RU2657115C1 - Устройство для измерения ширины спектральной линии лазерных излучателей - Google Patents

Устройство для измерения ширины спектральной линии лазерных излучателей Download PDF

Info

Publication number
RU2657115C1
RU2657115C1 RU2017128044A RU2017128044A RU2657115C1 RU 2657115 C1 RU2657115 C1 RU 2657115C1 RU 2017128044 A RU2017128044 A RU 2017128044A RU 2017128044 A RU2017128044 A RU 2017128044A RU 2657115 C1 RU2657115 C1 RU 2657115C1
Authority
RU
Russia
Prior art keywords
output
input
control
measuring
directional coupler
Prior art date
Application number
RU2017128044A
Other languages
English (en)
Inventor
Владислав Николаевич Удовиченко
Андрей Николаевич Сигаев
Original Assignee
Открытое акционерное общество "СУПЕРТЕЛ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "СУПЕРТЕЛ" filed Critical Открытое акционерное общество "СУПЕРТЕЛ"
Priority to RU2017128044A priority Critical patent/RU2657115C1/ru
Application granted granted Critical
Publication of RU2657115C1 publication Critical patent/RU2657115C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/26Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J9/00Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength
    • G01J9/02Measuring optical phase difference; Determining degree of coherence; Measuring optical wavelength by interferometric methods

Abstract

Изобретение относится к области измерительной техники и касается устройства для измерения ширины спектральной линии лазерных излучателей. Устройство содержит входной оптический направленный ответвитель, подстроечное плечо, измерительное плечо, выходной направленный ответвитель, фотоприемник и спектроанализатор. Подстроечное плечо включает в себя аттенюатор, управляемый оптический фазовращатель и контроллер поляризации, выход которого соединен с одним из входов выходного ответвителя. Для управления элементами подстроечного плеча введена схема стабилизации режима, выходы которой соединены с входами аттенюатора, фазовращателя, контроллера поляризации, а вход соединен с фотодетектором. В состав измерительного плеча входит сканирующий интерферометр Фабри-Перо, выход которого соединен с входом выходного ответвителя. Для управления интерферометром введена схема управления, выход которой соединен с входом управления интерферометра. Для обеспечения синхронизации управления выход развертки спектроанализатора соединен с входами схемы стабилизации режима и схемы управления. Технический результат заключается в увеличении точности и быстроты получения результатов измерений с возможностью оперативной перестройки характеристик устройства в зависимости от условий измерений. 1 з.п. ф-лы, 2 ил.

