускного отверстия 155. Каналы 160 сообщаются с областями 165 смачивания, расположенными на внешней периферии концевой пластины 150.
Во время работы связующее непрерывно экструдируется через каналы 160 и в области 165 смачивания. Волокна 130 проходят через области 165 смачивания для смачивания связующим, начиная формование матричного композита. В проиллюстрированном варианте выполнения концевая пластина 150 включает в себя две области 165 смачивания, смещенные относительно друг друга примерно на 180 градусов. Таким образом, волокна 130 могут быть размещены вдоль двух путей, которые смачиваются одновременно. Волокна 130 расположены на расстоянии друг от друга при перемещении через области 165 смачивания для содействия полному покрытию волокон 130 связующим. В других вариантах выполнения концевая пластина 150 может включать в себя любое количество областей смачивания. Рабочее давление резервуара 140, и количество, и размер каналов 160 могут быть переменными для обеспечения требуемой скорости смачивания.
Фиг. 6 и 7 иллюстрируют участки станции 110а нанесения связующего согласно другому варианту выполнения. Станция 110а нанесения связующего может использоваться с любым из вариантов выполнения, описанных здесь. В некоторых вариантах выполнения станция 110а нанесения связующего используется в дополнение к станции нанесения связующего, проиллюстрированной и описанной в других вариантах выполнения, тогда как в других вариантах выполнения станция 110а нанесения связующего используется на месте станции нанесения связующего, проиллюстрированной и описанной в других вариантах выполнения. В проиллюстрированном варианте выполнения станция 110а нанесения связующего включает в себя матрицу 170, которая направляет входящие волокна 130 в в общем суженную или коническую конструкцию. Матрица 170 может быть способна к перемещению в продольном направлении (т.е. вдоль центральной оси 120). Это перемещение может способствовать формованию входящих волокон 130 в в общем непрерывную стенку или лист. Станция 110а нанесения связующего включает в себя распылительную форсунку 175, которая принимает связующее от источника 145 связующего (Фиг. 2) и выполнена с возможностью распыления струи связующего на входящие волокна 130. Положение форсунки 175 может быть изменено в продольном направлении для регулирования характеристик распыления связующего.
В еще одном альтернативном варианте выполнения станция нанесения связующего может включать в себя ванну для связующего. После прохождения через ванну волокна 130 могут быть направлены через последовательность параллельных роликов для механического перемешивания и физического вовлечения связующего в проходящие волокна. Содержание связующего в пропитанных волокнах может регулироваться с использованием щеток и/или роликов. В дополнение содержание связующего может регулироваться путем направления части волокон 130 в обход ванны для связующего.
В этом альтернативном варианте выполнения сборочная линия 100 может дополнительно включать в себя группирующую станцию печи между станцией нанесения связующего и одной или более станциями 115 формования, чтобы нагревать пропитанное связующим волокно 130, завершать процесс смачивания, начинать процесс отверждения и приближенно формовать смоченные волокна. В дополнение группирующая станция печи может включать в себя один или более приводных роликов для протягивания волокон от станции 105 ровинга и через станцию нанесения связующего.
На Фиг. 2, 4, 8, и 9 сборочная линия 100 дополнительно включает в себя непрерывно соответствующую перемещающуюся матрицу 180, которая оборачивается вокруг смоченных волокон 130, когда они выходят из станции 110 нанесения связующего. Проиллюстрированная матрица 180 представляет собой полосу бумаги, подаваемую из рулона 185 (Фиг. 4). Бумажная матрица 180 перемещается вдоль центральной оси 120 смежно смоченным волокнам 130, и последовательность тефлоновых направляющих пластин 190 постепенно сворачивает матрицу 180 вокруг смоченных волокон 130, пока матрица полностью не окружит и не заключит в себе смоченные волокна 130 (Фиг. 8 и 9). Когда смоченные волокна 130 входят в первый участок или входной участок 195 матрицы 180, волокна 130 сжимаются из относительно большой прямоугольной области в меньшую в общем круглую область, соответствующую диаметру матрицы на входном участке 195.
Матрица 180 перемещается со смоченными волокнами 130 через остальную часть сборочной линии 100. Как описано более подробно ниже, матрица 180 облегчает перемещение смоченных волокон 130 через станцию 115 формования, предотвращая прилипание смоченных волокон 130 к станциям 115 формования. В дополнение матрица 180 удерживает смоченные волокна 130 во время отверждения, облегчает смешивание связующего и волокон 130 для обеспечения тщательного смачивания и помогает поддержать постоянное давление и температуру отверждения.
