RU2661126C1 - Шихта порошковой проволоки - Google Patents

Шихта порошковой проволоки Download PDF

Info

Publication number
RU2661126C1
RU2661126C1 RU2017121945A RU2017121945A RU2661126C1 RU 2661126 C1 RU2661126 C1 RU 2661126C1 RU 2017121945 A RU2017121945 A RU 2017121945A RU 2017121945 A RU2017121945 A RU 2017121945A RU 2661126 C1 RU2661126 C1 RU 2661126C1
Authority
RU
Russia
Prior art keywords
charge
tungsten
cored wire
flux
aluminum
Prior art date
Application number
RU2017121945A
Other languages
English (en)
Inventor
Николай Анатольевич Козырев
Александр Александрович Уманский
Роман Евгеньевич Крюков
Любовь Валерьевна Думова
Ольга Анатольевна Козырева
Александр Сергеевич Непомнящих
Егор Евгеньевич Федотов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет"
Priority to RU2017121945A priority Critical patent/RU2661126C1/ru
Application granted granted Critical
Publication of RU2661126C1 publication Critical patent/RU2661126C1/ru

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

Изобретение может быть использовано при наплавке порошковой проволокой под флюсом при восстановлении изношенных деталей и получении износостойкого защитного покрытия на деталях металлургического оборудования. Шихта порошковой проволоки содержит компоненты в следующем соотношении, мас.%: углерод 0,5-1,5, марганец 1,87-3,43, кремний 1,25-3,13, хром 6,87-10,94, молибден 0,1-0,5, вольфрамсодержащий концентрат 43,89-57,56, ванадий 0,62-1,25, алюминий 0,1-0,15, никель 0,01-0,6, кобальт 0,01-0,5, пыль электрофильтров алюминиевого производства 0,5-10, железо – остальное. Изобретение обеспечивает повышение эксплуатационных свойств наплавленного металла, в частности износостойкости при высоких температурах, за счет оптимизации химического состава шихты, снижения содержания водорода и уменьшения загрязненности наплавляемого слоя неметаллическими включениями. 2 табл.

