RU2653508C1 - Микрофокусная рентгеновская трубка прострельного типа с высоким уровнем рассеиваемой на аноде мощности - Google Patents
Микрофокусная рентгеновская трубка прострельного типа с высоким уровнем рассеиваемой на аноде мощности Download PDFInfo
- Publication number
- RU2653508C1 RU2653508C1 RU2017118897A RU2017118897A RU2653508C1 RU 2653508 C1 RU2653508 C1 RU 2653508C1 RU 2017118897 A RU2017118897 A RU 2017118897A RU 2017118897 A RU2017118897 A RU 2017118897A RU 2653508 C1 RU2653508 C1 RU 2653508C1
- Authority
- RU
- Russia
- Prior art keywords
- anode
- target
- heat pipe
- heat
- ray
- Prior art date
Links
- 239000000126 substance Substances 0.000 claims abstract description 5
- 238000009833 condensation Methods 0.000 claims abstract description 4
- 230000005855 radiation Effects 0.000 claims description 15
- 239000002826 coolant Substances 0.000 claims description 12
- 230000008020 evaporation Effects 0.000 claims description 9
- 238000001704 evaporation Methods 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 238000012546 transfer Methods 0.000 claims description 9
- 238000010438 heat treatment Methods 0.000 claims description 8
- 238000010894 electron beam technology Methods 0.000 claims description 6
- 239000002131 composite material Substances 0.000 claims description 5
- 230000005484 gravity Effects 0.000 claims description 4
- 230000007246 mechanism Effects 0.000 claims description 4
- 239000012876 carrier material Substances 0.000 claims description 2
- 238000011160 research Methods 0.000 abstract description 5
- 238000004659 sterilization and disinfection Methods 0.000 abstract description 4
- 238000002441 X-ray diffraction Methods 0.000 abstract description 2
- 239000003814 drug Substances 0.000 abstract description 2
- 238000002594 fluoroscopy Methods 0.000 abstract description 2
- 238000012239 gene modification Methods 0.000 abstract description 2
- 238000004377 microelectronic Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 7
- 230000009471 action Effects 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 229910052790 beryllium Inorganic materials 0.000 description 3
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical group [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 3
- 239000010405 anode material Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J35/00—X-ray tubes
- H01J35/02—Details
- H01J35/04—Electrodes ; Mutual position thereof; Constructional adaptations therefor
- H01J35/08—Anodes; Anti cathodes
- H01J35/12—Cooling non-rotary anodes
Landscapes
- X-Ray Techniques (AREA)
Abstract
Изобретение относится к радиационной технике нового поколения, предназначено для улучшения основных характеристик рентгеновского технологического и исследовательского оборудования и может быть использовано в установках стерилизации, дезинфекции, генной модификации, в рентгеноскопии и рентгеноструктурном анализе объектов микроэлектроники, биологии, медицины. Изобретение представляет собой микрофокусный рентгеновский источник, содержащий катодно-модуляторный узел, фокусирующую систему и анод прострельного типа, который изготавливается в виде тепловой трубы, работающей по замкнутому испарительно-конденсационному циклу. Технический результат – получение возможности рассеивать большие тепловые мощности, выделяемые в результате бомбардировки поверхности мишени сфокусированными высокоэнергетическими электронами. 1 ил.
Description
Изобретение относится к радиационной технике нового поколения, предназначено для улучшения основных характеристик рентгеновского технологического и исследовательского оборудования и может быть использовано в установках стерилизации, дезинфекции, генной модификации, в рентгеноскопии и рентгеноструктурном анализе объектов микроэлектроники, биологии, медицины и т.д.
Генерация рентгеновского излучения является результатом взаимодействия ускоренных электронов с веществом. Для возбуждения рентгена используют потоки электронов с энергией от нескольких кэВ до сотен кэВ, направляемые на анод (антикатод). Часть энергии потока при торможении электронов в веществе анода идет на нагревание материала, а другая часть (в лучших образцах до 15%) преобразуется в рентгеновское излучение.
По диаметру сфокусированного на аноде электронного луча рентгеновские трубки разделяют на макрофокусные (диаметр более 1 мм), острофокусные (диаметр 0.01-1 мм) и микрофокусные (диаметр меньше 10 мкм).