Скорость процесса или скорость выпуска изделия сборочной линии 100 и любого другого непрерывного процесса изготовления FPR определяется по следующей формуле:
Figure 00000001
Так как непрерывно соответствующая перемещающаяся матрица 180 перемещается со смоченными волокнами 130, она может быть во много раз длиннее, чем неподвижная матрица 30, используемая в типичном процессе пултрузии (Фиг. 1). Соответственно, сборочная линия 100 может работать со скоростью процесса во много раз большей, чем у типичного процесса пултрузии. Например, если перемещающаяся матрица имеет длину 2000 футов, и связующее требует 2 минуты для отверждения, сборочная линия 100 будет иметь потенциальную скорость процесса 1000 футов в минуту. В некоторых вариантах выполнения сборочная линия 100 выполнена с возможностью иметь скорость процесса больше чем около 20 футов в минуту. В других вариантах выполнения сборочная линия 100 выполнена с возможностью иметь скорость процесса между около 20 футов в минуту и около 40 футов в минуту. В других вариантах выполнения сборочная линия 100 выполнена с возможностью иметь скорость процесса между около 40 футов в минуту и около 60 футов в минуту. В других вариантах выполнения сборочная линия 100 выполнена с возможностью иметь скорость процесса между около 60 футов в минуту и около 80 футов в минуту. В других вариантах выполнения сборочная линия 100 выполнена с возможностью иметь скорость процесса между около 80 футов в минуту и около 100 футов в минуту. В других вариантах выполнения сборочная линия 100 выполнена с возможностью иметь скорость процесса между около 50 футов в минуту и около 100 футов в минуту. В других вариантах выполнения сборочная линия 100 выполнена с возможностью иметь скорость процесса между около 20 футов в минуту и около 100 футов в минуту. В других вариантах выполнения сборочная линия 100 выполнена с возможностью иметь скорость процесса между около 20 футов в минуту и около 1000 футов в минуту. В других вариантах выполнения сборочная линия 100 выполнена с возможностью иметь скорость процесса между около 100 футов в минуту и около 1000 футов в минуту.
Бумажная матрица 180 может быть покрыта разделительным агентом, таким как силикон, для облегчения удаления матрицы 180 из готового конструкционного композита. В дополнение бумажная матрица 180 может быть относительно пористой, чтобы позволять газу и пару выводиться через матрицу 180. Альтернативно, матрица 180 может быть по существу воздухонепроницаемой.
Матрица 180 может включать в себя другие материалы подложки или комбинации материалов, наносимых на смоченные волокна 130 различными способами. Например, В некоторых вариантах выполнения матрица 180 может включать в себя порошок или жидкость (например, расплавленный воск), которая наносится на смоченные волокна 130 и в дальнейшем затвердевает или отверждается с использованием ультрафиолетового света, температуры, химического реагента или других пригодных средств. В других вариантах выполнения матрица 180 может включать в себя паровыводяющую микропористую мембрану, такую как GORE-TEX. В других вариантах выполнения матрица 180 может включать в себя макропористый материал, такой как тканый материал или волокнистый мат. В других вариантах выполнения матрица 180 может включать в себя одну или более металлических пленок, таких как нерасходуемая нержавеющая сталь, покрытие из углеродистой стали или медь и т.д.
В некоторых вариантах выполнения матрица 180 может быть смочена связующим для связывания матрицы 180 с матричным композитом, тем самым создавая встроенную конструкцию, которая включает в себя всю или участок матрицы 180. Таким образом, материал матрицы может быть выбран для обеспечения производимого конструкционного композита дополнительными требуемыми свойствами. Например, матрица 180 может включать в себя электропроводящий материал для обеспечения электрической проводимости для непроводящего композита. Материал матрицы может иметь сродство к внешнему связывающему соединению (например, портландцементу) для облегчения интеграции конструкционного композита (например, арматуры) в его особом применении (например, железобетоне).
На Фиг. 2-4 станции 115 формования расположены после станции 110 нанесения связующего. В проиллюстрированном варианте выполнения сборочная линия 100 включает в себя первую, вторую и третью станции 115 формования, которые расположены на расстоянии друг от друга вдоль центральной оси 120 (Фиг. 2). В других вариантах выполнения сборочная линия 100 может включать в себя любое количество станций 115 формования.
Каждая из станций 115 формования включает в себя по меньшей мере одну направляющую, которая контактирует с и формует волокна 130. В некоторых вариантах выполнения направляющая может включать в себя один или более роликов с одним или более пазами, имеющими размер для приема и формования волокон 130. В некоторых вариантах выполнения направляющая может включать в себя одну или более неподвижных или вращающихся матриц, которые имеют одно или более отверстий, имеющих размер для приема и формования волокон 130. И пазы в роликах и отверстия в неподвижных матрицах могут иметь различные формы и размеры для формования волокон 130 различных форм и размеров.
Каждая из проиллюстрированных станций 115 формования включает в себя множество роликов 200. Ролики 200 размещены по парам, и каждый включает в себя канавку 205, через которую волокна 130 обернутые матрицей прокатываются и формуются (Фиг. 10). В некоторых вариантах выполнения пары роликов 200 может быть размещены в различных ориентациях. Например, пары роликов 200 могут чередоваться между горизонтальной и вертикальной ориентациями. Некоторые или все ролики 200 могут приводиться в движение с использованием приводных двигателей с переменной скоростью для протягивания матрицы 180 и волокон 130 через сборочную линию 100.
На Фиг. 2 и 3 каждая станция 115 формования может дополнительно включать в себя теплопередающие панели (не показаны) для позволения точного управления температурой процесса. Например, каждая станция 115 формования может управляться для поддержания смоченных волокон 130 при стабильной, управляемой температуре, которая отверждает связующее со скоростью, которая соответствует скорости процесса. Конкретная температура зависит от типа используемого связующего и скорости процесса сборочной линии. В некоторых вариантах выполнения фенольная смола используется в качестве связующего, и волокна поддерживается при температуре около 160 градусов Цельсия. В некоторых вариантах выполнения эпоксидная смола используется в качестве связующего, и волокна поддерживаются при температуре между около 50 и около 90 градусами Цельсия. Соответственно, процесс отверждения связующего может быть завершен, тогда как формованные, смоченные волокна 130 перемещаются через станции 115 формования.
