RU2657095C1 - Судно - Google Patents

Судно Download PDF

Info

Publication number
RU2657095C1
RU2657095C1 RU2017113652A RU2017113652A RU2657095C1 RU 2657095 C1 RU2657095 C1 RU 2657095C1 RU 2017113652 A RU2017113652 A RU 2017113652A RU 2017113652 A RU2017113652 A RU 2017113652A RU 2657095 C1 RU2657095 C1 RU 2657095C1
Authority
RU
Russia
Prior art keywords
deck
working medium
hydraulic cylinders
vessel
control unit
Prior art date
Application number
RU2017113652A
Other languages
English (en)
Inventor
Павел Евгеньевич Бураковский
Евгений Петрович Бураковский
Вячеслав Михайлович Юсып
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет"
Priority to RU2017113652A priority Critical patent/RU2657095C1/ru
Application granted granted Critical
Publication of RU2657095C1 publication Critical patent/RU2657095C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/50Vessels or floating structures for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G11/00Aircraft carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

Изобретение относится к области судостроения и может быть использовано, например, при построении авианосцев. Судно содержит по крайней мере две палубы, верхнюю и нижнюю. Верхняя палуба в средней части продольной оси шарнирно закреплена на нижней палубе с возможностью поворота вокруг точки крепления в вертикальной плоскости и снабжена дополнительными опорами. В качестве опор верхней палубы использованы поршни гидроцилиндров, количество и схема расстановки которых выбраны исходя из условий ограничения максимальных напряжений от изгиба верхней палубы. Каждый гидроцилиндр снабжен клапаном подачи рабочей среды, связанным через напорный трубопровод с аккумулятором давления, и клапаном сброса рабочей среды, связанным через обратный трубопровод с емкостью для рабочей среды, которая посредством насоса связана с аккумулятором давления. Судно снабжено блоком управления, который связан с клапанами подачи и сброса рабочей среды. На верхней палубе установлен связанный с блоком управления датчик, регистрирующий отклонение верхней палубы от горизонтали. Технический результат заключается в повышении эффективности использования судна за счет смягчения ограничений по режимам морского волнения. 3 ил.

