RU2646008C1 - Способ очистки и минерализации природных вод - Google Patents

Способ очистки и минерализации природных вод Download PDF

Info

Publication number
RU2646008C1
RU2646008C1 RU2017113647A RU2017113647A RU2646008C1 RU 2646008 C1 RU2646008 C1 RU 2646008C1 RU 2017113647 A RU2017113647 A RU 2017113647A RU 2017113647 A RU2017113647 A RU 2017113647A RU 2646008 C1 RU2646008 C1 RU 2646008C1
Authority
RU
Russia
Prior art keywords
water
mineralization
natural
calcium
magnesium
Prior art date
Application number
RU2017113647A
Other languages
English (en)
Inventor
Ольга Дмитриевна Лукашевич
Евгений Иннокентьевич Патрушев
Нина Евгеньевна Патрушева
Сергей Александрович Филичев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный архитектурно-строительный университет" (ТГАСУ)
Общество с ограниченной ответственностью "Надежда-ВЛ" (ООО "Надежда-ВЛ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный архитектурно-строительный университет" (ТГАСУ), Общество с ограниченной ответственностью "Надежда-ВЛ" (ООО "Надежда-ВЛ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный архитектурно-строительный университет" (ТГАСУ)
Priority to RU2017113647A priority Critical patent/RU2646008C1/ru
Application granted granted Critical
Publication of RU2646008C1 publication Critical patent/RU2646008C1/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/685Devices for dosing the additives
    • C02F1/687Devices for dosing solid compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/74Treatment of water, waste water, or sewage by oxidation with air
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds

Abstract

Изобретение может быть использовано в системах водоподготовки хозяйственно-бытового и производственного назначения, преимущественно для получения качественной питьевой воды из природных северных источников. Для осуществления способа исходную природную воду после предварительной грубой очистки подвергают эжекционной аэрации, кавитации и минерализации, пропуская по циркуляционному контуру, включающему последовательно соединенные трубопроводами камеру окисления с кавитатором внутри, эжектор, блок с псевдокипящим слоем мелкодисперсного минерала с размером частиц 3-5 мм, и насос. Для минерализации используют минерал, содержащий карбонаты кальция и магния - доломит с содержанием 54,5% карбоната кальция и 44,5% карбоната магния или модифицированный доломит с содержанием 55% карбоната кальция и 43,5% карбоната магния, и модифицирующие добавки - остальное. Циркуляцию воды осуществляют до достижения рН=6,6-6,8. Обработанную в циркуляционном контуре воду сначала коагулируют, а затем фильтруют через зернистую загрузку. Очистку и минерализацию воды производят при температуре не ниже 8°C. Способ обеспечивает получение кондиционированной питьевой воды из природных источников путем очистки природной маломинерализованной воды от железа, марганца и других тяжелых металлов и обогащения ее кальцием и магнием. 1 табл., 1 пр.