Температура процесса может регулироваться в нескольких зонах вдоль длины каждой станции 115 формования для повышения или уменьшения скорости отверждения вдоль длины матрицы 180. Ролики 200 оказывают давление на матрицу 180 для обеспечения требуемого давления отверждения. Когда матрица 180 и волокна 130 проходят между смежными станциями 115 формования, изделие может быть охлаждено, если требуется, (либо под воздействием окружающей среды между смежными станциями 115 формования, либо с помощью управляемых охлаждающих зон), и газ или пар от изделий может быть выпущен через матрицу 180. Это невозможно в типичном процессе пултрузии, так как неподвижные матрицы 30 (Фиг. 1) обычно являются непроницаемыми. В некоторых вариантах выполнения одна или более станций 115 формования охлаждают матрицу 180 и волокна 130 до температуры ниже температуры стеклования связующего. В связи с этим матрица 180 и волокна 130, выдаваемые из станций 115 формования, могут поддерживать свою форму. В других вариантах выполнения матрица 180 и волокна 130 не охлаждаются ниже температуры стеклования до того момента, пока матрица 180 и волокна 130 не выйдут из станций 115 формования для позволения конечного преобразования матрицы 180 и волокон 130 в требуемую конечную форму и/или формования любых конфигураций поверхности (таких как, например, ребра, выступы, выемки и/или другие подходящие конфигурации поверхности).
В типичном процессе зазоры между любыми станциями должны быть минимизированы так, что подходящая опора предлагается для волокон вдоль всей длины сборочной линии. Для сравнения, проиллюстрированные станции 115 формования расположены на расстоянии друг от друга в направлении подачи матрицы, так как матрица 180 обеспечивает достаточные опоры для волокон 130 между станциями 115 формования. Пространство между станциями 115 формования позволяет выпуск воздуха и воды из матрицы 180 и волокон 130. Дополнительно расположенные на расстоянии друг от друга станции 115 формования проходят на большем расстоянии, чем если бы станции 115 формования находились бы непосредственно рядом. Увеличение общей протяженности станций 115 формования позволяет матрице 180 перемещаться через станции 115 формования с более высокой скоростью, в то же время частично или полностью отверждаясь в станциях 115 формования. В связи с этим используя большее количество станций 115 формования и расположенные на расстоянии друг от друга станции 115 формования, скорость процесса может быть увеличена, тем самым увеличивая производительность и рентабельность. Расстояние между станциями 115 формования также уменьшает капитальную стоимость постройки и установки узла по сравнению с конструкцией, в которой станции формования являются смежными по всей длине узла формования. Станции 115 формования могут быть модульными так, что одна или более станций 115 формования могут быть добавлены, удалены или отремонтированы без существенного снижения уровня производства. Вместо прекращения производства на всей сборочной линии (как требовалось бы для блоков, которые использовали одну неподвижную матрицу) производство будет прекращено на кратковременный период, чтобы позволять добавление, удаление или замену одной или более станций 115 формования. Удаленная станция 115 формования может быть отремонтирована или сохранена, в то время как сборочная линия находится в работе.
На Фиг. 11-16 одна или более станций 115 формования также могут динамически воздействовать на матрицу 180 и волокна 130 для содействия тщательному смачиванию и однородному отверждению. Смачивание улучшается с помощью изменений сдвиговой вязкости, которые вызываются динамическим изменением площади поперечного сечения матричного композита. Дальнейшее сдвиговое смешивание матричного композита может вызываться выборочным увеличением и уменьшением механического давления, прикладываемого станцией 115 формования. В некоторых вариантах выполнения станция 115 формования может быть выполнена с возможностью иметь неполное смачивание волокон 130 для увеличения гибкости волокон 130 при отверждении.
В некоторых вариантах выполнения направляющие могут быть выполнены с возможностью прогрессивного увеличения прикладываемого механического давления по длине матрицы 180. В некоторых вариантах выполнения увеличение давления создается перемещением волокон 130 через суженную неподвижную матрицу, которая имеет отверстие с уменьшающимся диаметром вдоль длины. В других вариантах выполнения увеличение механического давление может быть создано путем перемещения волокон 130 через последовательность неподвижных матриц, каждая из которых имеет прогрессивно меньшие отверстия. В некоторых вариантах выполнения отверстия в неподвижных матрицах могут иметь различные формы и размеры отверстий для динамического изменения формы поперечного сечения матрицы 180 и волокон 130.
В проиллюстрированном варианте выполнения на Фиг. 11 ролики 200 выполнены с возможностью прогрессивного увеличения прикладываемого механического давления по длине матрицы 180. В связи с этим площадь поперечного сечения матрицы 180 может уменьшаться посредством каждой последовательной пары роликов 200. Это способствует тщательному смачиванию и уплотнению волокон 130. В других вариантах выполнения ролики 200 могут быть выполнены с возможностью динамического изменения формы поперечного сечения матрицы 180 и волокон 130 (Фиг. 12-15). Например, матрица 180 может быть свернута в овальную форму, которая принимает различные ориентации на чередующихся парах 200 роликов для содействия дальнейшему сдвиговому смешиванию (Фиг. 12). Альтернативно, матрица 180 может быть свернута во множество других форм, таких как овал, круг, прямоугольник, квадрат, треугольник и т.д. (смотри, например, Фиг. 13). В других вариантах выполнения одна или более станций 115 формования могут перекручивать матрицу 180 и волокна 130 вокруг центральной оси 120 (Фиг. 14). В других вариантах выполнения одна или более станций 115 формования могут поочередно увеличивать и уменьшать площадь поперечного сечения матрицы 180 (Фиг. 15). В еще других вариантах выполнения ролики 200 могут быть смещены для создания волнистостей в матрице 180 и волокнах 130 (Фиг. 16). Каждая из станций 115 формования может иметь различные конструкции и конфигурации роликов 200 и/или неподвижных матриц.