Преимущества применения микрофокусных трубок по сравнению с макрофокусными состоят в следующем:
- принципиальная возможность локальных исследований и воздействий,
- малая доза облучения областей, смежных с предметной,
- возможность получения увеличенных изображений,
- более высокое качество изображений объекта при равенстве доз облучения.
Конструктивно аноды микрофокусных трубок выполняются массивными или прострельными.
Известны микрофокусные трубки с массивным анодом (отражательного типа) [1]. Такой анод состоит из тела анода и мишени и поэтому называется составным анодом. Материал тела анода должен обладать высокой теплопроводностью для эффективного отвода тепла к охлаждающему устройству. К мишени предъявляют требования высокой температуры плавления.
Недостатком таких микрофокусных трубок, в соответствии с известными оценками, в том числе представленных в [1], является малая предельная мощность, подводимая электронным пучком к массивной вольфрамовой мишени в длительном режиме работы трубки, составляющая не более 1 Вт на 1 мкм2 поперечного сечения электронного луча.
Другим недостатком микрофокусных трубок отражательного типа является невозможность размещения исследуемого образца на малом расстоянии от поверхности мишени, с которой происходит эмиссия рентгеновского излучения.
Преимущества острофокусных/микрофокусных рентгеновских трубок могут быть максимально реализованы при использовании анодов прострельного типа, в отличие от анодов отражательного типа, размещением объекта исследований на малом расстоянии (доли мм - единицы мм) от излучающей поверхности.
Известны микрофокусные рентгеновские трубки (прототип), анодный узел которых содержит тонкопленочную мишень прострельного типа, представляющую собой металл с высоким атомным номером, нанесенный на выходное окно, расположенное в торце длинной анодной пролетной трубы [2]. Подводимая электронным пучком к мишени мощность отводится за счет теплопроводности материалов выходного окна и пролетной трубы.
Недостатками микрофокусных рентгеновских источников прострельного типа с плоскими составными анодами является еще меньшая мощность излучения по сравнению с трубками, имеющими массивный анод. Для традиционно используемой комбинации материалов: тонкопленочная мишень - вольфрам, выходное окно – бериллий, значение допустимой температуры ограничено нагревом выходного окна и находится в районе 2000°С. Рассеиваемая на составном аноде мощность в этом случае ограничена уровнем 0,5 Вт на 1 мкм2 в длительном режиме работы [3, 4]. Превышение указанного предела мощности приводит к разогреву и расплавлению материла анода и его разрушению.
Техническая задача предлагаемого изобретения состоит в создании микрофокусной рентгеновской трубки с анодом прострельного типа, конструкция которого позволяет рассеивать большие тепловые мощности, выделяемые в результате бомбардировки поверхности мишени сфокусированными высокоэнергетическими электронами. Конструктивно анод предлагаемого рентгеновского источника представляет собой тепловую трубу [5], часть корпуса которой, обращенная к катоду, является мишенью и нагревается за счет бомбардировки ускоренными и сфокусированными электронами. Испаренный теплоноситель, находящийся в контакте с мишенью, уносит энергию из малой области нагрева мишени и передает ее другой, холодной или принудительно охлаждаемой части корпуса тепловой трубы, где теплоноситель конденсируется и возвращается в зону испарения. Данная часть корпуса тепловой трубы является окном для вывода рентгеновского излучения наружу. Тепловая труба является эффективном средством отвода тепла, так как вместо достаточно медленного электронного механизма переноса тепла в сплошном металлическом теплопроводе здесь действует молекулярный механизм переноса кинетической и колебательной энергии хаотического движения отдельных частиц вещества испарителя. При скорости испарения жидкости порядка нескольких грамм за секунду с паром уносится тепловой поток, оцениваемый киловаттами. Образовавшийся конденсат возвращается в зону испарения или под действием капиллярных сил, которые обеспечиваются размещением специализированной капиллярной структуры внутри тепловой трубы, или за счет действия силы тяжести (последняя конструкция обычно именуется термосифоном).