Description

Изобретение представляет собой устройство и относится к области измерительной техники для оптических систем передачи информации, может быть использовано при измерениях спектральных характеристик узкополосных лазерных излучателей в линейном оборудовании многоканальных телекоммуникационных сетей.
В специальной литературе (в том числе патентной), посвященной проблемам исследования спектральных характеристик узкополосных лазеров, опубликованы устройства, предназначенные для таких измерений. В качестве примеров известных устройств аналогичного назначения, использующих при этом различные методы и схемы измерений, можно указать следующие:
1. Okoshi, Т., Kikuchi, K. & Nakayama, A Novel method for high-resolution measurement of laser output spectrum (Новый метод измерения выходного спектра лазерного излучения с высоким разрешением). Electron. Lett. 16, 630-631 (1980).
2. Ludvigsen, Н., Tossavainen, М. & Kaivola, М., Laser linewidth measurements using self-homodyne detection with short delay (Измерение ширины лазерной линии с использованием автогомодинного детектирования с короткой задержкой). Optics Commu. 155, 180-186 (1998).
3. Dawson, J. W., Park, N. & Vahala, K. J. An improved delayed self-heterodyne interferometer for linewidth measurements (Улучшенный задержанный автогетеродинный интерферометр для измерения ширины линии). IEEE Photon. Technol. Lett. 4, 1063-1066 (1992).
4. Han, M. & Wang, A. Analysis of a loss-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement (Анализ автогетеродинного интерферометра с компенсированными потерями и рециркуляционной задержкой). Phys. Rev. В. 81, 53-58 (2005)
5. Chen, X. P., Han, M., Zhu, Y. Z., Dong, B. & Wang, A. B. Implementation of a loss-compensated recirculating delayed self-heterodyne interferometer for ultranarrow laser linewidth measurement (Реализация автогетеродинного интерферометра с компенсированными потерями и рециркуляционной задержкой для измерения ультраузкой лазерной линии). Appl. Opt. 45, 7712-7717 (2006).
6. Canagasabey, A. et al. A comparison of delayed self-Heterodyne interference measurement of laser linewidth using Mach-Zehnder and Michelson interferometers (Сравнение измерений ширины лазерной линии на основе задержанной автогетеродинной интерференции при использовании интерферометров Маха-Цендера и Майкельсона). Sensor (11, 9233-9241 (2011).
7. Chen, М., Meng, Z., Wang, J. & Chen, W., Ultra-narrow linewidth measure-ment based on Voigt profile fitting (Измерение ширины ультраузкой линии на основе подбора профиля Фогта). Opt. Express. 23, 6803-6808 (2015).
8. Richter, L. E., Mandelberg, H. I., Kruger M. S. & McGrath, M. S. Linewidth determination from self-heterodyne measurements with subcoherence delay times (Определение ширины линии из автогетеродинных измерений с временами задержки субкогерентности). IEEE J. Quantum. Electron. 22, 2070-2074 (1986).
9. Huang, S. H. et al. Laser linewidth measurement based on amplitude difference comparison of coherent envelope (Измерение ширины линии лазера на основе сравнения амплитудной разности когерентной огибающей). IEEE Photon. Technol. Lett. 28, 759-762 (2016).
10. Bennetts, S. et al. External cavity diode lasers with 5 kHz linewidth and 200nm tuning range at 1.55 μ m and methods for linewidth measurement (Диодные лазеры с внешним резонатором с шириной линии 5 кГц и диапазоном перестройки 200 нм на волне 1,55 мкм, и методы измерения ширины линии). Opt. Express. 22, 10642-10654 (2014).
11. Спектральный анализ измерений оптического смешивания. J. Lightwave Technol. 7, 1083-1096 (1989).
12. Патент 2234064. Способ измерения степени пространственной когерентности лазерного излучения.
13. Патент 2064667. Способ измерения длины волны лазерного излучения.
14. Патент 2425338. Быстродействующий измеритель длины волны лазерного излучения для волоконно-оптических систем передачи информации.
15. Патент 2408853. Устройство для измерения спектральных характеристик оптического излучения.
16. Патент 2018794. Способ определения ширины спектральной линии лазерного излучения.
17. Патент US 9356421. - Narrow line-width laser characterization bas.
18. Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope. Shihong Huang, Tao Zhu, Min Liu & Wei Huang Scientific Reports | 7:41988 | DOI: 10.1038/srep41988.
19. Патент 2390738. Способ измерения средней длины волны узкополосного светового излучения.
20. Патент 2080586. Способ определения спектральных характеристик исследуемых объектов.
Детальное рассмотрение вышеприведенных материалов, содержащих известные способы и средства измерения ширины спектральных линий узкополосных лазеров (т.е аналогов заявляемого устройства), показывает, что:
- физически наиболее корректным и точным является применение интерферометрического принципа построения измерительных устройств, причем в известных информационных источниках различие способа и устройства для спектральных измерений лазеров весьма условно, и зачастую описание способа и устройства совмещены в одном исследовании;
