RU2647965C2 - Способ обработки опорных витков пружин и роботизированный комплекс для его осуществления - Google Patents

Способ обработки опорных витков пружин и роботизированный комплекс для его осуществления Download PDF

Info

Publication number
RU2647965C2
RU2647965C2 RU2016136775A RU2016136775A RU2647965C2 RU 2647965 C2 RU2647965 C2 RU 2647965C2 RU 2016136775 A RU2016136775 A RU 2016136775A RU 2016136775 A RU2016136775 A RU 2016136775A RU 2647965 C2 RU2647965 C2 RU 2647965C2
Authority
RU
Russia
Prior art keywords
spring
processing
compressed air
atomizer
rotary table
Prior art date
Application number
RU2016136775A
Other languages
English (en)
Other versions
RU2016136775A (ru
RU2016136775A3 (ru
Inventor
Роман Александрович Савушкин
Рафис Фасхитинович Газиев
Николай Иванович Кулик
Андрей Владимирович Астафьев
Сергей Александрович Платов
Original Assignee
Общество с ограниченной ответственностью "Научно-производственный центр "Пружина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-производственный центр "Пружина" filed Critical Общество с ограниченной ответственностью "Научно-производственный центр "Пружина"
Priority to RU2016136775A priority Critical patent/RU2647965C2/ru
Publication of RU2016136775A publication Critical patent/RU2016136775A/ru
Publication of RU2016136775A3 publication Critical patent/RU2016136775A3/ru
Application granted granted Critical
Publication of RU2647965C2 publication Critical patent/RU2647965C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F35/00Making springs from wire

Landscapes

  • Arc Welding In General (AREA)
  • Nozzles (AREA)
  • Spray Control Apparatus (AREA)

Abstract

Изобретение может быть использовано при производстве крупногабаритных стальных пружин. Обработку опорных витков проводят поочередно, при этом одновременно с плазменной резкой осуществляют подачу сжатого воздуха по меньшей мере одной струей вдоль оси пружины в направлении обрабатываемого опорного витка с помощью распылителя, который заводят внутрь пружины в зоне обработки. Обработкой опорных витков пружины плазменной резкой и подачей сжатого воздуха управляют посредством компьютеризованной системы. Роботизированный комплекс для обработки опорных витков пружин содержит поворотный стол с приводом и механизмами фиксации пружин и плазмотрон, сопло которого смонтировано на роботе-манипуляторе. Компьютеризованная система управления связана с приводом поворотного стола, плазмотроном и роботом-манипулятором. Распылитель соединен с системой подачи сжатого воздуха и смонтирован с возможностью подачи по меньшей мере одной струи сжатого воздуха вдоль оси пружины в направлении обрабатываемого опорного витка. Комплекс оснащен механизмом осевого перемещения распылителя. Технический результат заключается в повышении прочности пружин. 2 н. и 6 з.п. ф-лы, 2 ил.