На фиг. 1 без сохранения пропорций показана схема анодного узла аксиально-симметричной микрофокусной рентгеновской трубки прострельного типа, анод которой выполнен в виде тепловой трубы 1, например в виде термосифона дискообразной формы, т.е. является герметичным теплопередающим устройством, работающим по замкнутому испарительно-конденсационному циклу. Корпус (оболочка) тепловой трубы 1 состоит из двух герметически соединенных частей - дна 2 и крышки 3, и находится в тепловом контакте с источником 4 и стоком 5 тепла. Источником 4 тепла являются бомбардирующие поверхность дна 2 корпуса трубы 1, например, вблизи оси симметрии устройства высокоэнергетические сфокусированные электроны 6. Дно 2 корпуса тепловой трубы 1, подвергающееся электронной бомбардировке, играет роль мишени анода, назначение которой - эмиссия рентгеновского излучения 7. Для эффективной генерации рентгеновских квантов мишень 2 должна изготавливаться из металла с высоким атомным номером, например из вольфрама. Тепловая энергия, выделяемая в мишени 2, затрачивается на испарение теплоносителя 8, заключенного внутри корпуса тепловой трубы 1. Толщина мишени 2 должны быть достаточно малой для эффективной передачи тепла теплоносителю 8. Молекулы пара 9 вещества теплоносителя с большой скоростью перемещаются к холодной крышке 3 тепловой трубы 1, отдают ей энергию, здесь пар охлаждается и конденсируется. Образовавшийся конденсат 10 возвращается в зону нагрева 4 теплоносителя 8. Сток тепла 5 обеспечивается крышкой 3 и частью дна 2 корпуса тепловой трубы 1, контактирующими с внешней средой и массивным корпусом анода 11. Для эффективного стока тепла крышка 3 корпуса 1 должна изготавливаться из фольги металла с хорошей теплопроводностью. Направленное стекание конденсата 10 из зоны стока 5 тепла в область нагрева 4 обеспечивается выпуклыми формами дна 2 и крышки 3 корпуса тепловой трубы 1. Рентгеновское излучение 7, испущенное мишенью 2, выпускаются наружу через крышку 3 корпуса 1, играющую роль выходного окна, и поэтому предпочтительным материалом для ее изготовления является фольга из металла с низким атомным номером, например из бериллия.
Таким образом, решение технической задачи достигается тем, что микрофокусный рентгеновский источник содержит катодно-модуляторный узел, фокусирующую систему и анод, служащие для эмиссии электронного потока с катода, ускорения потока и его фокусировки на аноде, при этом анод прострельного типа изготавливается в виде тепловой трубы, работающей по замкнутому испарительно-конденсационному циклу, часть корпуса которой, обращенная к катоду, является мишенью анода, т.е. источником рентгеновского излучения, и нагревается за счет бомбардировки ускоренными и сфокусированными электронами, что приводит к испарению теплоносителя, находящегося в контакте с мишенью, переносу тепловой энергии молекулами пара вещества теплоносителя из области нагрева мишени к другой, естественно или принудительно охлаждаемой части корпуса тепловой трубы, обращенной наружу во внешнее пространство и играющей дополнительную роль выходного окна для рентгеновского излучения, где теплоноситель конденсируется и возвращается в зону испарения под действием силы тяжести или за счет капиллярных сил, возникающих в капиллярной структуре, специально размещаемой внутри тепловой трубы, а полученное охлаждаемой частью корпуса тепловой трубы тепло рассеивается в окружающее пространство, и таким образом за счет переноса скрытой тепловой энергии молекулами пара вещества теплоносителя обеспечивается многократное повышение уровня рассеиваемой мощности на мишени анода по сравнению с составными металлическими анодами, в которых отвод тепла от мишени происходит в соответствии с механизмом электронной теплопроводности.
Рентгеновская трубка работает следующим образом.
