RU2661969C1 - Способ получения оксидного покрытия - Google Patents

Способ получения оксидного покрытия Download PDF

Info

Publication number
RU2661969C1
RU2661969C1 RU2017125066A RU2017125066A RU2661969C1 RU 2661969 C1 RU2661969 C1 RU 2661969C1 RU 2017125066 A RU2017125066 A RU 2017125066A RU 2017125066 A RU2017125066 A RU 2017125066A RU 2661969 C1 RU2661969 C1 RU 2661969C1
Authority
RU
Russia
Prior art keywords
suspension
coating
oxide coating
sheets
oxide
Prior art date
Application number
RU2017125066A
Other languages
English (en)
Inventor
Евгений Николаевич Каблов
Евгений Борисович Алексеев
Леонид Юрьевич Авилочев
Виктор Иванович Иванов
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ")
Priority to RU2017125066A priority Critical patent/RU2661969C1/ru
Application granted granted Critical
Publication of RU2661969C1 publication Critical patent/RU2661969C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

Изобретение относится к области металлургии, в частности к получению оксидного покрытия на заготовках из деформируемых титановых сплавов, используемых для производства листов способом горячей прокатки многослойных пакетов. Способ получения оксидного покрытия на заготовках из деформируемых титановых сплавов включает получение суспензии, нанесение суспензии на поверхность заготовок и последующий нагрев. Суспензию получают из смеси оксалатов кальция и магния в массовом соотношении (49-51):(51-49) в водном растворе поливинилового спирта с содержанием в суспензии смеси оксалатов 18-35 мас. %, при этом суспензию на поверхности заготовок наносят толщиной 1,2-1,8 мм, а последующий нагрев заготовок осуществляют при температуре выше 800°C для получения оксидного покрытия толщиной 0,4-0,5 мм. Техническим результатом изобретения является получение на заготовках из деформируемых титановых сплавов разделительного покрытия из оксидного материала, обладающего достаточной инертностью к титану и температурной текучестью, что исключает появление поверхностных дефектов в виде отпечатков. 2 з.п. ф-лы, 2 табл.