Description

Изобретение относится к сварочному производству, в частности к производству порошковой проволоки, и может быть использовано при наплавке под флюсом для восстановления изношенных деталей и получения износостойкого защитного покрытия на деталях металлургического оборудования, работающих в условиях сжатия и абразивного износа при температурах 600°С, в частности для ремонта прокатных валков.
Известна шихта порошковой проволоки [1] содержащая углерод, хром, вольфрам, ванадий, кремнефтористый натрий, серу, кобальт, молибден и алюминий при соотношении компонентов, мас. %:
Углерод 1-3,6
Хром 6,5-12,0
Вольфрам 6-21
Молибден 8-17
Ванадий 2-6
Алюминий 1-4,5
Кремнефтористый натрий 0,6-3,6
Сера 0,9-3
Кобальт 12-13
Железо остальное
Существенными недостатками данной шихты порошковой проволоки являются:
- высокая стоимость сварочного процесса за счет использования восстановленных дорогостоящих материалов в значительных количествах (вольфрама, молибдена, алюминия, кобальта и кремнефтористого натрия) и отсутствия в шихте техногенных отходов производства;
- пониженные механические свойства наплавленного металла, в частности износостойкости и твердости, за счет повышенной загрязненности стали неметаллическими оксидными включениями;
- низкое качество наплавленного металла в связи с порообразованием, связанным с повышенным содержанием водорода.
Известна, выбранная в качестве прототипа [2], шихта порошковой проволоки, содержащая углерод, хром, молибден, вольфрам, ванадий, алюминий, никель, железо и пыль электрофильтров алюминиевого производства, содержащая, мас. %: Al2O3=20-48; F+=18-27; Na2O=4-16; K2O=0,4-6%, СаО=0,7-1,8; SiO2=0,5-2,48; Fe2O3=1,7-3,27; Собщ=12-31, MnO=0,07-1,3, MgO=0,06-0,9, S=0,09-0,59, Р=0,1-0,18, которая дополнительно содержит марганец, кремний, а вольфрам взят в виде вольфрамсодержащего концентрата марки КШ-4 при соотношении компонентов, мас. %:
Углерод 0,01-0,5
Марганец 0,6-4,4
Кремний 0,4-1,6
Хром 0,9-15,0
Молибден 0,1-11,9
Вольфрамсодержащий концентрат 0,15-4,6
Ванадий 0,3-2,5
Алюминий 0,15-1,5
Никель 0,03-15
Пыль электрофильтров алюминиевого производства 1-12
Железо Остальное
Существенными недостатками данной шихты порошковой проволоки являются:
- пониженные механические свойства наплавленного металла, в частности износостойкость при высоких температурах в связи с низкой концентрацией вольфрама, отсутствием кобальта и неоптимальным химическим составом шихты (соотношением углерода, марганца, кремния, хрома, ванадия и никеля);
- высокий уровень загрязненности неметаллическими оксидными включениями и повышенная газонасыщенность наплавленного металла.
Техническими результатами изобретения являются:
- повышение эксплуатационных свойств наплавленного металла, в частности износостойкости при высоких температурах, за счет оптимизации химического состава шихты, снижения содержания водорода и уменьшения загрязненности наплавляемого слоя неметаллическими включениями;
- снижение стоимости сварочного процесса за счет оптимизации состава шихты.
Для этого предлагается шихта порошковой проволоки, содержащая углерод, марганец, кремний, хром, молибден, вольфрам в виде вольфрамсодержащего концентрата марки КШ-4, ванадий, алюминий, никель, железо и пыль электрофильтров алюминиевого производства, содержащая, мас. %: Al2O3=20-48; F+=18-27; Na2O=4-16; K2O=0,4-6%, СаО 0,7-1,8; SiO2=0,5-2,48; Fe2O3=1,7-3,27; Собщ=12-31, MnO=0,07-1,3, MgO=0,06-0,9, S=0,09-0,59, Р=0,1-0,18, которая дополнительно содержит кобальт при соотношении компонентов, мас. %:
Углерод 0,5-1,5
Марганец 1,87-3,43
Кремний 1,25-3,13
Хром 6,87-10,94
Молибден 0,1-0,5
Вольфрамсодержащий концентрат 43,89-57,56
Ванадий 0,62-1,25
Алюминий 0,1-0,15
Никель 0,01-0,6
Кобальт 0,01-0,5
Пыль электрофильтров алюминиевого производства 0,5-10
Железо Остальное
Заявляемые пределы подобраны эмпирическим путем, исходя из качественных показателей получаемого при наплавке металла (снижения концентрации неметаллических включений и содержания водорода), предотвращения образования трещин, получения требуемых механических свойств и обеспечение стабильности процесса наплавки.
Выбранное содержание углерода обеспечивает требуемую твердость и износостойкость стали. При содержании углерода более 1,5% значительно возрастает хрупкость и трещинообразование при наплавке.
При концентрации марганца в шихте до 3,43% обеспечивается требуемая прокаливаемость стали, уменьшается критическая скорость охлаждения. Выбранная концентрация марганца также способствует значительному измельчению зерна аустенита, снижает вредное влияние серы.
Содержания кремния в шихте до 3,13% связано с необходимостью увеличения раскисленности стали при уменьшении содержания алюминия в ней, обеспечивающем повышение чистоты стали по включениям пластичных силикатов, которые снижают ударную вязкость и эксплуатационную стойкость при истирании. При содержании кремния в шихте более 3,13% значительно снижается пластичность наплавленного.
Хром в пределах 6,87-10,94% положительно влияет на повышение прочности и твердости стали. При меньшем содержании хрома эффективность его влияния на повышение прочности заметно снижается, при содержании его более 10,94% при заданных содержаниях марганца, кремния, молибдена и никеля возможно получение глубоких трещин при наплавке.
Молибден в указанных пределах обеспечивает получение дисперсной закаленной структуры, увеличивает прочностные свойства, твердость, ударную вязкость и сопротивление износу.
Вольфрам вводится в сталь в виде вольфрамсодержащего концентрата с целью снижения стоимости шихты, а также возможности восстановления вольфрама из оксидов с образованием карбидов вольфрама, которые позволяют повысить твердость и уменьшить истираемость поверхности наплавляемого металла.