Предварительно сформированный в катодно-модуляторном узле (не показанном на фиг. 1) и сфокусированный полем системы фокусировки (не изображенной на фиг. 1) электронный поток 6 ускоряется напряжением, приложенным между катодом и анодом 1 (фиг. 1). Ускоренные электроны 6 поглощаются мишенью 2, являющейся фольгой металла предпочтительно с высоким атомным номером, например вольфрама, и вызывают эмиссию рентгеновского излучения 7 из области 4 с малыми поперечными размерами. Рентгеновское излучение 7 выводится наружу через окно 3, изготавливаемое из фольги металла с высокой степенью прозрачности для рентгеновских лучей, например бериллия. Мишень 2 и выходное окно 3, имеющие выпуклую форму и герметически соединенные по внешнему контуру, является тепловой трубой 1, во внутреннее пространство которой помещается теплоноситель 8. Поскольку основная часть энергии бомбардируемых электронов выделяется в мишени 2 в виде тепла, то теплоноситель 8, контактирующий с областью нагрева 4, нагревается и затем испаряется. Пар 9 вещества теплоносителя устремляется к выходному окну 3, охлаждаемому естественным образом или принудительно, отдает тепло материалу окна 3, конденсируется и возвращается в виде конденсата 10 в зону испарения под действием капиллярных сил, которые обеспечиваются размещением специализированной капиллярной структуры внутри тепловой трубы (не показанной на фиг.1), или за счет действия силы тяжести. Сток 5 тепла из нагреваемых паром 9 областей тепловой трубы 1 в окружающее пространство и в массивный анодный корпус 11 является последним звеном механизма эффективного рассеяния тепловой энергии из зоны 4 бомбардировки мишени 2 электронным лучом 6 во внешнюю среду.
ЛИТЕРАТУРА
1. Иванов С.А., Щукин Г.А. Рентгеновские трубки технического назначения. - Л.: Энергоиздат, 1989. - 200 с.
2. Иванов С.А., Иоффе Ю.К., Кириенко С.В., Щукин Г.А. Малогабаритные источники рентгеновского излучения. Обзоры по электронике. Сер. электровакуумные и газоразрядные приборы. - М.: ЦНИИ «Электроника», 1987. - вып. 4 (1298). - 55 с.
3. Хараджа Ф.Н. Общий курс рентгенотехники. - М. - Л.: Энергия, 1966 - 568 с.
4. Иванов С.А., Кириенко С.В., Щукин Г.А. Расчет тепловых процессов в анодах рентгеновских трубок // Обзоры по электронной технике, 1986. - Сер. 4, вып. 2(1175).
5. Москвин Ю.В., Филиппов Ю.А. Тепловые трубы // Теплофизика высоких температур, 1969. - N.7, №4. - С. 766-775.
Claims (1)
- Микрофокусный рентгеновский источник, содержащий катодно-модуляторный узел, фокусирующую систему и анод, служащие для эмиссии электронного потока с катода, ускорения потока и его фокусировки на аноде, отличающийся тем, что анод прострельного типа изготавливается в виде тепловой трубы, работающей по замкнутому испарительно-конденсационному циклу, часть корпуса которой, обращенная к катоду, является мишенью анода, т.е. источником рентгеновского излучения, и нагревается за счет бомбардировки ускоренными и сфокусированными электронами, что приводит к испарению теплоносителя, находящегося в контакте с мишенью, переносу тепловой энергии молекулами пара вещества теплоносителя из области нагрева мишени к другой, естественно или принудительно охлаждаемой части корпуса тепловой трубы, обращенной наружу во внешнее пространство и играющей дополнительную роль выходного окна для рентгеновского излучения, где теплоноситель конденсируется и возвращается в зону испарения под действием силы тяжести или за счет капиллярных сил, возникающих в капиллярной структуре, специально размещаемой внутри тепловой трубы, а полученное охлаждаемой частью корпуса тепловой трубы тепло рассеивается в окружающее пространство, и таким образом за счет переноса скрытой тепловой энергии молекулами пара вещества теплоносителя обеспечивается многократное повышение уровня рассеиваемой мощности на мишени анода по сравнению с составными металлическими анодами, в которых отвод тепла от мишени происходит в соответствии с механизмом электронной теплопроводности.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017118897A RU2653508C1 (ru) | 2017-05-30 | 2017-05-30 | Микрофокусная рентгеновская трубка прострельного типа с высоким уровнем рассеиваемой на аноде мощности |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2017118897A RU2653508C1 (ru) | 2017-05-30 | 2017-05-30 | Микрофокусная рентгеновская трубка прострельного типа с высоким уровнем рассеиваемой на аноде мощности |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2653508C1 true RU2653508C1 (ru) | 2018-05-10 |