В некоторых вариантах выполнения сборочная линия 100 может дополнительно включать в себя станцию 210 выжигания, чтобы термически очищать отвержденную поверхность композитной конструкции (Фиг. 2). Станция 210 выжигания может быть применена для удаления матрицы, чтобы открывать участки волокна, и/или чтобы обеспечивать углеродистое обуглившееся вещество, которое может иметь сродство к внешнему связующему соединению подобно портландцементу.
В некоторых вариантах выполнения сборочная линия 100 может дополнительно включать в себя станцию 215 доотверждения. Станция 215 доотверждения может включать в себя один или более нагревательных элементов, чтобы обеспечивать любое необходимое вспомогательное время отверждения и температурные средства управления. В дополнение станция 215 доотверждения может включать в себя одно или более устройств обработки, выполненных с возможностью формования конструкционного композита в требуемую конечную форму. Например, конструкционный композит может быть согнут или вырезан и сложен в форму C-образного канала, спиральную форму или другую необходимую форму.
В некоторых вариантах выполнения сборочная линия 100 может дополнительно включать в себя упаковочную станцию 220. Упаковочная станция 220 может включать в себя одно или более режущих устройств, выполненных с возможностью разрезания конструкционного композита на требуемую длину для продажи и перевозки. Конструкционный композит может иметь маркировку с информацией об изделии, информацией о фирме или другими знаками и далее упакован для перевозки.
При работе множество волокон 130 выдается от станции 105 ровинга и перемещается вдоль сборочной линии 100 к станции 110 нанесения связующего. Волокна 130 обычно расположены на расстоянии друг от друга, когда они входят в станцию 110 нанесения связующего так, что волокна 130 проходят через первую относительно большую площадь поверхности. После смачивания связующим смоченные волокна 130 направляются в первый участок 195 матрицы 180 вблизи от станции 110 нанесения связующего, и матрица 180 изгибается для оборачивания вокруг смоченных волокон 130. Когда матрица 180 оборачивается вокруг смоченных волокон 130, волокна 130 сжимаются вместе. Смоченные волокна 130, заключенные в матрице 180, далее подаются в станции 115 формования.
В станциях 115 формования матрица 180 и смоченные волокна 130 сжимаются между направляющими, например, наборами роликов 200 или неподвижных матриц для смешивания связующего и волокон 130, для формования формы изделия. Матрица 180 отделяет смоченные волокна 130 от роликов 200 и/или неподвижных матриц для того, чтобы предотвращать прилипание связующего к роликам 200 и/или неподвижным матрицам. Тепло подается по всем станциям 115 формования для содействия отверждению связующего. Так как матрица 180 перемещается между смежными станциями формования, матрица может охлаждать и/или удалять газ и пар от изделий.
В некоторых вариантах выполнения песок может быть нанесен на матрицу 180 и/или волокна 130 до или после завершения отверждения. Песок может быть выбран для улучшения характеристик физической связи между конечным композитом волокон 130 и связующим, и материал конечного композита будет соединен, например, с бетоном.
Различные признаки изобретения изложены в следующей далее формуле изобретения.

Claims (35)

1. Способ изготовления непрерывного конструктивного элемента, содержащий этапы, на которых:
предварительно нагревают множество волокон (130) до первой температуры;
перемещают предварительно нагретые волокна (130) вдоль сборочной линии (100);
наносят связующее по меньшей мере на одно из предварительно нагретых волокон (130);
обеспечивают матрицей (180), выполненной с возможностью приема предварительно нагретых волокон (130), причем матрицу (180) перемещают вместе с предварительно нагретыми волокнами (130) вдоль по меньшей мере участка сборочной линии (100);
поддерживают температуру множества волокон (130) на уровне температуры, по существу подобной первой температуре;
при поддержании температуры сжимают множество волокон (130) внутри матрицы (180);
формуют волокна (130) с помощью первой пары роликов так, что волокна (130) имеют первую форму поперечного сечения; и
формуют волокна (130) с помощью второй пары роликов так, что волокна (130) имеют вторую форму поперечного сечения, отличную от первой формы поперечного сечения.
2. Способ по п. 1, в котором перемещение множества волокон (130) включает в себя этап, на котором перемещают множество базальтовых волокон (130).
3. Способ по п. 1, в котором нанесение связующего включает в себя этап, на котором наносят термореактивную смолу.
4. Способ по п. 1, в котором обеспечение матрицей (180) включает в себя этап, на котором обеспечивают рулоном (185) бумаги и разматывают рулон (185) бумаги так, что размотанная бумага принимает множество волокон (130).
5. Способ по п. 1, в котором матрица (180) включает в себя расходуемую пленку.
