RU2648244C1 - Химический источник тока с реакционно формирующимся электролитом - Google Patents

Химический источник тока с реакционно формирующимся электролитом Download PDF

Info

Publication number
RU2648244C1
RU2648244C1 RU2017111663A RU2017111663A RU2648244C1 RU 2648244 C1 RU2648244 C1 RU 2648244C1 RU 2017111663 A RU2017111663 A RU 2017111663A RU 2017111663 A RU2017111663 A RU 2017111663A RU 2648244 C1 RU2648244 C1 RU 2648244C1
Authority
RU
Russia
Prior art keywords
cathode
anode
substances
electrolyte
electrode
Prior art date
Application number
RU2017111663A
Other languages
English (en)
Inventor
Рустем Галятдинович Тазетдинов
Геннадий Серафимович Тибрин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)"
Priority to RU2017111663A priority Critical patent/RU2648244C1/ru
Application granted granted Critical
Publication of RU2648244C1 publication Critical patent/RU2648244C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells

Abstract

Изобретение относится к электротехнике, в частности к химическим источникам тока, у которых электролит образуется в результате реакции между жидкими веществами анода (Li, Na) и катода (S, Se, Те), которые могут быть использованы в системах кратковременного и импульсного действия в наземной, авиационной и ракетно-космической технике. Для выравнивания давления на электролит, возникающего в процессе разряда вследствие увеличения объема катода и уменьшения объема анода, предлагается разместить жидкие электродные вещества в порах капиллярно-пористых структур из электропроводного материала, при этом катодное вещество в начале разряда занимает только часть пор катодной структуры, и его избыточная часть перетекает в процессе разряда в свободный объем. Для выравнивания возникающего при этом перепада давления инертного газа, заполняющего свободное пространство ХИТ, предлагается перепускное устройство в виде трубки из электроизоляционного материала, соединяющей друг с другом анодную и катодную полости. Повышение стабильности работы химического источника тока, а также увеличение времени его разряда является техническим результатом изобретения. 1 ил.