Description

Изобретение относится к области металлургии, а более конкретно к получению оксидного покрытия на заготовках из деформируемых титановых сплавов, используемых для производства листов способом горячей прокатки многослойных пакетов.
Горячая пакетная прокатка титановых сплавов имеет свои особенности, связанные с активизацией процессов взаимодействия заготовок между собой и с материалом контейнера. Взаимодействие титана со стальным контейнером при прокатке приводит к образованию легкоплавких эвтектик (особенно при температурах выше 950°C), а взаимодействие между листами - к их схватыванию (свариванию). Для устранения этих явлений используют технологические разделительные покрытия из неорганических материалов.
Известен способ получения тонких листов из титанового сплава Ti-6Al-4V (RU 2146568 С1, МПК В21В 1/38, опубл. 20.03.2000 г.), в соответствии с которым на поверхность листовой заготовки толщиной менее 2,5 мм наносят слой покрытия толщиной (0,3-0,8) мм посредством электродугового напыления алюминиевой проволоки. Полученное покрытие пропитывается химическим реагентом, сушится на воздухе, затем проглаживается в валках стана и далее подвергается прокатке на конечный размер. Удаление покрытия с поверхности готовых листов производится гидроабразивным методом. Несмотря на то что такое покрытие обеспечивает устойчивый процесс прокатки, у него имеется существенный недостаток, связанный с необходимостью удаления покрытия с поверхности листов гидроабразивным методом, что может привести в отдельных местах к разной толщине листов и их короблению.
Известен способ получения жаростойкого покрытия на титановом сплаве (CN 105714294 А, МПК С23С 28/04, C25D 9/04, опубл. 29.06.2016 г.). В документе описан способ нанесения на поверхность титановой детали электрохимическим способом наноразмерного оксидного покрытия и затем слоя алюминия толщиной (1-30) мкм. После термической обработки на воздухе при температурах (600-700)°C в течение (10-60) мин формируется жаростойкое композиционное оксидное покрытие. Описанный способ нельзя использовать как разделительное покрытие, поскольку оно состоит из твердых оксидов алюминия и кремния, имеющих повышенную адгезию к титановой матрице. Такое покрытие обладает высокой прочностью и низкой текучестью при температурах деформации, что приводит к развитию процессов схватывания (сваривания) и образованию значительных по площади глубоких вмятин. Для их удаления требуется дополнительная обработка поверхности - гидроабразивная обработка и ленточное шлифование, что усложняет производство тонких листов.
Наиболее близким аналогом, взятым за прототип, является способ (RU 2201821 С1, МПК В21В 1/38, опубл. 10.04.2003 г.), в котором предложены в качестве разделительных покрытий суспензии, состоящие из (5-50) (% по массе) коллоидных растворов алюмосиликатов + (10-30) (% по массе) тонкодисперсных порошков фракций менее 50 мкм. В качестве примеров приводятся следующие составы:
1) 30 (% по массе) алюмосиликата с размером фракций менее 0,2 мкм + 70 (% по массе) воды;
2) 25 (% по массе) алюмосиликата + 25 (% по массе) соединения [(SiO2⋅nH2O)+Na2O+H2O] [размер фракций (SiO2⋅nH2O) менее 20 мкм];
3) 40 (% по массе) раствора алюмосиликата + 25% порошка СаСО3 (фракция 45 мкм) + вода.
Авторы не приводят составов используемых алюмосиликатов, но известно, что они существуют в широком интервале содержания соединений диоксида кремния (SiO2), оксида алюминия (Al2O3), а также соединений (SiO2⋅nH2O), которые не обладают стабильными физико-химическими свойствами. Также не приведены характеристики других компонентов, поскольку они являются «ноу-хау» изобретения. Несмотря на то что такие покрытия обеспечивают устойчивый процесс прокатки и защиту от схватывания, способ имеет существенный недостаток, заключающийся в необходимости удаления покрытий с листов (например, гидроабразивным методом) и поверхностных дефектов в виде вмятин. Это приводит к разной толщине листов, их короблению и требует применения операций правки и шлифования.
Для получения эффективного разделительного покрытия при пакетной прокатке титановых сплавов необходимы материалы, которые будут инертны к титановой матрице и обладать текучестью в интервале температур от 800 до 1100°C. Для этих целей наиболее перспективны порошковые оксидные соединения, которые достаточно инертны к титану и обладают текучестью при повышенных температурах, например окись кальция (СаО). Использование этого порошкообразного окисла не представляется возможным вследствие трудностей получения однородных по толщине покрытий, а также изменения состава покрытия из-за реакции с влажным воздухом и двуокисью углерода.
Одним из вариантов получения оксидных покрытий на металлической поверхности является способ нанесения суспензий из соединений, которые нерастворимы в водных растворах, но при нагреве разлагаются на дисперсные оксиды, которые можно использовать в качестве разделительного материала. Таким соединением является карбонат кальция (CaCO3). Порошок карбоната кальция наиболее эффективен в качестве разделительного покрытия только при температурах выше 900°C, когда он разлагается и переходит в окись кальция. Использование его при температурах ниже 900°C нецелесообразно, т.к. карбонат кальция вызывает схватывание листов и повреждение их поверхности.
Технической задачей и техническим результатом заявленного изобретения является получение на листовых заготовках титановых листов и поверхности контейнера разделительного покрытия из оксидного материала, обладающего достаточной инертностью к титану и температурной текучестью, что исключает появление в листах поверхностных дефектов в виде отпечатков.