6. Способ по п. 1, в котором перемещение множества волокон (130) вдоль сборочной линии (100) включает в себя этап, на котором перемещают множество волокон (130) со скоростью более чем около 20 футов в минуту.
7. Способ по п. 1, в котором поддержание температуры множества волокон (130) на уровне температуры, по существу подобной первой температуре, включает в себя этап, на котором нагревают волокна (130).
8. Способ по п. 1, в котором первая температура больше около 50 градусов Цельсия.
9. Способ по п. 1, в котором при нанесении связующего волокна (130) расположены на расстоянии друг от друга и проходят через первую область;
причем матрица (180) имеет первый участок (195) с первым диаметром, расположенный с возможностью приема предварительно нагретых волокон (130), и второй участок со вторым диаметром, расположенный после первого участка (195), причем первый диаметр больше второго диаметра, при этом матрица (180) сужается между первым участком (195) и вторым участком;
дополнительно содержащий этап, на котором уменьшают расстояние между множеством волокон (130) с помощью матрицы (180), причем после уменьшения расстояния между множеством волокон (130) волокна (130) проходят через вторую область, которая меньше, чем первая область.
10. Способ по п. 9, в котором уменьшение расстояния между множеством волокон (130) с помощью матрицы (180) включает в себя этап, на котором оборачивают множество волокон (130) в подложке.
11. Способ по п. 10, дополнительно содержащий этап, на котором разматывают подложку и связывают подложку с множеством волокон (130) при уменьшении расстояния между множеством волокон (130) с помощью матрицы (180).
12. Способ по п. 11, дополнительно содержащий этап, на котором позиционируют подложку между первым набором роликов (200) и множеством волокон (130) при формовании множества волокон (130) с помощью первого набора роликов (200).
13. Способ по п. 11, дополнительно содержащий этап, на котором сворачивают подложку после разматывания так, что подложка по существу окружает множество волокон (130) перед связыванием подложки с множеством волокон (130).
14. Способ по п. 13, дополнительно содержащий этап, на котором предотвращают прилипание связующего к первому набору роликов (200) путем позиционирования подложки между первым набором роликов (200) и связующим при формовании множества волокон (130) с помощью первого набора роликов (200).
15. Способ по п. 1, в котором при нанесении связующего волокна (130) расположены на расстоянии друг от друга и проходят через первую область, причем нанесение связующего включает в себя по меньшей мере один из следующих этапов:
этап, на котором распыляют связующее на указанное по меньшей мере одно из множества волокон (130), и
этап, на котором экструдируют связующее из камеры под давлением и перемещают указанное по меньшей мере одно волокно (130) через экструдированное связующее.
16. Способ по п. 15, в котором направление множества волокон (130) вдоль матрицы (180) дополнительно включает в себя этап, на котором направляют множество волокон (130) вдоль суженной внутренней поверхности матрицы (180).
17. Способ по п. 15, в котором уменьшение расстояния между множеством волокон (130) с помощью матрицы (180) включает в себя этап, на котором оборачивают множество волокон (130) в подложке.
18. Способ по п. 17, дополнительно содержащий этап, на котором раскатывают подложку и связывают подложку с множеством волокон (130) при уменьшении расстояния между множеством волокон (130) с помощью матрицы (180).
19. Способ по п. 18, дополнительно содержащий этап, на котором позиционируют подложку между первым набором роликов (200) и множеством волокон (130) при формовании множества волокон (130) с помощью первого набора роликов (200).
20. Способ по п. 18, дополнительно содержащий этап, на котором сворачивают подложку после разматывания так, что подложка по существу окружает множество волокон (130) перед связыванием подложки с множеством волокон (130).
21. Способ по п. 20, дополнительно содержащий этап, на котором предотвращают прилипание связующего к первому набору
роликов (200) путем позиционирования подложки между первым набором роликов (200) и связующим при формовании множества волокон (130) с помощью первого набора роликов (200).
22. Способ по п. 15, в котором поддержание температуры множества волокон (130) на уровне температуры, по существу подобной первой температуре, включает в себя этап, на котором нагревают волокна (130).