Введение ванадия в состав шихты обусловлено необходимостью получения дисперсных частиц карбонитрида ванадия, наличие которых позволяет повысить прочностные свойства и увеличить сопротивление хрупкому разрушению.
Содержание алюминия выбрано исходя из обеспечения, с одной стороны, низкого содержания кислорода в наплавляемом слое, с другой стороны - с целью исключения возможности образования недопустимых строчечных оксидных включений глинозема, увеличивающих склонность к образованию усталостных трещин и выщерблин при эксплуатации наплавленного слоя.
Введение никеля в заявляемых пределах обеспечивает повышение пластичности и ударной вязкости стали. Его содержание до 0,01% не оказывает положительного влияния на свойства стали, а при концентрации более 0,6% эта характеристика не превышает определяемых величин и увеличение концентрации нецелесообразно из экономических соображений.
Введение кобальта в заявляемых пределах способствует измельчению зерна и повышению ударной вязкости при повышении коррозионной стойкости при высоких температурах.
Для изготовления шихты порошковой проволоки использовали порошки углеродистого ферромарганца ФМн 78(A) по ГОСТ 4755-91, ферросилиция марки ФС 75 по ГОСТ 1415-93, высокоуглеродистого феррохрома марки ФХ900А по ГОСТ 4757-91, ферромолибдена марки ФМо60 по ГОСТ 4759-91, феррованадия марки ФВ50У0,6 по ГОСТ 27130-94, кобальта ПК-1У по ГОСТ 9721-79, железа марки ПЖВ1 по ГОСТ 9849-86.
В качестве вольфрамсодержащего концентрата использовали вольфрамовый концентрат марки КШ-4, соответствующий ГОСТ 213-83 производства ОАО "Горнорудная компания "АИР", следующего химического состава 50-57% WO3, 0,03% Mo, 0,02% Cu, 0,02% Bi, 1,0% Fe, 2,0% Р, 0,6% S.
Использовали пыль электрофильтров алюминиевого производства АО «Русал» со следующим химическим составом, масс. %: Al2O3=20-48; F=18-27; Na2O=4-16; K2O=0,4-6%, СаО=0,7-1,8; SiO2=0,5-2,48; Fe2O3=1,7-3,27; Собщ=12-31, MnO=0,07-1,3, MgO=0,06-0,9, S=0,09-0,59, Р=0,1-0,18.
Порошки перемешивались в смесители для получения однородной массы и прокаливались для удаления влаги при температуре 250-350°С. Далее производилось изготовление порошковой проволоки на станке. Диаметр готовой проволоки после операций волочения составлял 3,7 мм, при коэффициенте заполнения 0,32-0,33. Порошковой проволокой с предложенной шихтой производилась наплавка заготовок прокатных валков. Наплавка производилась под флюсом АН-20 с использованием сварочного трактора ASAW-1250 на следующих режимах: сварочный ток 350-430А, напряжение дуги 28-32В, скорость наплавки 30-40 м/ч.
Наличие трещин в процессе наплавки оценивали визуально, после наплавки наличие трещин, пор и неметаллических включений оценивали ультразвуковым методом, а также на металлографических шлифах.
Определение химического состава металла сварных швов на содержание углерода, серы и фосфора проводили химическими методами по ГОСТ 12344-2003, ГОСТ 12345-2001, ГОСТ 12347-77 соответственно, на содержание марганца, кремния, хрома, никеля, меди в металле и оксидов кальция, кремния, магния, алюминия, марганца, железа, калия, натрия, фтора во флюсах с добавками и полученных шлаках проводили на рентгенофлюорисцентном спектрометре XRF -1800 фирмы SHIMADZU.
Исследование на определение кислорода, водорода и азота методом восстановительного плавления проводили на газоанализаторе фирмы «LECO» ТС-600. Массовая доля кислорода снизилась до 300-470 ppm (прототип 340-480 ppm). Содержание водорода изменялось в пределах 0,18-0,38 см3/100 г наплавленного металла при допустимом содержании водорода в высоколегированном наплавленном металле до 2 см3/100 г металла. Значительных изменений содержания азота не наблюдалось и осталось на уровне базового варианта в количестве 70-90 ppm. Твердость наплавленного металла после наплавки составляла HRC 50-58. Дефекты (трещины, поры и неметаллические включения) при наплавке порошковой проволокой с шихтой заявляемого состава не выявлены. После наплавки проводилось испытание на испытательной машине на истираемость образцов. Металлографические исследования (в том числе определение длины строчки неметаллических включений) проводили на полированных микрошлифах с помощью оптического микроскопа OLYMPUS GX-51.
Исследовались 6 вариантов составов шихты (таблица 1) порошковой проволоки, мас. %: 1 - прототип; 2 - нижний заграничный состав, 3-5 заявляемые пределы; 6 - верхний заграничный состав. Взаимосвязь некоторых исследуемых параметров в зависимости от состава шихты приведена в таблице 2.
Использование заявляемого состава шихты порошковой проволоки по сравнению с базовым составом (прототип) позволяет:
1. Повысить механические свойства наплавленного металла, в частности износостойкость и твердость, за счет оптимизации химического состава шихты, снижения содержания водорода и кислорода за счет введения фторсодержащих компонентов и создания дополнительной газовой защиты. Содержание водорода в среднем составило 0,18-0,38 см3/100 г металла (против 0,2-0,4 см3/100 г металла в прототипе). Содержание кислорода 300-470 ppm (прототип 340-480 ppm), в результате чего снизилась загрязненность наплавляемого металла неметаллическими включениями (длина оксидных строчек снизилась до 0,12-0,18 мм (в базовом варианте 0,2 мм). Достигнута твердость HRC 50-58. Скорость износа снизилась с 0,0045 г/об до 0,0038-0,0041 г/об.
2. Снизить стоимость сварочного процесса за счет оптимизации состава шихты и использования вольфрамового концентрата взамен вольфрама на 160-870 руб на 1 кг наплавленного слоя.
Figure 00000001
Figure 00000002
Источники информации
1. Пат РФ №2088392, МПК8 B23K 35/36.
2. Пат. РФ 2579328, МПК8 B23K 35/36, B23K 35/368.