Для достижения заявленного технического результата предлагается способ получения оксидного покрытия на заготовках из деформируемых титановых сплавов, включающий получение суспензии, нанесение суспензии на поверхность заготовок и последующий нагрев, причем суспензию получают из смеси оксалатов кальция и магния в массовом соотношении (49-51):(51- 49) в водном растворе поливинилового спирта с содержанием в суспензии смеси оксалатов 18-35 мас. %, при этом суспензию на поверхности заготовок наносят толщиной 1,2-1,8 мм, а последующий нагрев заготовок осуществляют при температуре выше 800°C для получения оксидного покрытия толщиной 0,4-0,5 мм.
Предпочтительно, используют смесь оксалатов кальция и магния с дисперсностью фракций 5-10 мкм.
Предпочтительно, для получения суспензии используют 5-10 мас. % водный раствор поливинилового спирта.
С учетом вышесказанного были изучены оксалаты магния (MgC2O4, ОК-Mg) и кальция (CaC2O4, OК-Са), которые пригодны для получения оксидов этих элементов.
Проведенные исследования показали, что чистые оксиды магния и кальция, получаемые пиролизом оксалатов этих элементов, достаточно инертны к титану, однако температурная текучесть этих оксидов остается низкой и не обеспечивает устранения схватывания. Лучшие результаты были получены только на смесях этих оксидов, получаемых в интервале концентраций (49-51):(51-49) (% по массе) оксалатов магния и кальция. Указанные смеси оксидов обеспечили необходимые реологические характеристики и улучшили процесс прокатки и качество поверхности листов. Результаты этих исследований представлены в таблице 1.
Figure 00000001
Полученные результаты свидетельствуют о том, что технологические свойства образующихся оксидных покрытий в значительной степени определяются дисперсностью и составом наполнителей, концентрацией суспензии и последующим пиролизом. Установленные пределы дисперсности и концентраций исходных наполнителей и оптимизация технологических параметров способствовали формированию структуры покрытий с низкой твердостью и хорошими реологическими свойствами. Это позволило исключить оголения поверхности листов при прокатке и устранить схватывание. Низкая твердость оксидного покрытия исключила образование поверхностных дефектов и обеспечила легкое удаление разделительного материала.
В предлагаемом способе получения оксидного покрытия приготовленная смесь оксалатов магния и кальция добавляется к водному раствору поливинилового спирта и перемешивается до получения однородной массы. Полученную массу наносят кистью на подготовленные поверхности титановых листовых заготовок и внутренние поверхности контейнера и затем подвергают сушке на воздухе при температуре не ниже 25°C в течение 2 ч. Толщина покрытий на листовых заготовках и стенках контейнера после высушивания составляет (1,2-1,8) мм. Покрытые листовые заготовки помещают в контейнер и сваривают верхнюю крышку с корпусом.
Затем контейнер нагревают на температуры выше 800°C, при которой происходит разложение оксалатов кальция и магния и образование оксидного покрытия толщиной (0,4-0,5) мм с достаточной инертностью к титану и низкой твердостью.
В процессе прокатки листов оксидное покрытие деформируется вместе с металлом, разделяет металлические поверхности и препятствует их схватыванию и повреждению поверхности. Остатки покрытия на листах удаляются сжатым воздухом. Листы затем обрабатываются 5 (% по массе) раствором азотной кислоты (HNO3), промываются водой и сушатся на воздухе.
Примеры осуществления
Исходные прекурсоры состоящие из смеси ОК-Са и ОК-Mg в соотношении, равном (49-51):(51-49) (% по массе), чистотой 99,5 (% по массе) и фракционного состава (5-10) мкм добавлялись к (5-10) (% по массе) водному раствору ПВС в заданных соотношениях. Результаты проведенных экспериментов представлены в таблице 2.
Figure 00000002
Figure 00000003
Как показали эксперименты, использование фракций оксалатов кальция и магния, равных 3 мкм, при их концентрации в суспензии, равной 13 (% по массе), и 3,5 (% по массе) водном растворе ПВС не обеспечивает удержание суспензии на поверхности заготовок, что приводит к разной толщине покрытий. Это вызывает в процессе прокатки листов образование чистой поверхности и схватывание. Кроме того, на поверхности листов отмечались вмятины на 25% площади.
При использовании фракций оксалатов кальция и магния, равных (5-10) мкм, и их концентрации в суспензии от 18 до 35 (% по массе) в (5-10) (% по массе) растворе ПВС обеспечиваются равномерные по толщине и площади покрытия. При горячей деформации листов при температурах выше 800°C происходит равномерное течение титанового сплава и окисного покрытия без появления чистой поверхности заготовок, что исключает эффект схватывания и образование на листах поверхностных дефектов.
Применение фракций оксалатов кальция и магния, равных 20 мкм, и содержание их в суспензии 38 (% по массе) в 13 (% по массе) концентрации водного раствора ПВС не обеспечивает получение равномерных покрытий из-за высокой вязкости суспензии и низкой текучести. Это приводит к неоднородности в толщине покрытий прекурсором. Образующиеся утолщенные оксидные покрытия надежно защищают листы от схватывания, но приводят к возникновению поверхностных дефектов из-за образования уплотненных оксидных участков на конечных стадиях прокатки.
Получаемые оксидные покрытия не имеют прочных связей с поверхностью металла и удаляются сжатым воздухом. Оставшиеся покрытия на листах обрабатываются 5 (% по массе) раствором азотной кислоты, промываются водой и сушатся воздухом.
Разработанные составы прекурсора на основе суспензии из смеси оксалатов кальция и магния в водном растворе поливинилового спирта и последующий его пиролиз позволяют получать инертные к титану оксидные покрытия с необходимыми реологическими свойствами, что позволяет изготавливать на существующем оборудовании производства титановых сплавов высококачественные листы с наименьшими затратами в производстве.