RU2015152050A 2013-05-07 2014-05-07 Способ изготовления композитного материала RU2663750C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361855080P 2013-05-07 2013-05-07
US61/855,080 2013-05-07
PCT/US2014/037165 WO2014182825A2 (en) 2013-05-07 2014-05-07 Method of manufacturing a composite material

Publications (2)

Publication Number Publication Date
RU2015152050A RU2015152050A (ru) 2017-06-13
RU2663750C2 true RU2663750C2 (ru) 2018-08-09

Family

ID=50983130

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2015152050A RU2663750C2 (ru) 2013-05-07 2014-05-07 Способ изготовления композитного материала

Country Status (6)

Country Link
US (1) US9688030B2 (ru)
EP (1) EP2994297B1 (ru)
CN (1) CN105307843B (ru)
CA (1) CA2911176C (ru)
RU (1) RU2663750C2 (ru)
WO (1) WO2014182825A2 (ru)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2911176C (en) 2013-05-07 2021-08-10 Neuvokas Corporation Method of manufacturing a composite material
CA2986809C (en) * 2015-06-03 2023-09-26 Enterprises International, Inc. Methods for making repulpable paper strings and straps through pultrusion process and related devices for the same
RU2702548C2 (ru) * 2015-07-02 2019-10-08 Неувокас Корпорейшн Способ изготовления композитного материала
US10759123B2 (en) * 2016-06-15 2020-09-01 Sp Advanced Engineering Materials Pvt. Ltd. Composites product; a pultrusion continuous method for manufacturing thereof
US10369754B2 (en) * 2017-02-03 2019-08-06 Oleksandr Biland Composite fibers and method of producing fibers
US11065830B2 (en) * 2017-04-26 2021-07-20 The Boeing Company Pultrusion systems that apply lengthwise curvature to composite parts
PL239097B1 (pl) * 2018-03-29 2021-11-02 Polus Marian Przed Projektowo Uslugowo Wdrozeniowe Ankra Sposób i urządzenie do wytwarzania kształtek z prętów z włókien kompozytowych
CN109732807B (zh) * 2019-02-27 2023-06-20 南京特塑复合材料有限公司 一种连续纤维多运动状态的椭圆浸渍装置
EP4041538A1 (en) 2019-11-12 2022-08-17 Neuvokas Corporation Method of manufacturing a composite material
WO2022056410A1 (en) * 2020-09-11 2022-03-17 Basanite Industries Llc Basalt fiber composite rebar and method of manufacturing
DE102022105682A1 (de) 2022-03-10 2023-09-14 Solidian Gmbh Verfahren zur Herstellung wenigstens eines teilgehärteten Bewehrungselements
CN116512642B (zh) * 2023-07-05 2023-09-12 河北润晟复合材料有限公司 复合高强度玻璃钢拉挤型材及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272783A2 (en) * 1986-12-22 1988-06-29 Textilver S.A. Consolidating tubular composites
RU2142878C1 (ru) * 1992-11-25 1999-12-20 И. Хашиоджи Индастриес Изделие производства, способ производства этого изделия, система для его производства
RU2149932C1 (ru) * 1994-09-06 2000-05-27 ЭНИКЕМ С.п.А. Способ получения эластичной термопластичной композиционной филаментной нити
US20020063349A1 (en) * 2000-11-06 2002-05-30 Edwards Christopher M. Process for adding a surface finish to a fiber-reinforced composite
RU2200777C2 (ru) * 1997-03-28 2003-03-20 Сосьете Насьональ Д`Этюд Е Де Конструксьон Де Мотор Д`Авиасьон Способ и машина для изготовления волокнистых полотен из холстов, ориентированных в различных направлениях
RU2303531C2 (ru) * 2001-11-05 2007-07-27 Зм Инновейтив Пропертиз Компани Композитные ткани с дискретными эластичными полимерными областями
WO2012103929A2 (en) * 2011-01-31 2012-08-09 Vkr Holding A/S A pultrusion method and a pultruder apparatus for production of a product

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2852840A (en) * 1953-04-22 1958-09-23 Kelsey I Harvey Method of making metal reinforced plastic bodies
BE606062A (ru) * 1960-01-15
US3296770A (en) * 1965-01-13 1967-01-10 Russell W Wilson Adjustable package-forming machine
GB1138527A (en) * 1965-12-11 1969-01-01 Colodense Ltd Improvements in or relating to the production of sealed filled envelopes
US3654028A (en) * 1969-10-13 1972-04-04 William B Goldsworthy Apparatus for making filament reinforced a-stage profiles
US3657040A (en) * 1970-02-06 1972-04-18 Samuel M Shobert Method of fabricating reinforced plastic bows having different draw weights
US3895896A (en) * 1972-11-03 1975-07-22 Pultrusions Corp Apparatus for pultruding hollow objects
US4043098A (en) * 1976-08-26 1977-08-23 Package Machinery Company Vertical form, fill and seal packaging machine with improved back-up bar for longitudinal sealing
US4172869A (en) * 1977-04-11 1979-10-30 Kurashiki Boseki Kabushiki Kaisha Method of and apparatus for manufacturing fiber-reinforced thermoplastic resin of cellular structure
US4154634A (en) * 1977-09-22 1979-05-15 Plas/Steel Products, Inc. Method for fabricating improved fiber reinforced plastic rods having a smooth surface
DE3045086A1 (de) * 1980-11-29 1982-06-24 Hoechst Ag, 6000 Frankfurt Schlauchhuelle, insbesondere wursthuelle, mit wasserdampfundurchlaessiger schicht, verfahren zu ihrer herstellung und ihre verwendung
US4445957A (en) 1982-11-22 1984-05-01 General Motors Corporation Method and means for making constant cross sectional area pultruded fiber reinforced polymeric articles.