Description

Изобретение относится к области механической обработки металла и может применяться для обработки опорных витков винтовых пружин методом плазменной резки при производстве крупногабаритных стальных пружин.
Из уровня техники известен способ обработки опорных витков пружин (см. «Роботизированная технология плазменной резки торцов пружин» компании Белфингрупп, интернет-ресурсы http://belfingroup.eu/about-the-company/our-reference-list/robotizirovannyij-kompleks-plazmennoj-rezki-torczov-pruzhin.html, а так же https://www.youtube.com/watch?v=HXM54JcakXo), выбранный в качестве прототипа, включающий поочередную обработку опорных витков пружины плазменной резкой.
Недостатком известного способа является вероятность попадания на поверхность пружины продукта плазменной резки, а именно, металла, нагретого до температуры более 1000°C, что вызывает образование трещин опорных витков в результате их локального нагрева и, тем самым, снижает качество обрабатываемых пружин.
Из уровня техники известен роботизированный комплекс (см. «Роботизированная технология плазменной резки торцов пружин» компании Белфингрупп, интернет-ресурсы http://belfingroup.eu/about-the-company/our-reference-list/robotizirovannyij-kompleks-plazmennoj-rezki-torczov-pruzhin.html, а также https://www.youtube.com/watch?v=HXM54JcakXo, выбранный в качестве прототипа, содержащий поворотный стол с приводом и механизмами фиксации пружин, плазмотрон, сопло которого смонтировано на роботе-манипуляторе, компьютеризированную систему управления. При этом, привод поворотного стола, робот-манипулятор, плазмотрон связаны с компьютеризированной системой управления.
Недостатком известного комплекса является низкое качество готовой продукции, поскольку в процессе обработки опорных витков пружин методом плазменной резки не исключено попадание на поверхность пружины неизбежно возникающих продуктов данного процесса (металла нагретого до температуры более 1000°С) с последующим образованием трещин в результате локального нагрева.
Технический результат, достигаемый при использовании способа обработки опорных витков пружин и роботизированного комплекса для осуществления данного способа, заключается в повышении прочности пружин.
Технический результат достигается в способе обработки опорных витков пружин, включающем поочередную обработку опорных витков пружины плазменной резкой, отличающемся от прототипа тем, что во время обработки производится подача сжатого воздуха по меньшей мере одной струей вдоль оси пружины в направлении обрабатываемого опорного витка.
Для повышения производительности заявленного способа обрабатываемая пружина фиксируется в зоне загрузки-выгрузки на поворотном столе, при помощи которого подается в зону обработки, а обработка опорных витков пружины осуществляется плазмотроном, сопло которого смонтировано на роботе-манипуляторе. При этом, подача пружины в зону обработки и зону загрузки-выгрузки, обработка опорных витков пружины, подача сжатого воздуха управляется компьютеризованной системой.
Технический результат достигается в роботизированном комплексе для обработки опорных витков пружин, содержащем поворотный стол с приводом и механизмами фиксации пружин, плазмотрон, сопло которого смонтировано на роботе-манипуляторе, компьютеризованную систему управления, связанную с приводом поворотного стола, плазмотроном, роботом-манипулятором, отличающимся от прототипа тем, что содержит систему подачи сжатого воздуха, соединенную с распылителем, механизм осевого перемещения распылителя.
По первому варианту механизм осевого перемещения распылителя содержит пневмоцилиндр и штангу, соединяющую поршень пневмоцилиндра с распылителем. При этом механизм осевого перемещения распылителя механически не связан с поворотным столом.
По второму варианту роботизированный комплекс содержит два распылителя, а механизм осевого перемещения распылителей содержит пневмоцилиндр и две штанги, каждая из которых соединяет поршень пневмоцилиндра с одним из распылителей. При этом механизм осевого перемещения распылителя механически связан с поворотным столом.
Изобретение поясняется чертежами, где на Фиг. 1 изображен роботизированный комплекс по первому варианту исполнения, на Фиг. 2 - роботизированный комплекс по второму варианту исполнения.