Claims (3)

1. Способ получения оксидного покрытия на заготовках из деформируемых титановых сплавов, включающий получение суспензии, нанесение суспензии на поверхность заготовок и последующий нагрев, отличающийся тем, что суспензию получают из смеси оксалатов кальция и магния в массовом соотношении (49-51):(51-49) в водном растворе поливинилового спирта с содержанием в суспензии смеси оксалатов 18-35 мас. %, при этом суспензию на поверхности заготовок наносят толщиной 1,2-1,8 мм, а последующий нагрев заготовок осуществляют при температуре выше 800°C для получения оксидного покрытия толщиной 0,4-0,5 мм.
2. Способ по п. 1, отличающийся тем, что используют смесь оксалатов кальция и магния с дисперсностью фракций 5-10 мкм.
3. Способ по п. 1, отличающийся тем, что для получения суспензии используют 5-10 мас. % водный раствор поливинилового спирта.
RU2017125066A 2017-07-13 2017-07-13 Способ получения оксидного покрытия RU2661969C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017125066A RU2661969C1 (ru) 2017-07-13 2017-07-13 Способ получения оксидного покрытия

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017125066A RU2661969C1 (ru) 2017-07-13 2017-07-13 Способ получения оксидного покрытия

Publications (1)

Publication Number Publication Date
RU2661969C1 true RU2661969C1 (ru) 2018-07-23

Family

ID=62981512

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017125066A RU2661969C1 (ru) 2017-07-13 2017-07-13 Способ получения оксидного покрытия

Country Status (1)