Claims (2)

  1. Шихта порошковой проволоки, содержащая углерод, марганец, кремний, хром, молибден, вольфрам в виде вольфрамсодержащего концентрата марки КШ-4, ванадий, алюминий, никель, железо и пыль электрофильтров алюминиевого производства, содержащая, мас.%: Аl2О3=20-48, F+=18-27, Na2O=4-16, К2O=0,4-6, СаО=0,7-1,8, SiO2=0,5-2,48, Fe2O3=1,7-3,27, Собщ=12-31, МnО=0,07-1,3, MgO=0,06-0,9, S=0,09-0,59, P=0,1-0,18, отличающаяся тем, что она дополнительно содержит кобальт при следующем соотношении компонентов, мас.%:
  2. Углерод 0,5-1,5 Марганец 1,87-3,43 Кремний 1,25-3,13 Хром 6,87-10,94 Молибден 0,1-0,5 Вольфрамсодержащий концентрат 43,89-57,56 Ванадий 0,62-1,25 Алюминий 0,1-0,15 Никель 0,01-0,6 Кобальт 0,01-0,5 Пыль электрофильтров алюминиевого производства 0,5-10 Железо остальное
RU2017121945A 2017-06-21 2017-06-21 Шихта порошковой проволоки RU2661126C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017121945A RU2661126C1 (ru) 2017-06-21 2017-06-21 Шихта порошковой проволоки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017121945A RU2661126C1 (ru) 2017-06-21 2017-06-21 Шихта порошковой проволоки

Publications (1)

Publication Number Publication Date
RU2661126C1 true RU2661126C1 (ru) 2018-07-11

Family

ID=62916851

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017121945A RU2661126C1 (ru) 2017-06-21 2017-06-21 Шихта порошковой проволоки

Country Status (1)

Country Link
RU (1) RU2661126C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU204457U1 (ru) * 2020-11-16 2021-05-25 Общество с ограниченной ответственностью "АСМ Группа" Проволока номинальным диаметром до 5мм для наплавки роликов машин непрерывного литья заготовок
CN113182730A (zh) * 2021-05-08 2021-07-30 广西辉煌耐磨技术股份有限公司 一种高性能硬面堆焊药芯焊丝
RU206282U1 (ru) * 2021-04-05 2021-09-03 Общество с ограниченной ответственностью "АСМ Группа" Порошковая проволока для наплавки деталей, подверженных высокому абразивному износу
RU2756550C1 (ru) * 2021-02-12 2021-10-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" Порошковая проволока