Способ обработки опорных витков пружин методом плазменной резки может быть осуществлен при помощи роботизированного комплекса, содержащего поворотный стол 1 с приводом (не показан) и двумя механизмами фиксации пружин, закрепленными радиально на противоположных краях поворотного стола 1. С одной из сторон поворотного стола 1, в зоне загрузки-выгрузки, расположен установочный упор 2, взаимодействующий с пневмоцилиндром 3. С противоположной стороны поворотного стола, в зоне обработки, расположен робот-манипулятор 4 с размещенным на нем соплом 5 плазмотрона (не показан).
Механизмы фиксации пружин состоят из расположенных на противоположных краях поворотного стола 1 призматических ложементов 61 и 62 и призм 71 и 72, взаимодействующих, соответственно, с пневмоцилиндрами 81 и 82.
По первому варианту (Фиг. 1) роботизированный комплекс содержит систему подачи сжатого воздуха (не показано), соединенную с распылителем 9, который, в свою очередь, соединен с механизмом его осевого перемещения, содержащим штангу 10, соединяющую распылитель 9 с поршнем 11 пневмоцилиндра. Штанга 10 смонтирована с возможностью продольного перемещения таким образом, чтобы в рабочем, выдвинутом, положении распылитель 9 располагался внутри обрабатываемой пружины. Механизм осевого перемещения распылителя 9 может быть смонтирован над поворотным столом 1 на подвесной стойке 12, закрепленной, в свою очередь, на поверхности фиксации 13. В других частных случаях исполнения механизм осевого перемещения распылителя 9 может быть смонтирован рядом с поворотным столом 1, вне зоны действия последнего.
По второму варианту (Фиг. 2) роботизированный комплекс содержит систему подачи сжатого воздуха (не показано), соединенную с распылителями 91, 92 которые, в свою очередь, соединены с механизмом их осевого перемещения, содержащим штанги 101, 102, соединяющие распылители 91, 92 с поршнем 11 пневмоцилиндра. Штанги 101 и 102 смонтированы над поворотным столом 1 с возможностью совместного продольного перемещения так, чтобы в рабочем, выдвинутом положении один из распылителей 91 и 92 располагался внутри обрабатываемой пружины. Механизм осевого перемещения распылителей 91, 92 смонтирован в центре поворотного стола 1 с возможностью синхронного с ним вращения.
С приводом поворотного стола 1, роботом-манипулятором 4, системой подачи сжатого воздуха, механизмом осевого перемещения распылителей 91, 92 связана компьютеризированная система управления (не показана).
Способ обработки опорных витков пружин состоит в выполнении циклов обработки пружин, каждый из которых состоит из четырех подциклов.
По первому варианту в ходе первого подцикла последовательно выполняют следующие операции: пружину загружают в роботизированный комплекс в зоне загрузки-выгрузки; фиксируют пружину в заданном положении при помощи одного из двух механизмов фиксации; поворотом поворотного стола подают пружину в зону обработки.
По первому варианту исполнения в ходе второго подцикла последовательно выполняют следующие операции: заводят распылитель внутрь пружины в зоне обработки; при помощи робота-манипулятора обрабатывают первый опорный виток пружины плазменной резкой, одновременно подавая сжатый воздух через распылитель на обрабатываемый опорный виток; по завершении плазменной резки выводят распылитель из пружины в зоне обработки; поворотом поворотного стола подают пружину в зону загрузки-выгрузки.
По первому варианту исполнения в ходе третьего подцикла последовательно выполняют следующие операции: освобождают пружину от механизма фиксации; переворачивают пружину на 180°, меняя местами обработанный и противоположный ему опорные витки; фиксируют перевернутую пружину при помощи механизма фиксации; поворотом поворотного стола подают пружину в зону обработки.
По первому варианту исполнения в ходе четвертого подцикла последовательно выполняют следующие операции: заводят распылитель внутрь пружины в зоне обработки; при помощи робота-манипулятора обрабатывают второй опорный виток пружины плазменной резкой, одновременно подавая сжатый воздух через распылитель на обрабатываемый опорный виток; по завершении плазменной резки выводят распылитель из пружины в зоне обработки; поворотом поворотного стола подают пружину в зону загрузки-выгрузки; освобождают пружину от механизма фиксации; выгружают пружину из роботизированного комплекса.