Description

Изобретение относится к области водоснабжения, в частности к очистке природных вод от растворенных соединений железа, марганца и других тяжелых металлов, и одновременно - насыщения ионами кальция и магния в физиологически необходимом количестве, и может быть использовано в системах водоподготовки хозяйственно-бытового и производственного назначения, преимущественно для получения качественной питьевой воды из природных северных источников.
Известны способы очистки природных вод от железа и марганца, основанные на аэрировании воды воздухом или озоно-воздушной смесью с образованием гидроксидов металлов и удалением их на фильтрах разных конструкций с использованием сорбционных материалов и инертных зернистых загрузок; разработаны способы с применением в качестве окислителей перманганата калия и пероксида водорода (Золотова Е.Ф., Асс Г.Ю. Очистка воды от железа, фтора, марганца, сероводорода. - М.: Стройиздат, 1975. гл. 3 [1]). Эти традиционные технические решения не позволяют удалить из воды железо и марганец, в высоких концентрациях содержащиеся в природных водах Севера Сибири, если им сопутствует высокое содержание органических веществ (преимущественно гуминовых и фульвокислот), малая минерализация и жесткость, повышенная кислотность (рН<6,5).
Известен способ очистки воды (патент РФ №2238912, C02F 1/64, 2003), включающий обработку воды последовательно перманганатом калия KMnO4 и пероксидом водорода Н2О2 в разных соотношениях доз, позволяющий преодолеть указанные выше затруднения и получить воду питьевого качества. Недостатком указанного способа являются высокие материальные затраты на реагенты (перманганат калия и химически неустойчивый и взрывоопасный пероксид водорода), необходимость строгого их дозирования, возможность проскока реагентов в очищенную воду, ухудшение условий для выделения в осадок железа и марганца при рН<6,5 и малой жесткости исходной воды.
Известен комбинированный способ очистки природных вод от железа и марганца (Николадзе Г.И. Обезжелезивание природных и оборотных вод. - М.: Стройиздат, 1978. с. 43), включающий стадии аэрации, окисления, известкования, коагулирования, флокулирования, отстаивания, фильтрования. Данный способ позволяет достичь остаточных концентраций железа и марганца 0,3 и 0,1 мг/л и менее, что соответствует требованиям СанПиН 2.1.4. 1074-01 «Гигиенические требования к качеству воды централизованных систем водоснабжения. Контроль качества». Однако предложенная технологическая схема является громоздкой, требует больших обогреваемых площадей для размещения, что на севере Сибири связано с большими энергозатратами; реализация технологии связана с обслуживанием оборудования, обеспечивающего содержание реагентного хозяйства (хранение, приготовление растворов, дозирование извести, коагулянтов, флокулянтов, хлорагентов), что требует дополнительных штатных сотрудников и затрат на реагенты и на соблюдение мер экологической безопасности.
Из уровня техники известны способы и устройства для повышения минерализации обессоленной воды с целью улучшения ее потребительского качества - придания воде полезных физиологических свойств. Известен способ приготовления питьевой минерализованной воды по патенту РФ №2170044, МПК A23L 2/38, включающий грубую и обратноосмотическую очистку водопроводной воды, с последующим подкислением до рН=4,5-5,5 и пропусканием воды через двухслойную загрузку, состоящую из подложки (дробленый кварц) и слоя кальцинированного доломита с размером зерна 2,5-4,5 мм для насыщения воды гидрокарбонатами кальция и магния до минерализации 50-1500 мг/л. Способ приготовления питьевой минерализованной воды по патенту РФ №2170044 пригоден только для предварительно очищенной водопроводной воды (а значит, доведенной до нормативов СанПиН 2.1.4. 1074-01 для питьевой воды), но не природной, содержащей высокие концентрации железа и марганца, которые быстро дезактивируют загрузку. Используемый кальцинированный доломит получают специальной обработкой природной горной породы - доломита известью и прокаливанием при 850°C, что приводит к высокому содержанию (60-70%) СаСО3 и уменьшению - MgCO3 (5,0-6,0%). Наличие в кальцинированном доломите свободных оксидов СаО (0,8-1,5%) и MgO (20,0-30,0%) делают такой композиционный материал более реакционно-способным, однако повышает растворимость, что влечет необходимость частых простоев оборудования, связанных с восполнением утраченного слоя загрузки. Прокаливание доломита при высоких температурах связано с большими энергозатратами, что удорожает технологию минерализации воды.
Аналогом, в котором используется обогащение воды ионами магния и кальция, является способ минерализации жидкости по патенту РФ №2515317, МПК C02F 1/68, который включает очищение воды методом обратного осмоса, насыщение ее минеральными веществами, промывку средства удержания рабочей среды блока минерализации.
Способ минерализации по патенту РФ №2515317 применяется для насыщения солями воды, деминерализованной при очистке ее методом обратного осмоса, но не обеспечивает очистку воды от тяжелых металлов.
Наиболее близким по технической сути к предлагаемому способу является способ очистки воды установкой по патенту на изобретение РФ №2228916, МПК C02F 9/04. Установка содержит камеру окисления (озонирования) с патрубком подачи исходной воды и трубопроводом для отвода очищенной воды, к которому через насос присоединен напорный фильтр, выполняющий заключительный этап очистки воды. Над камерой окисления установлен эжектор, который связан с генератором озона. Вода из камеры окисления с помощью насоса поступает в эжектор, а из эжектора - в камеру окисления. Эти устройства, соединенные трубопроводом, образуют циркуляционный контур. Исходную воду после предварительной грубой очистки подают в камеру окисления и подвергают ее эжекционной аэрации и кавитации, пропуская по циркуляционному контуру. Очищенную от загрязнителей в процессе циркуляции воду фильтруют через зернистую загрузку.
Такой способ обеспечивает эффективную очистку воды от загрязнителей, преимущественно от железа, за счет насыщения исходной воды воздухом, озоном и кислородом и кавитации, которая способствует интенсификации окисления загрязнителей.
Однако очистка от железа, марганца и других тяжелых металлов воды северных территорий, характеризующихся высоким содержанием органических веществ, маломинерализованных, мягких вод с показателем рН менее 6,5, недостаточно эффективна для получения воды питьевого назначения.
Техническая проблема, решаемая изобретением, заключается в кондиционировании состава маломинерализованной воды из природных (подземных или поверхностных) источников за счет удаления из воды железа, марганца, других тяжелых металлов и обогащения кальцием и магнием.
Техническая проблема решается следующим образом.
Как и в прототипе, исходную природную воду после предварительной грубой очистки подают в камеру окисления и подвергают ее эжекционной аэрации и кавитации. Воду пропускают по циркуляционному контуру, включающему последовательно соединенные трубопроводами камеру окисления с кавитатором внутри, эжектор и насос. Воду после очистки ее от загрязнителей в процессе циркуляции фильтруют через зернистую загрузку.