US4617683A (en) * 1984-01-30 1986-10-14 Minigrip, Inc. Reclosable bag, material, and method of and means for making same
JPS6290229A (ja) 1985-10-16 1987-04-24 Ube Nitto Kasei Kk 棒状成形物の連続成形法
US4919739A (en) * 1986-11-07 1990-04-24 Basf Aktiengesellschaft Production of improved preimpregnated material comprising a particulate thermosetting resin suitable for use in the formation of a substantially void-free fiber-reinforced composite article
US4820366A (en) * 1987-03-06 1989-04-11 Phillips Petroleum Company Apparatus and method for pultruding reinforced plastic articles
US5206085A (en) 1987-08-13 1993-04-27 Across Co., Ltd. Preformed yarn useful for forming composite articles and process for producing same
JPH07115093B2 (ja) 1987-10-23 1995-12-13 廣 三浦 板金プレス用樹脂型及びその製法
US4864964A (en) * 1987-12-15 1989-09-12 General Electric Company Apparatus and method for impregnating continuous lengths of multifilament and multi-fiber structures
US5077243A (en) 1988-07-02 1991-12-31 Noritake Co., Limited Fiber-reinforced and particle-dispersion reinforced mullite composite material and method of producing the same
US5042224A (en) * 1990-02-01 1991-08-27 Zip-Pak Incorporated Zipper tracking in form, fill and seal package machines
US5205898A (en) * 1990-11-15 1993-04-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Continuous fiber thermoplastic prepreg
US5127980A (en) * 1991-04-18 1992-07-07 Graphite Design And Detail, Incorporated Apparatus for continuously forming composite material into a rigid structural member
US5178907A (en) 1991-05-17 1993-01-12 The United States Of America As Represented By The Secretary Of The Air Force Process for the fabrication of high density continuous fiber preforms
IT1258786B (it) * 1992-01-17 1996-02-29 Alfonso Branca Impianto per la produzione di pali rastremati per uso industriale, per illuminazione e simili applicazioni
US5749211A (en) 1992-11-06 1998-05-12 Nippon Steel Corporation Fiber-reinforced plastic bar and production method thereof
JP2613844B2 (ja) * 1993-12-03 1997-05-28 小松化成株式会社 繊維強化プラスチック製ロッドの連続引抜成形方法及びその装置
US5512351A (en) 1993-12-28 1996-04-30 Nikkiso Company Limited Prepreg, process for preparation of prepreg, and products derived therefrom
JPH10506584A (ja) 1994-06-28 1998-06-30 マーシャル・インダストリーズ・コンポジッツ 建築構造強化棒材の成形装置
US5783013A (en) 1995-06-07 1998-07-21 Owens-Corning Fiberglas Technology Inc. Method for performing resin injected pultrusion employing multiple resins
US6428457B1 (en) * 1995-09-29 2002-08-06 Ishida Co., Ltd. Former for a bag maker
WO1998015403A1 (en) 1996-10-07 1998-04-16 Marshall Industries Composites Reinforced composite product and apparatus and method for producing same
US5707329A (en) * 1997-02-11 1998-01-13 Pool; George H. Narrow profile apparatus for forming tubes from plastic web stock
US6019713A (en) * 1998-09-17 2000-02-01 Union Camp Corporation Tubing machine with rotating former section for quick change-over
US6982116B1 (en) 2000-02-18 2006-01-03 Praxair S.T. Technology, Inc. Coatings on fiber reinforced composites
FR2807966B1 (fr) * 2000-04-25 2003-01-17 Vetrotex France Sa Procede et dispositif de fabrication d'un profile composite forme de matiere organique thermoplastique renforcee par des fibres de renforcement
WO2002033191A1 (en) 2000-10-17 2002-04-25 National Gypsum Properties, Llc Cementitious panel with basalt fiber reinforced major surface(s)
US6764057B2 (en) * 2000-10-23 2004-07-20 Kazak Composites, Incorporated Low cost tooling technique for producing pultrusion dies
DE10108357A1 (de) 2001-02-21 2002-08-29 Sika Ag, Vorm. Kaspar Winkler & Co Armierungsstab sowie Verfahren zu dessen Herstellung
ITMI20011710A1 (it) * 2001-08-03 2003-02-03 Top Glass Spa Procedimento e impianto per la realizzazione di un manufatto per pultrusione
US7758785B2 (en) 2002-12-27 2010-07-20 National University Of Singapore Fiber reinforced composite and methods of forming the same
US20050005947A1 (en) * 2003-07-11 2005-01-13 Schweitzer-Mauduit International, Inc. Smoking articles having reduced carbon monoxide delivery
US8597016B2 (en) 2005-11-23 2013-12-03 Milgard Manufacturing Incorporated System for producing pultruded components
US7875675B2 (en) 2005-11-23 2011-01-25 Milgard Manufacturing Incorporated Resin for composite structures
US7987885B2 (en) * 2005-12-01 2011-08-02 Saint-Gobain Performance Plastics Corporation System and die for forming a continuous filament reinforced structural plastic profile by pultrusion/coextrusion
JP4871175B2 (ja) 2007-03-12 2012-02-08 株式会社神戸製鋼所 長繊維強化熱可塑性樹脂ペレットの製造方法
US7523597B2 (en) * 2007-03-20 2009-04-28 J & F Business, Inc. Apparatus and method for mounting a bag former