- в известных публикациях реализация спектральных измерений узкополосных лазерных излучателей требует создания специализированных, чаще всего лабораторных стендов с использованием громоздкого или/и дорогого прецизионного оптического оборудования.
В качестве прототипа предлагаемого изобретения выбран автогомодинный интерферометр, описанный в статье Горбуленко В.В., Наний О.Е. и др. «Использование обратного рэлеевского рассеяния в волокне для измерения спектра оптических сигналов», журнал Телекоммуникации и транспорт (T-Comm) №1 - 2012, р. 24-26.
Устройство-прототип строится на основе интерферометра Маха-Цендера с изменяемой длиной оптического пути (фиг. 1). Исследуемое излучение от DFB лазера подводится к входному порту первого оптического направленного ответвителя 50/50%, выходные порты которого соединены с двумя плечами - одно из них (измерительное) содержит волоконную линию задержки, а другое (подстроечное) содержит аттенюатор, который является элементом подстройки рабочего режима при проведении измерения. Выходные световоды обоих плеч подключены к входным портам второго оптического направленного ответвителя 50/50%, в котором происходит сложение когерентных интерферирующих сигналов. Выходной порт второго направленного ответвителя подключен к устройству фоторегистрации, включающему в себя фотоприемник и спектроанализатор. При изменении длины оптической линии задержки в измерительном плече соотношение фаз когерентных полей, поступающих на вход второго оптического направленного ответвителя, изменяется - в пределах от синфазности до противофазности, это дает возможность, анализируя результаты интерференции, получаемые посредством фоторегистрации выходного сигнала второго направленного ответвителя, измерить спектральные характеристики исследуемого лазера.
К недостаткам прототипа следует отнести:
- отсутствие средств нейтрализации факторов, дестабилизирующих параметры схемы (изменения температуры, механические воздействия на волокно линии задержки) и снижающих точность результатов измерений;
- характеристики устройства измерения определяются параметрами световодов, используемых в линии задержки, и не могут перестраиваться при изменении условий эксперимента;
- возможности интегрального исполнения устройства измерения затрудняются необходимостью оперативного доступа к линии задержки.
Задачей, на решение которой направлено заявляемое изобретение, является создание устройства для измерения ширины и структуры спектральной линии излучения высококогерентных лазерных излучателей, отличающегося от прототипа устранением указанных его недостатков.
Техническим результатом, обеспечиваемым приведенной в формуле совокупностью признаков, является:
- увеличение точности и быстроты получения результатов измерений;
- возможность оперативной перестройки характеристик устройства (область дисперсии, разрешающая способность) в зависимости от условий измерений;
- возможность построения компактного измерительного устройства на основе интегрально-оптических функциональных узлов.
Указанный результат достигается тем, что в состав измерительного плеча интерферометра Маха-Цендера вместо оптической линии задержки помещен сканирующий интерферометр Фабри-Перо, причем для управления сканирующим интерферометром введена схема управления, обеспечивающая синхронизацию сканирования с разверткой электрического спектроанализатора; в состав подстроечного плеча введены регулируемые электронным способом оптический аттенюатор, оптический фазовращатель и контроллер поляризации, при этом порядок расположения элементов подстроечного плеча не влияет на конечный результат, то есть подчиняется закону коммутативности, причем для управления элементами подстроечного плеча введена схема стабилизации режима с фотодетектором, включенным во второй выходной порт второго оптического направленного ответвителя.
Изобретение поясняется чертежами.
На фиг. 1 приведена схема измерения ширины спектра лазера автогомодинным методом (прототип).
На фиг. 2 - структурная схема устройства для измерения спектральной ширины лазеров в соответствии с заявкой на изобретение.
Устройство для измерения ширины спектральной линии лазерных излучателей включает входной оптический направленный ответвитель (ОНО-1) 1, один из выходных портов которого соединен с подстроечным плечом, содержащим управляемый аттенюатор 2, выход аттенюатора 2 соединен с входом управляемого оптического фазовращателя 6, выход которого соединен с входом контроллера поляризации 7, выход которого соединен с одним из входов выходного оптического направленного ответвителя (ОНО-2) 3, причем для управления элементами подстроечного плеча введена схема стабилизации режима 8, выходы которой соединены с входами управления аттенюатора 2, фазовращателя 6, контроллера поляризации 7, а вход соединен с фотодетектором 9, который подключен ко второму выходному порту выходного направленного ответвителя 3. Второй выходной порт оптического направленного ответвителя 1 соединен с измерительным плечом, причем в состав измерительного плеча входит сканирующий интерферометр Фабри-Перо 10, выход которого соединен с входом выходного направленного ответвителя 3, при этом для управления сканирующим интерферометром Фабри-Перо (СкИФ) 10 введена схема управления 11, выход которой соединен с входом управления интерферометра Фабри-Перо 10, причем для обеспечения синхронизации управления выход развертки спектроанализатора 5 соединен с входами схемы стабилизации режима 8 и схемы управления 11, кроме того, вход спектроанализатора через фотоприемник 4 соединен с первым выходом порта выходного направленного ответвителя 3. С целью повышения компактности устройства и улучшения стабильности показаний при измерениях элементы оптической схемы можно выполнить в интегрально-оптическом варианте.