Если обозначить первую пружину, загружаемую в роботизированный комплекс как П1, вторую П2, третью - П3, то по первому варианту исполнения начало первого подцикла обработки пружины П2 по времени совпадает с началом второго подцикла обработки пружины П1, а начало первого подцикла обработки пружины П3 следует за окончанием четвертого подцикла обработки пружины П1.
По второму варианту исполнения в ходе первого подцикла последовательно выполняют следующие операции: пружину загружают в роботизированный комплекс в зоне загрузки-выгрузки; фиксируют пружину в заданном положении при помощи одного из двух механизмов фиксации; поворотом поворотного стола подают пружину в зону обработки; заводят один из распылителей внутрь пружины в зоне обработки.
По второму варианту исполнения в ходе второго подцикла последовательно выполняют следующие операции: при помощи робота-манипулятора обрабатывают первый опорный виток пружины плазменной резкой, одновременно подавая сжатый воздух через распылитель на обрабатываемый опорный виток; по завершении плазменной резки поворотом поворотного стола подают пружину в зону загрузки-выгрузки; выводят распылитель из пружины в зоне загрузки-выгрузки.
По второму варианту исполнения в ходе третьего подцикла последовательно выполняют следующие операции: освобождают пружину от механизма фиксации; переворачивают пружину на 180°, меняя местами обработанный и противоположный ему опорные витки; фиксируют перевернутую пружину при помощи механизма фиксации; поворотом поворотного стола подают пружину в зону обработки; заводят распылитель внутрь пружины в зоне обработки.
По второму варианту исполнения в ходе четвертого подцикла последовательно выполняют следующие операции: при помощи робота-манипулятора обрабатывают второй опорный виток пружины плазменной резкой, одновременно подавая сжатый воздух через распылитель на обрабатываемый опорный виток; по завершении плазменной резки поворотом поворотного стола подают пружину в зону загрузки-выгрузки; выводят распылитель из пружины в зоне разгрузки-выгрузки, освобождают пружину от механизма фиксации, выгружают пружину из роботизированного комплекса.
Если обозначить первую пружину, загружаемую в роботизированный комплекс как П1, вторую П2, третью - П3, то по второму варианту исполнения начало первого подцикла обработки пружины П2 по времени совпадает с началом второго подцикла обработки пружины П1, а начало первого подцикла обработки пружины П3 следует за окончанием четвертого подцикла обработки пружины П1.
Предлагаемый способ обработки опорных витков пружин методом плазменной резки с помощью предлагаемого роботизированного комплекса, по первому варианту исполнения, осуществляют следующим образом (Фиг. 1).
Цикл обработки первой пружины (далее пружина I) начинается с того, что оператор фиксирует пружину I на поворотном столе 1 в механизме фиксации пружин, находящемся в зоне загрузки-выгрузки. Для этого оператор загружает пружину I в призматический ложемент 61, ориентируя один из опорных витков пружины I по установочному упору 2. Далее оператор дает команду на запуск программы, согласно которой компьютеризованная система управления через пневмоцилиндр 3 отводит упор 2, через пневмоцилиндр 81 прижимает пружину I призмой 71 к призматическому ложементу 61, через привод поворачивает поворотный стол 1, переводя пружину 1 в зону обработки.
После поворота стола 1 компьютеризованная система управления через пневмоцилиндр 3 возвращает упор 2 в исходное положение и в зоне загрузки-выгрузки начинается цикл обработки второй пружины (далее пружина II). Оператор загружает пружину II в призматический ложемент 62, аналогично тому, как это описано в отношении пружины I.
В это время компьютеризованная система управления через механизм осевого перемещения распылителя 9 заводит его внутрь пружины I, через робот-манипулятор 4 подводит сопло 5 к первому опорному витку пружины I. включает плазмотрон, через распылитель 9 подает сжатый воздух вдоль оси пружины I в направлении первого опорного витка пружины I, через робот-манипулятор 4 выполняет плазменную резку первого опорного витка пружины I. Образующиеся при этом фрагменты нагретого металла сдуваются сжатым воздухом, подаваемым через распылитель 9.