Description

Изобретение относится к электротехнике, в частности к химическим источникам тока, преобразующим химическую энергию в электрическую, и предназначено для применения в качестве источника питания различных устройств кратковременного и импульсного действия в наземной, авиационной и космической технике.
Известен химический источник тока (ХИТ) с реакционно формирующимся электролитом, содержащий герметичный корпус, в котором размещены электродные камеры: анодная с жидким анодным веществом, катодная с жидким катодным веществом, сепаратор в виде капиллярной структуры из электроизоляционного материала, например керамики, в которой находится твердый электролит, являющийся химическим соединением или смесью соединений анодного и катодного веществ, а также близлежащие к нему слои анодного и катодного веществ (см. Тазетдинов Р.Г., Тибрин Г.С. Химические источники тока с реакционно формирующимся электролитом. - М.: Изд-во МАИ, 2013, с. 158-161). Наиболее близким аналогом предлагаемого устройства является патент RU 2585275, Н01М 6/18 (2006.01), Н01М 10/36 (2010.01).
Катодные вещества данных ХИТ (S, Se, Те и др.) являются более плотными, чем анодные (Li, Na). Поэтому в наземных условиях катодная камера, изготовленная из электропроводного материала, располагается в нижней части корпуса, а анодная камера, изготовленная из электроизоляционного материала, например керамики, вставлена внутрь катодной камеры. Сепаратор герметично соединен с анодной камерой и вместе с ней погружен в жидкое катодное вещество.
Поскольку продуктом электрохимической реакции является то же химическое соединение (смесь соединений), которое образует электролит, толщина последнего при разряде элемента и вследствие возможного саморазряда увеличивается. Поддержание очень малой толщины электролита (от нескольких нанометров до нескольких микрометров), обеспечивающее его достаточно низкое омическое сопротивление и высокую плотность разрядного тока, может обеспечиваться только растворением части электролита в электродах. Электролиты данных ХИТ преимущественно растворяются в катодных веществах. Кроме того, твердый электролит проводит в основном по катионам анодного вещества, поэтому его толщина в большей степени растет со стороны катода. Оба этих фактора, действуя вместе, приводят к увеличению объема катода и уменьшению объема анода. В результате возникает перепад давления на твердом электролите, который, будучи весьма тонким и мало прочным, может легко ломаться в порах сепаратора и элемент может выйти из строя.
Под действием перепада давления электролит относительно сепаратора или анодная камера с сепаратором относительно катодной камеры должны перемещаться вверх, что привело бы к механической разгрузке электролита и сохранению его целостности. Однако вследствие адгезии твердого электролита к стенкам капилляров сепаратора он не может свободно перемещаться относительно сепаратора. Свободное перемещение вверх сепаратора вместе с анодной камерой также затруднено из-за трения стенок анодной и катодной камер друг относительно друга.
В прототипе предлагаемого изобретения эта проблема решена размещением анодной камеры с сепаратором внутри катодной камеры с зазором, обеспечивающим их свободное перемещение друг относительно друга. Благодаря этому исключается поломка твердого электролита и, соответственно, повышается время разряда ХИТ при заданном режиме внешней нагрузки.
Однако ХИТ, выполненный в соответствии с указанным изобретением, имеет существенный недостаток. Он может быть использован только в стационарных наземных условиях при вертикальной ориентировке продольной оси. При значительном изменении пространственного положения, а также при наличии инерционных нагрузок (перегрузки, тряска, вибрации) жидкие электродные вещества могут выливаться из электродных камер. Относительное положение стенок камер будет нарушено, возникнет трение между ними, приводящее к торможению их движения друг относительно друга, соответственно, повышению давления на электролит, уменьшению времени разряда на заданную нагрузку или вообще выходу его из строя. В условиях невесомости (в космосе) данная конструкция вообще не способна обеспечить достаточно длительный разряд, так как в отсутствие веса электродные вещества электродных камер и инертный газ займут неопределенное пространственное положение друг относительно друга.
Целью предлагаемого изобретения является увеличение времени разряда ХИТ при заданном режиме внешней нагрузки при работе в любых пространственных положениях, действии перегрузок на Земле и околоземном пространстве, при эксплуатации в невесомости (авиация и космонавтика).
Техническим результатом является сохранение работоспособности ХИТ при разряде на внешнюю нагрузку в указанных условиях.
Поставленная цель достигается тем, что в ХИТ с реакционно формирующимся электролитом, содержащем анодную и выполненную из электропроводного материала катодную камеры с жидкими электродными веществами, разделяющий анодную и катодную камеры сепаратор с твердым электролитом в виде химического соединения или смеси соединений анодного и катодного веществ и близлежащими к электролиту слоями анодного и катодного веществ, при этом свободное пространство внутри корпуса заполнено инертным газом, в отличие от известных решений анодная камера выполнена из электропроводного материала, электродные камеры герметично соединены друг с другом через изолятор, сепаратор соединен с изолятором или изолятор выполнен как единое целое с сепаратором, электродные камеры заполнены капиллярно-пористыми структурами из электропроводного материала, смачиваемыми электродными веществами, например металлического или графитового войлока, электродные вещества размещены в порах соответствующих капиллярно-пористых структур, причем до начала разряда катодное вещество занимает только часть катодной капиллярно-пористой структуры, прилегающую к сепаратору, а объем пор свободной части этой структуры не меньше объема анодного вещества, и ХИТ дополнительно содержит перепускное устройство для выравнивания давления газа между электродными камерами, выполненное в виде трубки из электроизоляционного материала, например керамики, соединяющей газовые полости анодной и катодной камер. Трубка перепускного устройства может быть размещена внутри ХИТ или обходить его снаружи.
Размещение электродных веществ в смачиваемых ими капиллярно-пористых структурах и наличие свободного объема в капиллярно-пористой структуре катодной камеры позволяет избежать:
1) механического разрушения твердого электролита, так как по мере увеличения объема катодной смеси в процессе разряда она будет непрерывно перетекать в свободный объем пор катодной капиллярно-пористой структуры. При этом возрастающее в катоде и уменьшающееся в аноде давление газа будет непрерывно выравниваться благодаря перетеканию газа из катода через перепускное устройство в анод;
2) влияния гравитационных и инерционных сил на эксплуатационные характеристики ХИТ, так как жидкие электродные вещества удерживаются в порах капиллярными силами, которые при малых размерах пор превышают гравитационные и инерционные силы, возникающие при любых перегрузках. Невесомость также не будет влиять на работоспособность ХИТ, так как все элементы конструкции фиксированы друг относительно друга, что исключает неопределенность их взаимного положения.
На чертеже показана схема предлагаемой конструкции ХИТ. Жидкое анодное вещество 1 размещено в анодной камере 2 из электропроводного материала в порах смачиваемой им анодной капиллярной структуры 3 и перед началом разряда ХИТ занимает весь их объем. Жидкое катодное вещество 4 размещено в катодной камере 5 в порах смачиваемой им катодной капиллярной структуры 6 и перед началом разряда ХИТ занимает только ее часть, прилегающую к сепаратору, при этом объем пор свободной части катодной капиллярно-пористой структуры не меньше объема анодного вещества. Твердый электролит 7, являющийся химическим соединением или смесью соединений анодного и катодного веществ, размещен в порах сепаратора 8, также выполненного в виде капиллярно-пористой структуры из электроизоляционного материала, например керамики. Анодная и катодная камеры герметично соединены друг с другом через изолятор 9. Сепаратор, разделяя анод и катод, присоединен к изолятору или выполнен как единое целое с ним. Все свободное пространство внутри ХИТ заполнено инертным газом.
Внутри ХИТ помещено перепускное устройство 10 для выравнивания давления газа между электродами в виде трубки из электроизоляционного материала, например керамики, соединяющее друг с другом свободные от электродных веществ полости электродных камер. Анодный 11 и катодный 12 токосъемники присоединены к соответствующим электродным камерам снаружи.
Если катодное вещество не обладает электронной проводимостью, например сера, то в катод может добавляться вещество, являющееся электронным проводником, например мелкодисперсный графит. В катод также может быть добавлен посторонний электролит, проводящий по катионам анодного вещества.
В данной конструкции необходимость отдельного герметичного корпуса отпадает, так как функции корпуса выполняют электродные камеры.
Химический источник тока работает следующим образом.
При разряде ХИТ образуется продукт электрохимической реакции, составляющий сам твердый электролит, поэтому толщина электролита увеличивается. Поскольку электролит проводит преимущественно по катионам анодного вещества, то это увеличение происходит в основном со стороны катода. Часть электролита растворяется в электродных веществах, причем также преимущественно в катоде. В силу двух указанных причин объем катода увеличивается, а объем анода уменьшается. Вследствие этого со стороны катода увеличивается давление на сепаратор и твердый электролит. Одновременно давление газа в катоде увеличивается, а в аноде уменьшается. Под действием перепада давления избыточная часть катодной смеси перетекает в свободное пространство катодной капиллярно-пористой структуры, а избыточный газ через перепускное устройство перетекает из катодной камеры в анодную. В результате, перепад давления на электролит, а также сепаратор снижается. Поскольку процессы образования и растворения электролита и выравнивания давлений на электролит происходят во времени непрерывно, то твердый электролит всегда будет механически разгружен и избежит поломки.
Соответственно будет обеспечена стабильность работы и увеличение времени разряда при заданном режиме нагрузки ХИТ. Благодаря размещению электродных веществ в смачиваемых ими капиллярно-пористых структурах электродных камер ХИТ будет сохранять работоспособность в любом пространственном положении, а также при действии перегрузок, так как при выборе капиллярной структуры с достаточно малыми размерами пор капиллярные силы многократно превышают гравитационные и инерционные силы. ХИТ также может эксплуатироваться в условиях невесомости, например в космосе, так как для его работы сила тяжести не требуется.