Устройство работает следующим образом. Оптическая схема, как и в прототипе, представляет собой интерферометр Маха-Цендера, но в предлагаемом устройстве величина сканируемой базы интерферометра Фабри-Перо 10, входящего в состав измерительного плеча, контролируется прецизионным калиброванным актюатором в схеме сканирующего интерферометра 10, работающим синхронно с разверткой электронного спектроанализатора 5. Форма и размах управляющего актюатором сигнала определяются схемой управления СкИФ 11, а частота задается синхросигналом спектроанализатора 5. На начальном этапе оператор устанавливает на аттенюаторе 2 затухание, компенсирующее потери, вносимые сканирующим интерферометром 10. Величина компенсации фазового сдвига между измерительным и подстроечным плечами поддерживаться в начале каждого цикла сканирования с помощью схемы стабилизации режима 8, которая через фотодетектор 9 подключена к второму выходу второго оптического направленного ответвителя 3.
Излучение от измеряемого лазера подается на входной оптический направленный ответвитель ОНО-11, выходные порты которого подключаются к подстроечному и измерительному плечам, а выходные порты обоих плеч подключаются к входным портам выходного оптического направленного ответвителя ОНО-23, где происходит суммирование когерентных сигналов от обоих плеч. При этом фазовый набег, образующийся в измерительном плече при переотражениях в сканирующем интерферометре 10, компенсируется фазовращателем Δϕ 6 в подстроечном плече, так что в ОНО-23 происходит сложение сигналов от обоих плеч, как при автогомодинном приеме с обычным интерферометром Маха-Цендера, поскольку они остаются когерентными. Однако в предлагаемом устройстве суммарный сигнал на выходе ОНО-23 будет определяться аппаратной функцией сканирующего интерферометра 10 в измерительном плече. Конструктивно сканирующий интерферометр 10 состоит из двух волоконных коллиматоров (высококачественного промышленного изготовления, например, фирмы Laser Components, Германия) с отражающими покрытиями с коэффициентом отражения R, съюстированными в общей прецизионной оправке, причем один коллиматор закреплен жестко, а второй соединен с актюатором, например на основе пьезоэффекта, обеспечивающим точно контролируемое изменение базы d сканирующего интерферометра 10.
Выбор характеристик СкИФ
Согласно теории интерферометра Фабри-Перо [3, 4], основными характеристиками интерферометра Фабри-Перо, определяющими его измерительные возможности, являются
Figure 00000001
, поскольку лучи ортогональны к зеркалам, θ=90°, и разрешающая способность
Figure 00000002
. Эти параметры выбираются, исходя из рабочего диапазона измеряемых лазеров и требований к минимально разрешимому интервалу длин волн. Так, например, для лазеров С-диапазона (λср=1550 нм) при выборе R ~0.9 и d ~3 мм, получим расчетные оценки для области дисперсии Δλ=0,24 нм и для разрешающей способности δλ=0,0134 нм = 13,4 пм. Такие характеристики удовлетворяют требованиям измерений ширины спектральной линии лазеров-излучателей для оборудования DWDM.
Процедура измерения спектральной линии выполняется в соответствии с общепринятым для фотоэлектрической регистрации методом - сканирование области дисперсии осуществляется синхронно с разверткой спектроанализатора 5, горизонтальная ось которого калибруется в спектральных единицах рабочего диапазона, с учетом установленной ширины области дисперсии.
При оптимальных установках параметров элементов подстроечного плеча (эти установки подбираются на начальном этапе измерений и могут в процессе измерений поддерживаться автоматически схемой стабилизации режима 11) и учитывая, что эта область нами установлена в пределах одного (нулевого) порядка, m=0, на экране спектроанализатора 5 отобразится график аппаратной функции сканирующего интерферометра 10, в соответствии с известной формулой для этого режима:
Figure 00000003
, где
Figure 00000004
- величина, называемая обычно коэффициентом резкости интерферометра Фабри-Перо, а n0 - показатель преломления среды между зеркалами интерферометра. Спектральный интервал, равный ширине аппаратной функции сканирующего интерферометра 10 на уровне
Figure 00000005
, определяет ширину спектральной линии излучения измеряемого узкополосного лазера.
Таким образом, настоящее изобретение полностью реализует поставленную задачу, технологически выполнимо и промышленно применимо.