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU287830A1 (ru) * 1969-07-16 1973-10-03 Днепропетровский Металлургический Институт Порошковая проволока
US3838246A (en) * 1972-09-08 1974-09-24 Y Gretsky Flux-cored electrode
RU1769481C (ru) * 1990-06-14 1994-08-30 Ветер Владимир Владимирович Порошковая проволока для наплавки
RU2492981C1 (ru) * 2012-03-05 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Шихта порошковой проволоки
RU2579328C1 (ru) * 2014-10-24 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Шихта порошковой проволоки

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU287830A1 (ru) * 1969-07-16 1973-10-03 Днепропетровский Металлургический Институт Порошковая проволока
US3838246A (en) * 1972-09-08 1974-09-24 Y Gretsky Flux-cored electrode
RU1769481C (ru) * 1990-06-14 1994-08-30 Ветер Владимир Владимирович Порошковая проволока для наплавки
RU2492981C1 (ru) * 2012-03-05 2013-09-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Шихта порошковой проволоки
RU2579328C1 (ru) * 2014-10-24 2016-04-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Шихта порошковой проволоки

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU204457U1 (ru) * 2020-11-16 2021-05-25 Общество с ограниченной ответственностью "АСМ Группа" Проволока номинальным диаметром до 5мм для наплавки роликов машин непрерывного литья заготовок
RU2756550C1 (ru) * 2021-02-12 2021-10-01 Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный индустриальный университет", ФГБОУ ВО "СибГИУ" Порошковая проволока
RU206282U1 (ru) * 2021-04-05 2021-09-03 Общество с ограниченной ответственностью "АСМ Группа" Порошковая проволока для наплавки деталей, подверженных высокому абразивному износу
CN113182730A (zh) * 2021-05-08 2021-07-30 广西辉煌耐磨技术股份有限公司 一种高性能硬面堆焊药芯焊丝

Similar Documents

Publication Publication Date Title
RU2661126C1 (ru) Шихта порошковой проволоки
RU2518035C1 (ru) Порошковая проволока
RU2579328C1 (ru) Шихта порошковой проволоки
JP2012055899A (ja) フラックス入り溶接ワイヤ及びこれを用いた肉盛溶接のアーク溶接方法
US20180221997A1 (en) Agglomerated welding flux and submerged arc welding process of austenitic stainless steels using said flux
JP4676940B2 (ja) スラグ量が少ないメタル系フラックス入りワイヤおよび高疲労強度溶接継手の作製方法
EP2969381B1 (en) An alloying composition for self-shielded fcaw wires with low diffusible hydrogen and high charpy "v"-notch impact toughness
KR102480788B1 (ko) 솔리드 와이어 및 용접 조인트의 제조 방법
JP2016124023A (ja) 高張力鋼のAr−CO2混合ガスシールドアーク溶接用フラックス入りワイヤ
Bang et al. Comparison of the effects of fluorides in rutile-type flux cored wire
JP2015205288A (ja) 強度、靭性および耐sr割れ性に優れた溶接金属
JP2014198344A (ja) 高強度鋼のサブマージアーク溶接方法
RU2478030C1 (ru) Порошковая проволока для наплавки
RU2518211C1 (ru) Порошковая проволока
RU2641590C2 (ru) Порошковая проволока
RU2632505C1 (ru) Порошковая проволока
RU2665859C1 (ru) Шихта порошковой проволоки
RU2623981C2 (ru) Шихта порошковой проволоки
JP6726008B2 (ja) ガスシールドアーク溶接用フラックス入りワイヤ
RU2762690C1 (ru) Порошковая проволока
RU2319590C2 (ru) Электроды для ручной сварки сталей перлитного класса
Kaptanoglu et al. Microstructure and wear of iron-based hardfacings reinforced with in-situ synthesized TiB2 particles
RU2307727C1 (ru) Шихта порошковой проволоки
RU2756550C1 (ru) Порошковая проволока
RU2750737C1 (ru) Порошковая проволока для механизированной наплавки сталей

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200622