Country Link
RU (1) RU2661969C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB827824A (en) * 1957-06-06 1960-02-10 Mannesmann Ag Method of applying highly heat-resistant protective coatings to metallic surfaces
DE4129080A1 (de) * 1991-09-02 1993-03-04 Jun Sepp Dipl Ing Zeug Schutzschicht gegen titanfeuer und verfahren zur herstellung der schicht
RU2146568C1 (ru) * 1998-10-29 2000-03-20 Открытое акционерное общество Верхнесалдинское металлургическое производственное объединение Способ получения тонких листов
RU2201821C1 (ru) * 2001-08-29 2003-04-10 ОАО Верхнесалдинское металлургическое производственное объединение Способ пакетной прокатки тонких листов из труднодеформируемых сплавов
CN105714294A (zh) * 2015-12-31 2016-06-29 浙江大学 一种钛基合金抗高温氧化复合涂层的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB827824A (en) * 1957-06-06 1960-02-10 Mannesmann Ag Method of applying highly heat-resistant protective coatings to metallic surfaces
DE4129080A1 (de) * 1991-09-02 1993-03-04 Jun Sepp Dipl Ing Zeug Schutzschicht gegen titanfeuer und verfahren zur herstellung der schicht
RU2146568C1 (ru) * 1998-10-29 2000-03-20 Открытое акционерное общество Верхнесалдинское металлургическое производственное объединение Способ получения тонких листов
RU2201821C1 (ru) * 2001-08-29 2003-04-10 ОАО Верхнесалдинское металлургическое производственное объединение Способ пакетной прокатки тонких листов из труднодеформируемых сплавов
CN105714294A (zh) * 2015-12-31 2016-06-29 浙江大学 一种钛基合金抗高温氧化复合涂层的制备方法

Similar Documents

Publication Publication Date Title
WO2013029920A1 (de) Siliziumnitridhaltige trennschicht hoher härte
TW202026245A (zh) MXene粒子材料、彼等粒子材料之製造方法及二次電池
JP6154194B2 (ja) 接合用金属ペースト
DE10301061A1 (de) Gebranntes Aluminiumoxid, Verfahren zu seiner Herstellung und feines, durch Verwendung des gebrannten Aluminiumoxids erhaltenes alpha-Aluminiumoxidpulver
WO2007028615A2 (de) Formtrennschicht für das giessen von nichteisenmetallen
JP2011517712A (ja) シリカでコーティングされた溶融粒子
US3035318A (en) Method of casting metal in a coated mold, and composition and method for coating the casting mold
DE2314384B2 (de) Dichter Siliciumcarbidkörper und Verfahren zu dessen Herstellung
WO2017022012A1 (ja) アルミニウム‐炭化珪素質複合体及びその製造方法
EP3608299A1 (en) Method for the preparation of nanometric metal oxide additives that reduce sintering temperature and/or increase productivity in the manufacture of ceramic pieces, improving mechanical properties without affecting the vitrification properties of ceramic bodies, tiles or coatings
EP1454706B1 (de) Mit Aluminium-Silicium-Legierung beschichtete Bauteile
RU2661969C1 (ru) Способ получения оксидного покрытия
JP2680819B2 (ja) 粒状材料から平板状生成物を製造するための方法
CN117545712A (zh) 六方晶氮化硼粉末及其制造方法以及化妆品及其制造方法
EP3986634A1 (de) Geschlichtete giessformen erhältlich aus einer formstoffmischung enthaltend ein anorganisches bindemittel und phosphahaltige verbindungen und oxidische borverbindungen und verfahren zu deren herstellung und deren verwendung
CH667082A5 (de) Schleifkorn und verfahren zu seiner herstellung.
JP2002239682A (ja) 鋳型への皮膜形成方法、鋳型および多結晶シリコンインゴットの製造方法
WO2004087610A2 (fr) Materiau inorganique a structure hierarchisee, et procede pour sa preparation
EP0198290B1 (de) Verfahren zum Vergiessen von Aluminium-Legierungen
WO2006053192A2 (en) Amino alcohol stabalized colloidal silica
CN117500751A (zh) 六方晶氮化硼粉末及其制造方法、化妆品及其制造方法以及品质评价方法
DE19908952A1 (de) Verwendung von Metalloxiden zur Bereitung keramischer Formmassen
WO2017217424A1 (ja) ベータ型ゼオライトの製造方法
RU2201821C1 (ru) Способ пакетной прокатки тонких листов из труднодеформируемых сплавов
DE102006040462A1 (de) Verfahren zur Herstellung von bioaktiven kristallinen keramischen Formkörpern und damit hergestellte Formkörper