Claims (3)

1. Устройство для измерения ширины спектральной линии лазерных излучателей, содержащее последовательно установленные элементы, включающее в себя входной оптический направленный ответвитель, один из выходных портов которого соединен с подстроечным плечом, содержащим управляемый аттенюатор, а второй выходной порт с измерительным плечом, выходной направленный ответвитель, фотоприемник и спектроанализатор,
отличающееся тем, что в подстроечном плече выход аттенюатора соединен с входом управляемого оптического фазовращателя, выход которого соединен с входом контроллера поляризации, выход которого соединен с одним из входов выходного направленного ответвителя, причем для управления элементами подстроечного плеча введена схема стабилизации режима, выходы которой соединены с входами управления аттенюатора, фазовращателя, контроллера поляризации, а вход соединен с фотодетектором, который подключен ко второму выходному порту выходного направленного ответвителя, в состав измерительного плеча входит сканирующий интерферометр Фабри-Перо, выход которого соединен с входом выходного направленного ответвителя, при этом для управления сканирующим интерферометром Фабри-Перо введена схема управления, выход которой соединен с входом управления интерферометра Фабри-Перо, причем для обеспечения синхронизации управления выход развертки спектроанализатора соединен с входами схемы стабилизации режима и схемы управления, кроме того, вход спектроанализатора через фотоприемник соединен с первым выходом порта выходного направленного ответвителя.
2. Устройство по п. 1, отличающееся тем, что с целью повышения компактности устройства и улучшения стабильности показаний при измерениях элементы оптической схемы выполняются в интегрально-оптическом варианте.
RU2017128044A 2017-08-04 2017-08-04 Устройство для измерения ширины спектральной линии лазерных излучателей RU2657115C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017128044A RU2657115C1 (ru) 2017-08-04 2017-08-04 Устройство для измерения ширины спектральной линии лазерных излучателей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017128044A RU2657115C1 (ru) 2017-08-04 2017-08-04 Устройство для измерения ширины спектральной линии лазерных излучателей

Publications (1)

Publication Number Publication Date
RU2657115C1 true RU2657115C1 (ru) 2018-06-08

Family

ID=62560344

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017128044A RU2657115C1 (ru) 2017-08-04 2017-08-04 Устройство для измерения ширины спектральной линии лазерных излучателей

Country Status (1)