После завершения обработки первого опорного витка пружины I компьютеризованная система управления выключает плазмотрон, через робот-манипулятор 4 отводит сопло 5 в исходное положение, через механизм осевого перемещения распылителя 9 выводит его из пружины I.
Далее оператор дает команду на запуск программы, согласно которой компьютеризованная система управления через пневмоцилиндр 3 отводит упор 2, через пневмоцилиндр 82 прижимает пружину II призмой 72 к призматическому ложементу 62, через привод поворачивает поворотный стол 1, переводя пружину II в зону обработки, а пружину I - в зону загрузки-выгрузки, через пневмоцилиндр 81 освобождает пружину I от призмы 71, через пневмоцилиндр 3 возвращает упор 2 в исходное положение.
После этого оператор переворачивает пружину I на 180° и загружает пружину I в призматический ложемент 61, ориентируя второй, еще не обработанный опорный виток по упору 2.
В это время компьютеризованная система через механизм осевого перемещения распылителя 9 заводит его внутрь пружины II, через робот-манипулятор 4 подводит сопло 5 к первому опорному витку пружины II, включает плазмотрон, через распылитель 9 подает сжатый воздух вдоль оси пружины II в направлении первого опорного витка пружины II, через робот-манипулятор 4 производит плазменную резку первого опорного витка пружины II. Фрагменты нагретого металла, образующиеся при обработке, сдуваются сжатым воздухом.
После завершения обработки первого опорного витка пружины II компьютеризованная система управления выключает плазмотрон, через робот-манипулятор 4 отводит сопло 5 в исходное положение, через механизм осевого перемещения распылителя 9 выводит его из пружины II.
Далее по команде оператора запускается программа, согласно которой компьютеризованная система управления через пневмоцилиндр 3 отводит упор 2, через пневмоцилиндр 81 прижимает пружину I призмой 71 к призматическому ложементу 61, через привод поворачивает поворотный стол 1, переводя пружину II в зону загрузки-выгрузки, а пружину I в зону обработки, через пневмоцилиндр 82 освобождает пружину II от призмы 72,через пневмоцилиндр 3 возвращает упор 2 в исходное положение.
После этого оператор переворачивает пружину II на 180° и загружает ее в призматический ложемент 62, ориентируя ее второй опорный виток по упору 2.
Тем временем, после поворота поворотного стола 1 компьютеризованная система управления, через механизм осевого перемещения распылителя 9 заводит его внутрь пружины I, через робот-манипулятор 4 подводит сопло 5 ко второму опорному витку пружины I, включает плазмотрон, через распылитель 9 подает сжатый воздух вдоль оси пружины I в направлении второго опорного витка, через робот-манипулятор 4 выполняет плазменную резку второго опорного витка пружины I. Раскаленный металл, благодаря потоку сжатого воздуха, не попадает на витки.
После завершения обработки второго опорного витка пружины I компьютеризованная система управления выключает плазмотрон, через робот-манипулятор 4 отводит сопло 5 в исходное положение, через механизм осевого перемещения распылителя 9 выводит его из пружины I.
Далее по команде оператора запускается программа, согласно которой компьютеризованная система управления через пневмоцилиндр 3 отводит упор 2, через пневмоцилиндр 82 прижимает пружину II призмой 72 к призматическому ложементу 62, через привод поворачивает поворотный стол 1, переводя пружину II в зону обработки, а пружину I - в зону загрузки-выгрузки, через пневмоцилиндр 81 освобождает пружину I от призмы 71, через пневмоцилиндр 3 возвращает упор 2 в исходное положение.
После этого оператор выгружает пружину I из роботизированного комплекса. Hа этом цикл обработки пружины I закончен.
Предлагаемый способ обработки опорных витков пружин методом плазменной резки с помощью предлагаемого роботизированного комплекса, по второму варианту исполнения, повторяет способ обработки опорных витков пружин с помощью предлагаемого роботизированного комплекса, по первому варианту исполнения, за исключением следующего (Фиг. 2). Заведение распылителя 91 внутрь пружины в зоне обработки выполняется одновременно с выводом распылителя 92 из пружины в зоне загрузки-выгрузки. При повороте стола 1 выполняется синхронный поворот механизма осевого перемещения распылителей 91 и 92, при этом распылитель, находящийся в зоне обработки, подается в зону загрузки-выгрузки внутри пружины.