Claims (1)

  1. Химический источник тока (ХИТ) с реакционно формирующимся электролитом, содержащий анодную и выполненную из электропроводного материала катодную камеры с жидкими электродными веществами, разделяющий электродные камеры сепаратор с твердым электролитом в виде химического соединения или смеси соединений веществ, образующих анод и катод, и близлежащими к электролиту слоями анодного и катодного веществ, при этом свободное пространство внутри корпуса заполнено инертным газом, отличающийся тем, что анодная камера выполнена из электропроводного материала, электродные камеры герметично соединены друг с другом через изолятор, сепаратор соединен с изолятором или изолятор выполнен как единое целое с сепаратором, электродные камеры заполнены капиллярно-пористыми структурами из электропроводного материала, смачиваемого жидкими электродными веществами, электродные вещества размещены в порах соответствующих капиллярно-пористых структур, причем до начала разряда ХИТ анодное вещество занимает все поры анодной капиллярно-пористой структуры, а катодное вещество занимает только поры части катодной капиллярной структуры, прилегающей к сепаратору, а объем пор свободной части этой структуры не меньше объема анодного вещества, и ХИТ дополнительно содержит перепускное устройство в виде трубки из изоляционного материала, соединяющей свободные от электродных веществ полости электродных камер.
RU2017111663A 2017-04-06 2017-04-06 Химический источник тока с реакционно формирующимся электролитом RU2648244C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017111663A RU2648244C1 (ru) 2017-04-06 2017-04-06 Химический источник тока с реакционно формирующимся электролитом