Family
ID=62105729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2017118897A RU2653508C1 (ru) | 2017-05-30 | 2017-05-30 | Микрофокусная рентгеновская трубка прострельного типа с высоким уровнем рассеиваемой на аноде мощности |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2653508C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU199029U1 (ru) * | 2020-04-03 | 2020-08-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" | Микрофокусная рентгеновская трубка с анодом "тепловая труба" прострельного типа |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5052034A (en) * | 1989-10-30 | 1991-09-24 | Siemens Aktiengesellschaft | X-ray generator |
US5199059A (en) * | 1990-11-22 | 1993-03-30 | Schwarzkopf Technologies Corporation | X-ray tube anode with oxide coating |
RU2047244C1 (ru) * | 1992-06-09 | 1995-10-27 | Александр Дмитриевич Гуров | Рентгеновская трубка |
RU123224U1 (ru) * | 2011-12-09 | 2012-12-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) | Анод рентгеновской трубки стационарный |
-
2017
- 2017-05-30 RU RU2017118897A patent/RU2653508C1/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5052034A (en) * | 1989-10-30 | 1991-09-24 | Siemens Aktiengesellschaft | X-ray generator |
US5199059A (en) * | 1990-11-22 | 1993-03-30 | Schwarzkopf Technologies Corporation | X-ray tube anode with oxide coating |
RU2047244C1 (ru) * | 1992-06-09 | 1995-10-27 | Александр Дмитриевич Гуров | Рентгеновская трубка |
RU123224U1 (ru) * | 2011-12-09 | 2012-12-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) | Анод рентгеновской трубки стационарный |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU199029U1 (ru) * | 2020-04-03 | 2020-08-07 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" | Микрофокусная рентгеновская трубка с анодом "тепловая труба" прострельного типа |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6307916B1 (en) | Heat pipe assisted cooling of rotating anode x-ray tubes | |
US6477231B2 (en) | Thermal energy transfer device and x-ray tubes and x-ray systems incorporating same | |
US6377659B1 (en) | X-ray tubes and x-ray systems having a thermal gradient device | |
US6185277B1 (en) | X-ray source having a liquid metal target | |
US9818569B2 (en) | High dose output, through transmission target X-ray system and methods of use | |
US20100201240A1 (en) | Electron accelerator to generate a photon beam with an energy of more than 0.5 mev | |
JP2747295B2 (ja) | 本質的に単色のx線を発生する放射線源 | |
JPH11510955A (ja) | 熱移動装置を有するx線発生装置 | |
US7436931B2 (en) | X-ray source for generating monochromatic x-rays | |
US6304631B1 (en) | X-ray tube vapor chamber target | |
US9484177B2 (en) | Longitudinal high dose output, through transmission target X-ray system and methods of use | |
CN105379427A (zh) | 用于产生伦琴辐射的伦琴射线源和方法 | |
RU2653508C1 (ru) | Микрофокусная рентгеновская трубка прострельного типа с высоким уровнем рассеиваемой на аноде мощности | |
US5535255A (en) | System for the cooling of an anode for an X-ray tube in a radiogenic unit without heat exchanger | |
US8565381B2 (en) | Radiation source and method for the generation of X-radiation | |
US9905390B2 (en) | Cooling mechanism for high-brightness X-ray tube using phase change heat exchange | |
US20150078533A1 (en) | Cooled Stationary Anode for an X-Ray Tube | |
US20080049902A1 (en) | "X-Ray Tube for High Dose Rates, Method of Generating High Dose Rates wit X-Ray Tubes and a Method of Producing Corresponding X-Ray Devices" | |
JP3910468B2 (ja) | 回転陽極型x線管 | |
CN109698105B (zh) | 高剂量输出的透射传输和反射目标x射线系统及使用方法 | |
JP6652197B2 (ja) | X線管 | |
US6359968B1 (en) | X-ray tube capable of generating and focusing beam on a target | |
RU199029U1 (ru) | Микрофокусная рентгеновская трубка с анодом "тепловая труба" прострельного типа | |
RU2303828C2 (ru) | Рентгеновская трубка | |
JPH04262348A (ja) | 固定陽極x線管の陽極構造 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20190531 |