Claims (8)

1. Способ обработки опорных витков пружин плазменной резкой, отличающийся тем, что обработку опорных витков проводят поочередно, при этом одновременно с плазменной резкой осуществляют подачу сжатого воздуха по меньшей мере одной струей вдоль оси пружины в направлении обрабатываемого опорного витка с помощью распылителя, который заводят внутрь пружины в зоне обработки.
2. Способ по п.1, отличающийся тем, что обрабатываемую пружину подают в зону обработки при помощи поворотного стола.
3. Способ по п.1, отличающийся тем, что обработку опорных витков пружины осуществляют плазмотроном, сопло которого смонтировано на роботе-манипуляторе.
4. Способ по п.1, отличающийся тем, что обработкой опорных витков пружины плазменной резкой и подачей сжатого воздуха управляют посредством компьютеризованной системы.
5. Роботизированный комплекс для обработки опорных витков пружин плазменной резкой, содержащий поворотный стол с приводом и механизмами фиксации пружин, плазмотрон, сопло которого смонтировано на роботе-манипуляторе, компьютеризованную систему управления, связанную с приводом поворотного стола, плазмотроном и роботом-манипулятором, отличающийся тем, что он снабжен по меньшей мере одним распылителем, соединенным с системой подачи сжатого воздуха и смонтированным с возможностью подачи по меньшей мере одной струи сжатого воздуха вдоль оси пружины в направлении обрабатываемого опорного витка, и механизмом осевого перемещения распылителя.
6. Роботизированный комплекс по п.5, отличающийся тем, что механизм осевого перемещения распылителя содержит пневмоцилиндр и штангу, соединяющую поршень пневмоцилиндра с распылителем.
7. Роботизированный комплекс по п.5, отличающийся тем, что он содержит два распылителя, а механизм осевого перемещения распылителей содержит пневмоцилиндр и две штанги, каждая из которых соединяет поршень пневмоцилиндра с одним из распылителей.
8. Роботизированный комплекс по п.7, отличающийся тем, что механизм осевого перемещения распылителя механически связан с поворотным столом.
RU2016136775A 2016-09-13 2016-09-13 Способ обработки опорных витков пружин и роботизированный комплекс для его осуществления RU2647965C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016136775A RU2647965C2 (ru) 2016-09-13 2016-09-13 Способ обработки опорных витков пружин и роботизированный комплекс для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016136775A RU2647965C2 (ru) 2016-09-13 2016-09-13 Способ обработки опорных витков пружин и роботизированный комплекс для его осуществления