Description

Изобретение относится к судостроению, в частности к конструкциям судов, имеющих по крайней мере две палубы, и может быть использовано, например, при построении авианосцев.
Известна конструкция авианосца и методы его эксплуатации (Патент США на изобретение №6279500, В63В 35/50, опубл. 28.08.2001 г.). Авианосец характеризуется наличием плоской палубы для проведения операций по взлету и посадке самолетов.
Данная конструкция обладает тем недостатком, что имеет место большая зависимость способности авианосца к выпуску и приему самолетов от величины волнения на море.
В качестве ближайшего аналога принят авианосец с двухуровневой полетной палубой (Патент США на изобретение №8020506, В63В 35/50, опубл. 20.09.2011 г.), имеющий верхнюю и нижнюю полетные палубы.
Данный авианосец обладает существенным недостатком, заключающимся в невозможности проведения посадочных операций при развитом волнении, так как вследствие качки его палуба совершает значительные колебания, достигающие величины нескольких метров, что существенно ограничивает эффективность применения данного авианосца.
Изобретение решает задачу сохранения горизонтального положения верхней палубы судна в условиях килевой качки, за счет крепления верхней палубы с возможностью изменения угла наклона продольной оси, автоматического отслеживания отклонений верхней палубы от горизонтали и их устранения.
Для получения необходимого технического результата в судне, содержащем, по крайней мере, две палубы, верхнюю и нижнюю, предлагается верхнюю палубу в средней части продольной оси шарнирно закрепить на нижней палубе с возможностью поворота вокруг точки крепления в вертикальной плоскости и снабдить дополнительными опорами, в качестве которых использовать поршни гидроцилиндров, количество и схему расстановки которых предлагается выбрать, исходя из условий ограничения максимальных напряжений от изгиба верхней палубы. Каждый гидроцилиндр предлагается снабдить клапаном подачи рабочей среды, связанным через напорный трубопровод с аккумулятором давления, и клапаном сброса рабочей среды, связанным через обратный трубопровод с емкостью для рабочей среды, которую посредством насоса связать с аккумулятором давления. Судно предлагается снабдить блоком управления, который связать с клапанами подачи и сброса рабочей среды, а на верхней палубе установить связанный с блоком управления датчик, регистрирующий отклонение верхней палубы от горизонтали.
На прилагаемых к описанию чертежах изображено:
на фиг. 1 - общий вид предлагаемого судна, например, авианосца;
на фиг. 2 - вид сверху на верхнюю полетную палубу;
на фиг. 3 - расчетная схема верхней полетной палубы.
На чертежах приняты следующие обозначения:
1 - палуба верхняя полетная;
2 - палуба нижняя;
3 - шарнир;
4 - гидроцилиндр;
5 - насос;
6 - датчик угла наклона верхней полетной палубы;
7 - аккумулятор давления;
8 - блок управления;
9 - емкость для рабочей среды;
10 - клапан сброса рабочей среды;
11 - клапан подачи рабочей среды;
12 - трубопровод напорный;
13 - трубопровод обратный;
14 - трасса кабельная;
15 - расходомер рабочей среды;
16 - набор палубы продольный;
17 - набор палубы рамный продольный;
18 - набор палубы рамный поперечный;
Figure 00000001
- длины пролетов верхней полетной палубы;
q1, q12, q23, q34, q45, q56, q67, q7 - интенсивность весовой нагрузки, действующей в пролетах верхней полетной палубы;
М1, М2, М3, М4, М5, М6, М7 - опорные моменты в сечениях верхней полетной палубы;
I, II, III, IV, V, VI, VII - номера опор верхней полетной палубы.
Конструкция авианосца состоит из верхней полетной палубы 1, закрепленной на нижней палубе 2 при помощи шарнира 3 с возможностью регулирования ее продольного наклона с использованием гидроцилиндров 4, на которых установлены клапаны 11 подачи рабочей среды и клапаны 10 сброса рабочей среды, управляемые блоком 8 управления, обрабатывающим сигналы датчика 6 угла наклона верхней полетной палубы и расходомеров 15 рабочей среды. Для создания давления используется насос 5, забирающий рабочую среду из емкости 9 для рабочей среды и нагнетающий ее в аккумулятор 7 давления. По напорным трубопроводам 12 рабочая среда подается к гидроцилиндрам 4, а по обратным трубопроводам 13 возвращается в емкость 9 для рабочей среды. Электрические соединения блока насоса 5, датчика 6 угла наклона верхней полетной палубы, клапанов 11 подачи рабочей среды, клапанов 10 сброса рабочей среды, расходомеров 15 рабочей среды с блоком 8 управления осуществляются посредством кабельных трасс 14. Для обеспечения жесткости верхняя полетная палуба 1 подкреплена продольным набором 16 палубы, рамным продольным набором 17 палубы, а также рамным поперечным набором 18 палубы.
Описание работы судна