В отличие от прототипа природную воду дополнительно подвергают минерализации. Для этого воду пропускают через встроенный в циркуляционный контур блок с псевдокипящим слоем мелкодисперсного минерала с размером частиц 3-5 мм, содержащего карбонаты кальция и магния, например доломита с содержанием карбоната кальция СаСО3 в количестве 54,5% и карбоната магния MgCO3 в количестве 44,5% или модифицированного доломита с содержанием 55% карбоната кальция и 43,5% карбоната магния и модифицирующих добавок - остальное. Отличием от прототипа является также то, что циркуляцию воды осуществляют до достижения ею рН=6,6-6,8. Помимо этого, обработанную в циркуляционном контуре воду перед фильтрацией коагулируют. Очистку и минерализацию воды производят при температуре не ниже 8°C.
Псевдокипящий («взвешенный») слой загрузки обеспечивает значительное увеличение поверхности контакта при гетерогенном взаимодействии на границе «минерал - вода» и обеспечивает повышение скорости перехода в воду кальция и магния. Непрерывно происходит взрыхление взвешенного слоя доломита, обновление поверхности с отрывом вновь образованных минералов - частиц загрязнителей воды.
Экспериментально установлено, что для более эффективного разрушения устойчивых форм железа и марганца и их перехода в оксидно-гидроксидный осадок необходимо увеличить продолжительность обработки воды в камере окисления, обеспечить рН больше 6,5, обеспечить умеренную жесткость (повысить содержание кальция и магния). Повысить рН и жесткость обрабатываемой воды можно добавлением щелочных реагентов, дозируя их в виде растворов или порошков. Однако это усложняет технологическую схему водоподготовки. Экспериментально установлено, что эффект повышения рН и жесткости достигается при контакте обрабатываемой воды с природными карбонатными породами, например, доломитом. В результате многократного пропускания воды через слой частиц размером 3-5 мм дробленого минерала происходит насыщение воды ионами кальция и магния, тем самым обеспечивается увеличение жесткости до 1-1,5 мг-экв/л и рН=6,6-6,8, что соответствует рекомендациям ВОЗ для физиологически полноценной воды высокого качества. Вода с малым содержанием солей жесткости не является физиологически полноценной, т.к. недостаток кальция м магния приводит к заболеваниям сердечно-сосудистой системы. Именно растворенный в воде кальций лучше усваивается организмом человека [СанПиН 2.1.4.1116-02 Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества Санитарно-эпидемиологические правила и нормативы (с изменениями от 25 февраля 2010 г., 28 июня 2010 г.) Минздрав России Москва 2002]. Достигнутые показатели рН и жесткости одновременно играют положительную роль в очистке воды от тяжелых металлов, способствуя переходу их в осадок.
При проведении экспериментов в качестве твердых минеральных добавок были исследованы материалы: доломит (Советское месторождение, Алтайский край), содержащий 54,5% СаСО3 и 44,5% MgCO3; твердая минеральная добавка (ТМД) - модифицированный доломит, содержащий 55,0% СаСО3, 43,5% MgCO3 и остальное - модифицирующие добавки (фториды и йодиды кальция и калия); мрамор (Саяногорск), смесь брусита Mg(OH)2 (Кульдурское месторождение, Дальний Восток) и кальцита СаСО3 (Красноярский край) в разных соотношениях. Эксперименты показали, что наиболее эффективно использовать доломит или ТМД, содержащие СаСО3 и MgCO3 в указанных количествах. Использование мрамора не повышает степень очистки воды от железа и марганца. Использование смеси брусита и кальцита, хотя и дает положительный эффект, но сопряжено с техническими трудностями.
Заявителями экспериментально было установлено, что эффективный размер частиц ТМД составляет 3-5 мм. Более мелкие частицы плохо удерживаются в блоке с ТМД, а более крупные не обеспечивают достаточную площадь поверхности для протекания топохимических процессов. Вода, многократно проходя через блок с ТМД, со скоростью потока жидкости, установленной в зависимости от суточного расхода воды, обогащается кальцием и магнием в минимально необходимом по критерию «физиологическая потребность» количестве.
Заявителями экспериментально было установлено, что эффективный рабочий диапазон температур реализуется выше 8 градусов Цельсия. При более низких температурах степень удаления загрязнителей снижается.
Заявляемый способ показан на конкретном примере.
Испытание способа проведено на экспериментальной установке при очистке воды из скважины глубиной 85 м на Крайнем Севере (п-ов Ямал, Н. Уренгой). По заявляемому способу производилась очистка и минерализация воды на экспериментальной установке производительностью 1,5 куб. м/сут в реальных условиях, с использованием природной воды из подземного источника водоснабжения (скважины), состав и свойства которой приведены в таблице. Вода после фильтра грубой очистки нагревалась до 8°C, поступала в камеру окисления и подвергалась эжекционной аэрации, кавитации и минерализации в циркуляционном контуре в течение 20 мин. Минерализация осуществлялась в блоке с твердой минеральной добавкой, представляющей собой модифицированный доломит, содержащий 55,0% СаСО3, 43,5% MgCO3 с размером частиц 4,0±0,5 мм, остальное - модифицирующие микродобавки (KI, CaI2, KF, CaF2) Время пребывания воды в циркуляционном контуре устанавливалось такое, чтобы величина рН, измеряемая датчиком, достигла значения не ниже 6,6. После этого вода направлялась в камеру коагуляции для завершения окисления, деструкции растворенных в воде примесей и осаждения оксидов и гидроксидов железа, марганца и других загрязнителей. Затем вода направлялась на фильтр с зернистой загрузкой (альбитофир) для финишной очистки, поступала в резервуар-накопитель чистой воды, где обрабатывалась гипохлоритом натрия в нормативно установленном количестве во избежание бактериального заражения.
Показатели качества воды, обработанной в соответствии с описанным способом, до и после очистки приведены в таблице.
Figure 00000001
Приведенные в таблице результаты показывают, что достигается высокая степень очистки воды по показателям: железо (снижение концентрации с 5,9 до 0,2 мг/л), марганец (снижение концентрации с 0,5 до 0,1 мг/л), мутность (уменьшение показателя с 2,0 до 0,1 мг/л), цветность (снижение от 26 до 3 градусов), а также обеспечивается суммарное количество ионов кальция и магния (жесткость) 1,5 ммоль-экв/л, удовлетворяющее показателям физиологической полноценности. Таким образом, заявляемое изобретение обеспечивает соответствие очищенной природной воды нормам СанПиН 2.1.4. 1074-01 «Вода питьевая. Гигиенические требования к качеству воды централизованных систем водоснабжения. Контроль качества».
В таблице приведены показатели полученной кондиционированной воды для конкретного примера. Были проведены многочисленные эксперименты в рамках заявляемого способа. В ходе экспериментов было установлено, что заявляемым способом из природной воды с малой минерализацией, высокой окисляемостью, низкой температурой, слабокислой активной реакцией среды (рН в пределах от 5,5 до 6,4) удаляются тяжелые металлы (например, железо и марганец в высоких концентрациях, до 20,0 и 1,0 мг/л соответственно). Одновременно с этим происходит насыщение воды ионами кальция и магния до рекомендуемого санитарно-гигиеническими требованиями уровня содержания.