Publications (3)

Publication Number Publication Date
RU2016136775A RU2016136775A (ru) 2018-03-16
RU2016136775A3 RU2016136775A3 (ru) 2018-03-16
RU2647965C2 true RU2647965C2 (ru) 2018-03-21

Family

ID=61627363

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016136775A RU2647965C2 (ru) 2016-09-13 2016-09-13 Способ обработки опорных витков пружин и роботизированный комплекс для его осуществления

Country Status (1)

Country Link
RU (1) RU2647965C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2689482C2 (ru) * 2017-03-29 2019-05-28 Общество с ограниченной ответственностью "Научно-производственный центр "Пружина" Способ обработки опорных витков пружин методом плазменной резки, роботизированный комплекс и линия для его воплощения

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU535995A1 (ru) * 1975-04-23 1976-11-25 Елгавский Машиностроительный Завод Устройство дл обработки плоскости опорного витка пружины сжати
US4676029A (en) * 1983-07-15 1987-06-30 Helical Springs Limited Of Lytham Ind. Est. Park Opposed endless belt grinding apparatus
RU2223851C2 (ru) * 2002-02-28 2004-02-20 Государственное унитарное предприятие Научно-производственное объединение "Волгоградский научно-исследовательский институт технологии машиностроения" Способ обработки торцов пружин и устройство для его осуществления
RU2258846C1 (ru) * 2004-01-08 2005-08-20 Открытое акционерное общество "Завод им. В.А. Дегтярева" Способ изготовления пружины сжатия
EA200600569A1 (ru) * 2003-10-02 2006-08-25 Панагиотис Анагностопулос Способ и система изготовления пружин из проволоки с круглой или другой формой поперечного сечения

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU535995A1 (ru) * 1975-04-23 1976-11-25 Елгавский Машиностроительный Завод Устройство дл обработки плоскости опорного витка пружины сжати
US4676029A (en) * 1983-07-15 1987-06-30 Helical Springs Limited Of Lytham Ind. Est. Park Opposed endless belt grinding apparatus
RU2223851C2 (ru) * 2002-02-28 2004-02-20 Государственное унитарное предприятие Научно-производственное объединение "Волгоградский научно-исследовательский институт технологии машиностроения" Способ обработки торцов пружин и устройство для его осуществления
EA200600569A1 (ru) * 2003-10-02 2006-08-25 Панагиотис Анагностопулос Способ и система изготовления пружин из проволоки с круглой или другой формой поперечного сечения
RU2258846C1 (ru) * 2004-01-08 2005-08-20 Открытое акционерное общество "Завод им. В.А. Дегтярева" Способ изготовления пружины сжатия

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2689482C2 (ru) * 2017-03-29 2019-05-28 Общество с ограниченной ответственностью "Научно-производственный центр "Пружина" Способ обработки опорных витков пружин методом плазменной резки, роботизированный комплекс и линия для его воплощения

Also Published As

Publication number Publication date
RU2016136775A (ru) 2018-03-16
RU2016136775A3 (ru) 2018-03-16

Similar Documents

Publication Publication Date Title
US5301863A (en) Automated system for forming objects by incremental buildup of layers
US9393653B2 (en) Processing system and method for a work piece surface
US8950651B2 (en) Friction joining method and joined structure
RU2733528C2 (ru) Гибочный станок и способ получения металлического изделия изогнутой формы посредством обработки проволочного стержня
RU2647965C2 (ru) Способ обработки опорных витков пружин и роботизированный комплекс для его осуществления
US6486434B2 (en) Multiple beam time sharing for a laser shock peening apparatus
CN104498686A (zh) 一种不锈钢叶片的喷丸强化处理系统及其喷丸强化方法
JPH071204A (ja) 立旋盤
CN212856320U (zh) 一种机器人喷涂装置
CN106626082B (zh) 动态分断瓷砖的方法
RU2689482C2 (ru) Способ обработки опорных витков пружин методом плазменной резки, роботизированный комплекс и линия для его воплощения
JP5480953B1 (ja) 溶接装置
US20190358738A1 (en) Laser Pressure Welding
EP2957530A1 (en) Apparatus for induction heating of mechanical components
CN110423973B (zh) 一种杆件热喷涂变形控制装置及方法
KR200443821Y1 (ko) 전공정이 일괄수행되는 용사장치
JP2778802B2 (ja) 連続熱間鍛造方法及び装置
JPH04110414A (ja) ワークの焼入れ装置
JP5712433B2 (ja) ワークの熱処理装置
JP2016523722A (ja) ギアの仕上げ処理のための装置および方法
CN105964458B (zh) 注塑管件内壁喷涂用装置
JPH08290282A (ja) レーザ溶接装置
CN116406095B (zh) 金属线路加工设备及其加工方法
US20200246927A1 (en) Two table sliding rotating robotic positioning system
RU130236U1 (ru) Устройство для детонационного наращивания толщины линейных цилиндрических физических объектов