Предлагаемое судно, например авианосец, работает следующим образом. В случае благоприятных погодных условий, когда качка авианосца незначительна и не препятствует взлету и посадке самолетов, а также, если проведение взлетно-посадочных операций не требуется, верхняя полетная палуба 1 находится в зафиксированном положении относительно нижней палубы 2 за счет того, что клапаны 11 подачи рабочей среды и клапаны 10 сброса рабочей среды на гидроцилиндрах 4 закрыты. При этом гидроцилиндры 4, установленные в местах пересечения рамного продольного набора 17 палубы и рамного поперечного набора 18 палубы, выполняют роль жестких опор для верхней полетной палубы 1. При увеличении параметров морского волнения и росте качки авианосца сверх значений, при которых возможно безопасное выполнение взлетно-посадочных операций, начинается регулирование положения верхней полетной палубы 1. Блок 8 управления включает насос 5, который забирает рабочую среду в емкости 9 для рабочей среды и создает давление в аккумуляторе 7 давления, соединенном напорными трубопроводами 12 с гидроцилиндрами 4 через установленные на них клапаны 11 подачи рабочей среды, открытие и закрытие которых осуществляется по командам блока 8 управления. При открытии клапана 11 подачи рабочей среды соответствующего гидроцилиндра 4 рабочая среда подается в него из аккумулятора 7 давления посредством напорного трубопровода 12, и гидроцилиндр 4 начинает перемещать соответствующую точку верхней полетной палубы 1 в направлении от нижней палубы 2. Для того чтобы был обеспечен беспрепятственный поворот верхней полетной палубы 1 относительно шарнира 3, рабочая среда должна подаваться во все гидроцилиндры 4, расположенные по одну сторону от шарнира 3. При этом в гидроцилиндрах 4, расположенных по другую сторону от шарнира 3, клапаны 11 подачи рабочей среды должны быть закрыты, а клапаны 10 сброса рабочей среды - открыты. По обратным трубопроводам 13, соединяющим клапаны 10 сброса рабочей среды, установленные на гидроцилиндрах 4, рабочая среда будет подаваться в емкость 9 для рабочей среды, откуда при помощи насоса 5 будет перекачиваться в аккумулятор 7 давления. Следует учитывать, что при повороте верхней полетной палубы 1 на некоторый угол ход поршня гидроцилиндров 4, наиболее удаленных от шарнира 3, будет максимален, из-за этого количество подаваемой к ним и удаляемой от них рабочей среды также будет больше, чем для гидроцилиндров 4, расположенных в районе шарнира 3 (при одинаковом диаметре всех гидроцилиндров 4). Поэтому пропускная способность напорных трубопроводов 12 и обратных трубопроводов 13 для наиболее удаленных от мидель-шпангоута авианосца гидроцилиндров 4 должна быть максимальной. Для обеспечения требуемой величины подачи рабочей среды к гидроцилиндрам 4 и ее удаления в емкость 9 для рабочей среды величина открытия клапанов 11 подачи рабочей среды и клапанов 10 сброса рабочей среды должна регулироваться блоком 8 управления на основании обработки сигналов от датчика 6 угла наклона верхней полетной палубы и расходомеров 15 рабочей среды, установленных на напорных трубопроводах 12 и обратных трубопроводах 13. Также может быть использована схема регулирования величины подачи рабочей среды, при которой по команде блока 8 управления чередуются кратковременные периоды открытия и закрытия клапана подачи рабочей среды 11, а величина подачи определяется отношением продолжительности этих периодов. Аналогичная схема может быть применена и для управления клапаном 10 сброса рабочей среды.
Вместо двух клапанов на каждом гидроцилиндре 4 также может быть использован блок клапанов, соединенный трубопроводами с аккумулятором 7 давления, емкостью 9 для рабочей среды, а также напорными трубопроводами 12 и обратными трубопроводами 13 с каждым из гидроцилиндров 4. Блок клапанов регулирует подачу рабочей среды к гидроцилиндрам 4 по командам блока 8 управления, обрабатывающего сигналы от датчика 6 угла наклона верхней полетной палубы и расходомеров 15 рабочей среды, и содержит по два клапана на каждый гидроцилиндр: клапан 11 подачи рабочей среды, к которому присоединяется напорный трубопровод 12 к соответствующему гидроцилиндру 4, и клапан 10 сброса рабочей среды, к которому присоединяется обратный трубопровод 13 от гидроцилиндра 4.
Определить необходимое количество гидроцилиндров можно из условия обеспечения допускаемой погиби верхней полетной палубы 1 между ее опорами, роль которых выполняют шарнир 3 и гидроцилиндры 4. Также при выборе схемы расстановки гидроцилиндров можно воспользоваться условием ограничения максимальных напряжений от изгиба в верхней полетной палубе 1. Вид сверху на верхнюю полетную палубу 1 представлен на фиг. 2, где показана схема расстановки гидроцилиндров 4. Соответствующая расчетная схема верхней полетной палубы представлена на фиг. 3. Расчет верхней полетной палубы 1 целесообразно осуществлять с использованием метода трех моментов, при этом в качестве нагрузки должен рассматриваться собственный вес конструкции. При необходимости в число нагрузок может быть добавлен вес самолетов, осуществляющих взлетно-посадочные операции и т.д. Система уравнений для раскрытия статической неопределимости конструкции будет иметь вид