Claims (1)

  1. Способ очистки и минерализации природных вод, согласно которому исходную природную воду после предварительной грубой очистки подают в камеру окисления и подвергают ее эжекционной аэрации и кавитации, пропуская по циркуляционному контуру, включающему последовательно соединенные трубопроводами камеру окисления с кавитатором внутри, эжектор и насос, очищенную в процессе циркуляции воду фильтруют через зернистую загрузку, отличающийся тем, что природную воду дополнительно подвергают минерализации, пропуская через встроенный в циркуляционный контур блок с псевдокипящим слоем мелкодисперсного минерала с размером частиц 3-5 мм, содержащего карбонаты кальция и магния, например, доломита с содержанием 54,5% карбоната кальция и 44,5% карбоната магния, или модифицированного доломита с содержанием 55% карбоната кальция и 43,5% карбоната магния и модифицирующих добавок - остальное, при этом циркуляцию воды осуществляют до достижения ею рН=6,6-6,8, а обработанную в циркуляционном контуре воду перед фильтрацией коагулируют, помимо этого, очистку и минерализацию воды производят при температуре не ниже 8°С.
RU2017113647A 2017-04-19 2017-04-19 Способ очистки и минерализации природных вод RU2646008C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017113647A RU2646008C1 (ru) 2017-04-19 2017-04-19 Способ очистки и минерализации природных вод

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017113647A RU2646008C1 (ru) 2017-04-19 2017-04-19 Способ очистки и минерализации природных вод