US8066836B2 (en) * 2007-09-28 2011-11-29 Kazak Composites, Inc. Prepeg pultrusion
ES2380114T3 (es) * 2008-05-28 2012-05-08 Tetra Laval Holdings & Finance S.A. Máquina de envasado
DE102008036241B4 (de) 2008-08-02 2015-10-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Herstellung eines gebogenen Stabes und Stab
US8123515B2 (en) 2008-10-02 2012-02-28 Robert Frank Schleelein System and method for producing composite materials with variable shapes
WO2011107848A2 (en) 2010-03-02 2011-09-09 Anil Krishna Kar Improved reinforcing bar and method for manufacturing the same
US20110306718A1 (en) * 2010-05-11 2011-12-15 Basf Se Pultrusion process
KR20180132937A (ko) 2010-10-21 2018-12-12 리포스테크 엘티디. 보강 바 및 그의 제조방법
EP2632996B1 (en) 2010-10-28 2019-12-25 University of Florida Research Foundation, Incorporated Cathodically coloring yellow soluble electrochromic and light emitting polymers
US8333857B2 (en) 2011-02-15 2012-12-18 Randel Brandstrom Fiber reinforced rebar with shaped sections
CA2827464C (en) 2011-02-16 2016-07-19 Mitsubishi Rayon Co., Ltd. Production method for obtaining fiber-reinforced composite material, and epoxy resin composition used therein
DE102011015607A1 (de) * 2011-03-30 2012-10-04 Thomas Gmbh + Co. Technik + Innovation Kg Verfahren und Vorrichtung zur Herstellung eines eine Verstärkung aufweisenden Kunststoffprofils
EP2773503A4 (en) * 2011-11-04 2015-04-29 Havco Wood Products Llc POLYURETHANE LAMINATES OBTAINED USING A DOUBLE BELT PRESS
WO2013086259A1 (en) * 2011-12-09 2013-06-13 Ticona Llc Die and method for impregnating fiber rovings
DE102012108132B4 (de) * 2012-08-31 2015-01-22 Firep Rebar Technology Gmbh Verfahren zur Herstellung von Bewehrungselementen aus faserverstärktem Kunststoff
CA2911176C (en) 2013-05-07 2021-08-10 Neuvokas Corporation Method of manufacturing a composite material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0272783A2 (en) * 1986-12-22 1988-06-29 Textilver S.A. Consolidating tubular composites
RU2142878C1 (ru) * 1992-11-25 1999-12-20 И. Хашиоджи Индастриес Изделие производства, способ производства этого изделия, система для его производства
RU2149932C1 (ru) * 1994-09-06 2000-05-27 ЭНИКЕМ С.п.А. Способ получения эластичной термопластичной композиционной филаментной нити
RU2200777C2 (ru) * 1997-03-28 2003-03-20 Сосьете Насьональ Д`Этюд Е Де Конструксьон Де Мотор Д`Авиасьон Способ и машина для изготовления волокнистых полотен из холстов, ориентированных в различных направлениях
US20020063349A1 (en) * 2000-11-06 2002-05-30 Edwards Christopher M. Process for adding a surface finish to a fiber-reinforced composite
RU2303531C2 (ru) * 2001-11-05 2007-07-27 Зм Инновейтив Пропертиз Компани Композитные ткани с дискретными эластичными полимерными областями
WO2012103929A2 (en) * 2011-01-31 2012-08-09 Vkr Holding A/S A pultrusion method and a pultruder apparatus for production of a product

Also Published As

Publication number Publication date
RU2015152050A (ru) 2017-06-13
US20140332996A1 (en) 2014-11-13
US9688030B2 (en) 2017-06-27
CN105307843B (zh) 2017-11-10
WO2014182825A8 (en) 2015-12-10
EP2994297B1 (en) 2019-10-23
WO2014182825A3 (en) 2015-02-26
WO2014182825A2 (en) 2014-11-13
CA2911176A1 (en) 2014-11-13
EP2994297A2 (en) 2016-03-16
CN105307843A (zh) 2016-02-03
CA2911176C (en) 2021-08-10

Similar Documents

Publication Publication Date Title
RU2663750C2 (ru) Способ изготовления композитного материала
CA2991051C (en) Method of manufacturing a composite material
US8815036B2 (en) Method for manufacturing a profiled preform
JP3121461B2 (ja) マット製造法とその装置
KR101731686B1 (ko) 경화 섬유 다발
JPH0358894B1 (ru)
KR20120095963A (ko) 섬유 강화 몰딩 부품을 제조하기 위한 시스템 및 섬유 강화 몰딩 부품을 제조하기 위한 시스템을 작동시키기 위한 방법
US5134959A (en) Apparatus for coating fibers with thermoplastics
US11919254B2 (en) Method of manufacturing a composite material
CN107415277B (zh) 一种轨道交通空调复合材料格栅的制备方法
EP3181321A1 (en) Apparatus and process for manufacturing hollow elongated bodies made of composite material
CN116209562A (zh) 制备预浸渍连续的纤维带和纤维丝的系统和方法
JP4770511B2 (ja) 熱硬化性発泡樹脂の含浸方法
KR102535665B1 (ko) 열가소성 수지를 이용한 복합재료 시트 제조장치
WO2019012374A1 (en) APPARATUS AND METHOD FOR MANUFACTURING RETICULAR BODIES OF COMPOSITE MATERIAL
Bobovich Use of glass roving for the production of reinforced polymer composite materials by spraying
US6464783B1 (en) Apparatus for manufacturing prepreg
EP3680081A1 (en) Device and method for impregnating a filament
KR102480645B1 (ko) 유리섬유 보강재의 제조장치 및 그 유리섬유 보강재
TW202224902A (zh) 複合產品、複合產品生產系統、複合產品生產方法及用於降低與複合產品生產相關之voc排放的系統及方法
JP3003699B1 (ja) シ―ト状補強材の製造方法および製造装置
JP2002331593A (ja) 長繊維強化樹脂発泡体層を有する複合材料の製造装置及び製造方法
JPH02136224A (ja) Frp平板製造装置