Figure 00000002
где Е - модуль Юнга;
Figure 00000003
- момент инерции балки в пролете между опорами i и j;
Figure 00000004
- изгибающий момент на первой опоре;
Figure 00000005
- изгибающий момент на последней опоре.
Решая представленную выше систему уравнений, можно определить все оставшиеся опорные моменты М2, М3, М4, М5, М6. Пусть длина верхней полетной палубы 1 составляет 300 м, ее масса М=1600 т,
Figure 00000006
,
Figure 00000007
, число пролетов палубы (за исключением носовой и кормовой консоли) N=6, причем их длины равны, т.е.
Figure 00000008
Также будем считать, что момент инерции I и момент сопротивления W верхней полетной палубы 1 постоянны по ее длине и составляют I=0,3 м4, W=0,6 м3, а ее весовая нагрузка распределена по длине равномерно и составляет q=М⋅g/L≈52300 Н/м. В этом случае, определив опорные моменты, найдем максимальные прогибы верхней полетной палубы 1 между ее опорами, которые составляют около 28 мм. При этом максимальные изгибные напряжения в конструкции верхней полетной палубы 1 составят 21 МПа. Изменяя жесткость верхней полетной палубы и длину ее пролетов, можно добиться требуемой величины напряжений и прогибов.
Располагая опорными моментами, можно найти опорные реакции для каждой из однопролетных балок, а также суммарную реакцию, действующую на каждую из опор, что позволяет определить усилие, которое должны развивать гидроцилиндры 4 для обеспечения работы конструкции. В приведенном примере наибольшая реакция возникает на второй опоре и имеет величину R2=2852 кН, таким образом, суммарное усилие, развиваемое гидроцилиндрами в количестве n, установленными в данном сечении корпуса, должно удовлетворять данной величине и иметь некоторый коэффициент запаса Kз, а требуемое усилие, развиваемое отдельным гидроцилиндром, можно определить из выражения
Figure 00000009
В приведенном примере при двух гидроцилиндрах в поперечном сечении корпуса и коэффициенте запаса Kз=1,5 требуемое усилие, развиваемое гидроцилиндром, составит F=2139 кН.
Для определения требуемой величины подачи и сброса рабочей среды блок 8 управления отслеживает отклонение верхней полетной палубы 1 от горизонтального положения по сигналам от датчика 6 угла наклона верхней полетной палубы. Датчик 6 угла наклона верхней полетной палубы установлен на верхней полетной палубе 1 и может представлять собой, например, гироскопический датчик угла наклона. При увеличении угла отклонения верхней полетной палубы 1 от горизонтального положения блок 8 управления отдает команду на открытие клапанов 11 подачи рабочей среды на гидроцилиндрах 4, расположенных по ту сторону от шарнира 3, которая опустилась вниз, а также команду на открытие клапанов 10 сброса рабочей среды на гидроцилиндрах 4, расположенных по другую сторону от шарнира 3. Следует учитывать, что для обеспечения плоскостности верхней полетной палубы 1 количество подаваемой в гидроцилиндры 4 рабочей среды должно находиться в зависимости от удаления гидроцилиндров 4 от шарнира 3: чем дальше от шарнира 3 находится гидроцилиндр, тем больше рабочей среды должно подаваться в него. Так, если для представленной на фиг. 2 конструкции объем рабочей среды, подаваемой в гидроцилиндры 4, находящиеся на расстоянии
Figure 00000010
от шарнира 3 (ближайшие к шарниру 3 с правой стороны), равен Q5, то объем рабочей среды Q7, подаваемой в гидроцилиндры 4, находящиеся на расстоянии
Figure 00000011
от шарнира 3 (наиболее удаленные от шарнира 3 с правой стороны), должен определяться из пропорции
Figure 00000012
т.е.
Figure 00000013
Представленные выражения могут быть использованы для гидроцилиндров с одинаковой площадью поршня, т.е. если перемещения их поршней одинаковы при равном количестве подаваемой рабочей среды. В противном случае выражения должны быть откорректированы с учетом соотношений площадей поршней гидроцилиндров. Аналогичным образом определяются соотношения между объемами рабочей среды, подаваемой к установленным в других сечениях корпуса гидроцилиндрам 4, или удаляемой из них. Блок 8 управления осуществляет контроль объема подаваемой и удаляемой рабочей среды по сигналам от расходомеров 15 рабочей среды и регулирует указанный объем за счет клапанов 11 подачи рабочей среды и клапанов 10 сброса рабочей среды.
Под действием гидроцилиндров 4 осуществляется изменение угла наклона верхней полетной палубы 1 по отношению к нижней палубе 2, на которой она закреплена при помощи шарнира 3. В результате этого верхняя полетная палуба 1 находится в неизменном горизонтальном положении, что делает возможным выполнение взлетно-посадочных операций при неблагоприятных погодных условиях.
Таким образом, предлагаемая конструкция судна позволяет повысить эффективность его использования за счет смягчения ограничений по режимам морского волнения, при которых на авианосцах возможны взлет и посадка самолетов палубной авиации, а также на судах другого назначения можно проводить работы на палубе, невзирая на качку.