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017111663A RU2648244C1 (ru) 2017-04-06 2017-04-06 Химический источник тока с реакционно формирующимся электролитом

Publications (1)

Publication Number Publication Date
RU2648244C1 true RU2648244C1 (ru) 2018-03-23

Family

ID=61707892

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017111663A RU2648244C1 (ru) 2017-04-06 2017-04-06 Химический источник тока с реакционно формирующимся электролитом

Country Status (1)

Country Link
RU (1) RU2648244C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243984A (ja) * 2000-02-28 2001-09-07 Kyocera Corp 固体電解質電池およびその製造方法
JP2003051428A (ja) * 2001-08-08 2003-02-21 Toyo Tire & Rubber Co Ltd ゲル状電解質形成組成物、ゲル状電解質、及びゲル状電解質の製造方法
JP2009224035A (ja) * 2008-03-13 2009-10-01 Sumitomo Electric Ind Ltd 電池の電極構造
RU2422949C1 (ru) * 2010-04-06 2011-06-27 Государственное образовательное учреждение высшего профессионального образования Московский авиационный институт (государственный технический университет) (МАИ) Химический источник тока
RU2585275C2 (ru) * 2014-02-19 2016-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский авиационный институт (национальный исследовательский университет)" (МАИ) Химический источник тока с реакционно образующимся электролитом

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243984A (ja) * 2000-02-28 2001-09-07 Kyocera Corp 固体電解質電池およびその製造方法
JP2003051428A (ja) * 2001-08-08 2003-02-21 Toyo Tire & Rubber Co Ltd ゲル状電解質形成組成物、ゲル状電解質、及びゲル状電解質の製造方法
JP2009224035A (ja) * 2008-03-13 2009-10-01 Sumitomo Electric Ind Ltd 電池の電極構造
RU2422949C1 (ru) * 2010-04-06 2011-06-27 Государственное образовательное учреждение высшего профессионального образования Московский авиационный институт (государственный технический университет) (МАИ) Химический источник тока
RU2585275C2 (ru) * 2014-02-19 2016-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский авиационный институт (национальный исследовательский университет)" (МАИ) Химический источник тока с реакционно образующимся электролитом

Similar Documents

Publication Publication Date Title
US10297870B2 (en) Voltage-enhanced energy storage devices
EP2647080B1 (en) Moderate temperature sodium battery
Bai et al. Transition of lithium growth mechanisms in liquid electrolytes
EP2975673B1 (en) Lithium metal electrode
WO2014190318A1 (en) Voltage-enhanced energy storage devices
KR20170134395A (ko) 이극성 패러데이 막을 구비한 전기화학 전지
JP2015516645A5 (ru)
KR101567374B1 (ko) 다공성 전기화학 커패시터를 위한 나노기계가공된 구조물
US9748544B2 (en) Separator for alkali metal ion battery
KR20160018566A (ko) 고온 내성 슈퍼커패시터들을 구현하기 위한 시스템 및 방법
KR101834726B1 (ko) 나트륨 이차전지
RU2648244C1 (ru) Химический источник тока с реакционно формирующимся электролитом
JP2017505980A (ja) 電気化学装置用の電極ユニット
US2515204A (en) Storage battery plate
JPH04230963A (ja) 電気化学的電池
US20070266554A1 (en) Electrochemical cell with moderate-rate discharging capability and method of production
US3050665A (en) Electrolytic product cell
KR101101546B1 (ko) 전기 화학 커패시터 및 이의 제조방법
KR20160028748A (ko) 나트륨 이차전지
US10490819B2 (en) Electrochemical energy storage system and battery
RU2585275C2 (ru) Химический источник тока с реакционно образующимся электролитом
RU151644U1 (ru) Конденсатор с двойным электрическим слоем и батарея конденсаторов с двойным электрическим слоем
RU137664U1 (ru) Электрохимическое устройство
JP2011142048A (ja) 電解液、マグネシウムイオン2次電池、および電力システム
RU2695773C1 (ru) Твердотельный электрохимический конденсатор