Country Link
RU (1) RU2657115C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2682659C1 (ru) * 2018-05-25 2019-03-20 Открытое акционерное общество "СУПЕРТЕЛ" Устройство для исследования линейных трактов DWDM магистралей рециркуляционным петлевым методом
CN113091901A (zh) * 2021-04-08 2021-07-09 雄安创新研究院 一种波长编码激光光谱线宽测试装置及其测试方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2408853C1 (ru) * 2009-06-04 2011-01-10 Закрытое акционерное общество "Центр волоконно-оптических систем передачи информации" (ЗАО "Центр ВОСПИ") Устройство для измерения спектральных характеристик оптического излучения
JP2011242345A (ja) * 2010-05-21 2011-12-01 National Institute Of Advanced Industrial & Technology スペクトル測定装置及び測定方法
US9356421B2 (en) * 2014-05-29 2016-05-31 University Of Ottawa Narrow line-width laser characterization based on bi-directional pumped Brillouin random fiber laser

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2408853C1 (ru) * 2009-06-04 2011-01-10 Закрытое акционерное общество "Центр волоконно-оптических систем передачи информации" (ЗАО "Центр ВОСПИ") Устройство для измерения спектральных характеристик оптического излучения
JP2011242345A (ja) * 2010-05-21 2011-12-01 National Institute Of Advanced Industrial & Technology スペクトル測定装置及び測定方法
US9356421B2 (en) * 2014-05-29 2016-05-31 University Of Ottawa Narrow line-width laser characterization based on bi-directional pumped Brillouin random fiber laser

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Горбуленко В.В. и др. "Использование обратного рэлеевского рассеяния в волокне для измерения спектра оптических сигналов", журнал ТЕЛЕКОММУНИКАЦИИ И ТРАНСПОРТ (T-Comm), No 1, 2012 г., стр. 24-26. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2682659C1 (ru) * 2018-05-25 2019-03-20 Открытое акционерное общество "СУПЕРТЕЛ" Устройство для исследования линейных трактов DWDM магистралей рециркуляционным петлевым методом
CN113091901A (zh) * 2021-04-08 2021-07-09 雄安创新研究院 一种波长编码激光光谱线宽测试装置及其测试方法

Similar Documents

Publication Publication Date Title
JP5711134B2 (ja) フーリエドメインモードロッキング
US5541730A (en) Interferometric measuring apparatus for making absolute measurements of distance or refractive index
KR101645274B1 (ko) 표면 측정을 위한 간섭계 거리 측정 방법, 및 상기 측정 구조
JP4613351B2 (ja) 位置決め機構
JPH10339668A (ja) 光波長計及び光波長調整装置
KR20010075299A (ko) 광위상 검출기
CN106017333B (zh) 基于相位调制的双激光单频干涉纳米位移测量装置及方法
Lešundák et al. High-accuracy long distance measurements with a mode-filtered frequency comb
CN104634256A (zh) 一种光纤激光单波自混合干涉位移测量系统
RU2657115C1 (ru) Устройство для измерения ширины спектральной линии лазерных излучателей
GB2261299A (en) Optical interferometer
Downs et al. Bi-directional fringe counting interference refractometer
US7280216B2 (en) Method and apparatus for determining the wavelength of an input light beam
Bonilla-Manrique et al. High-resolution optical thickness measurement based on electro-optic dual-optical frequency comb sources
Imran et al. Measurement of the group-delay dispersion of femtosecond optics using white-light interferometry
US7333210B2 (en) Method and apparatus for feedback control of tunable laser wavelength
WO2020113147A1 (en) A waveguide etalon
JP2012088274A (ja) 変位測定装置
CN111278205A (zh) 一种长时间测量等离子体密度的双色激光光纤干涉仪
JP6491611B2 (ja) 電界強度測定方法
Li et al. Instant laser wavelength measurement based on dual Fabry–Pérot Etalons
CN116865854B (zh) 一种可集成于光子集成芯片上的波长检测装置
Ishikawa et al. A fringe-counting wavemeter for infrared laser diodes
EP1321738A2 (en) Interferometric system and method for measuring length
US20220291056A1 (en) High accuracy frequency measurement of a photonic device using a light output scanning system and a reference wavelength cell