Claims (1)

  1. Судно, содержащее по крайней мере две палубы, верхнюю и нижнюю, отличающееся тем, что верхняя палуба в средней части продольной оси шарнирно закреплена на нижней палубе с возможностью поворота вокруг точки крепления в вертикальной плоскости и снабжена дополнительными опорами, в качестве которых использованы поршни гидроцилиндров, количество и схема расстановки которых выбраны исходя из условий ограничения максимальных напряжений от изгиба верхней палубы, причем каждый гидроцилиндр снабжен клапаном подачи рабочей среды, связанным через напорный трубопровод с аккумулятором давления, и клапаном сброса рабочей среды, связанным через обратный трубопровод с емкостью для рабочей среды, которая посредством насоса связана с аккумулятором давления, кроме этого, судно снабжено блоком управления, который связан с клапанами подачи и сброса рабочей среды, а на верхней палубе установлен связанный с блоком управления датчик, регистрирующий отклонение верхней палубы от горизонтали.
RU2017113652A 2017-04-19 2017-04-19 Судно RU2657095C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017113652A RU2657095C1 (ru) 2017-04-19 2017-04-19 Судно

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017113652A RU2657095C1 (ru) 2017-04-19 2017-04-19 Судно

Publications (1)

Publication Number Publication Date
RU2657095C1 true RU2657095C1 (ru) 2018-06-08

Family

ID=62559895

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017113652A RU2657095C1 (ru) 2017-04-19 2017-04-19 Судно

Country Status (1)

Country Link
RU (1) RU2657095C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2390462C1 (ru) * 2009-03-13 2010-05-27 Эдуард Дмитриевич Житников Малый двухэтажный авианосец
US8020506B2 (en) * 2009-05-20 2011-09-20 Hsu-Cheng Wang Double level flight deck type aircraft carrier
CN202439835U (zh) * 2012-01-18 2012-09-19 郝安阶 一种航空母舰
CN103274027A (zh) * 2013-05-03 2013-09-04 黄飞灵 抗风浪、防晕船的船舰航海平衡机构
CN105292417A (zh) * 2015-11-23 2016-02-03 郝安阶 一种航空母舰

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2390462C1 (ru) * 2009-03-13 2010-05-27 Эдуард Дмитриевич Житников Малый двухэтажный авианосец
US8020506B2 (en) * 2009-05-20 2011-09-20 Hsu-Cheng Wang Double level flight deck type aircraft carrier
CN202439835U (zh) * 2012-01-18 2012-09-19 郝安阶 一种航空母舰
CN103274027A (zh) * 2013-05-03 2013-09-04 黄飞灵 抗风浪、防晕船的船舰航海平衡机构
CN105292417A (zh) * 2015-11-23 2016-02-03 郝安阶 一种航空母舰

Similar Documents

Publication Publication Date Title
EP2571752B1 (en) Multi-hulled water craft including suspension
CN102985316B (zh) 多船体船舶的控制
RU2507105C2 (ru) Система и способ активной и пассивной стабилизации судна
US6701861B2 (en) Semi-submersible floating production facility
US4059065A (en) Semisubmersible loading mooring and storage facility
AU2017271305B2 (en) Transportable inline heave compensator
US7823525B2 (en) Floating platform method and apparatus
CN109367729A (zh) 一种带有水面自适应减摇装置的耐波无人船
AU2017222997B2 (en) Mobile Active Heave Compensator
US4207828A (en) Stabilizing system for a crane vessel
NO338346B1 (no) Dobbelt-dybdegående fartøy
US3689953A (en) Stabilized floating structure
US20100224114A1 (en) Semi-Submersible Vessel, Method For Operating A Semi-Submersible Vessel And Method For Manufacturing A Semi-Submersible Vessel
CN109707681A (zh) 一种小型步桥主随动液压系统
RU2657095C1 (ru) Судно
NO317430B1 (no) Fremgangsmate for bruk ved offshore lastoverforing, flyter og hydraulisk innretning for samme
CN115184059B (zh) 基于四象限马达的绞车式升沉补偿实验台及其工作方法
CN106467161B (zh) 一种船
CN105292417B (zh) 一种航空母舰
US20240317363A1 (en) Offloading an object from a heave motion compensated carrier of a vessel
SU984924A1 (ru) Морска стабилизированна платформа
JPH01226488A (ja) 船舶等浮体のバラスト調整装置
RU2472666C2 (ru) Бортовое перекрытие
NO346008B1 (no) Flytbar rammestruktur med hydraulisk bølgeenergigenerator og framgangsmåte for generering av energi fra bølger
NO800072L (no) Flytende konstruksjon.

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20200420