Publications (1)

Publication Number Publication Date
RU2646008C1 true RU2646008C1 (ru) 2018-02-28

Family

ID=61568723

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017113647A RU2646008C1 (ru) 2017-04-19 2017-04-19 Способ очистки и минерализации природных вод

Country Status (1)

Country Link
RU (1) RU2646008C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117164351A (zh) * 2023-08-10 2023-12-05 山东鑫永恒新材料有限公司 一种富钙缓释矿化材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0839057A (ja) * 1994-08-01 1996-02-13 Naoharu Hinuma 浄水装置
RU2059350C1 (ru) * 1993-05-19 1996-04-27 Борис Андреевич Адамович Способ получения высококачественной воды и установка для его осуществления
RU2185328C2 (ru) * 2000-08-07 2002-07-20 Калинин Александр Иванович Способ очистки и кондиционирования питьевой воды и загрузка для его осуществления
RU37087U1 (ru) * 2003-12-18 2004-04-10 Общество с ограниченной ответственностью "Акватория" Кондиционер питьевой воды
RU2228916C1 (ru) * 2003-02-10 2004-05-20 Томский государственный архитектурно-строительный университет Установка для очистки воды озонированием
GB2499992A (en) * 2012-03-05 2013-09-11 Ide Technologies Ltd Water mineralization
US20150010458A1 (en) * 2012-02-03 2015-01-08 Omya International Ag Process for the preparation of an aqueous solution comprising at least one earth alkali hydrogen carbonate and its use
CN104692514A (zh) * 2014-12-31 2015-06-10 浙江至美环境科技有限公司 一种用于淡化水调质的颗粒矿化剂及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2059350C1 (ru) * 1993-05-19 1996-04-27 Борис Андреевич Адамович Способ получения высококачественной воды и установка для его осуществления
JPH0839057A (ja) * 1994-08-01 1996-02-13 Naoharu Hinuma 浄水装置
RU2185328C2 (ru) * 2000-08-07 2002-07-20 Калинин Александр Иванович Способ очистки и кондиционирования питьевой воды и загрузка для его осуществления
RU2228916C1 (ru) * 2003-02-10 2004-05-20 Томский государственный архитектурно-строительный университет Установка для очистки воды озонированием
RU37087U1 (ru) * 2003-12-18 2004-04-10 Общество с ограниченной ответственностью "Акватория" Кондиционер питьевой воды
US20150010458A1 (en) * 2012-02-03 2015-01-08 Omya International Ag Process for the preparation of an aqueous solution comprising at least one earth alkali hydrogen carbonate and its use
GB2499992A (en) * 2012-03-05 2013-09-11 Ide Technologies Ltd Water mineralization
CN104692514A (zh) * 2014-12-31 2015-06-10 浙江至美环境科技有限公司 一种用于淡化水调质的颗粒矿化剂及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117164351A (zh) * 2023-08-10 2023-12-05 山东鑫永恒新材料有限公司 一种富钙缓释矿化材料及其制备方法
CN117164351B (zh) * 2023-08-10 2024-03-19 山东鑫永恒新材料有限公司 一种富钙缓释矿化材料及其制备方法

Similar Documents

Publication Publication Date Title
US8679349B2 (en) Heavy metal removal from waste streams
TWI656095B (zh) 製備包含至少一種鹼土金屬碳酸氫鹽之水性溶液的方法
TWI635900B (zh) 以淨水污泥為原物料作為砷及氟吸附劑的方法
CN104193123A (zh) 一种黄金矿山含氰废水系统处理方法
Wang et al. A novel method based on membrane distillation for treating acid mine drainage: Recovery of water and utilization of iron
RU2646008C1 (ru) Способ очистки и минерализации природных вод
KR101656665B1 (ko) 다기능 입상 정석재를 이용한 인 제거 또는 회수 시스템 및 이를 이용한 인 제거 또는 회수 방법
RU2630552C1 (ru) Способ очистки непроточных водоёмов от тяжелых металлов и нефтепродуктов
Rom et al. Kinetics of CaCO3 precipitation in seeded aeration softening of brackish water desalination concentrate
US9650266B2 (en) Method of treating suspended solids and heavy metal ions in sewage
Kim et al. Application of improved rapid mixing for enhanced removal of dissolved organic matter and DBPFP (disinfection by-product formation potential) control
CN107473316A (zh) 固态重金属废水处理剂
US1440253A (en) Method of treating polluted liquid
RU2483028C1 (ru) Способ очистки сточных вод от нефтепродуктов
CN102826724B (zh) 一种用于酸性煤矿废水的处理装置和方法
RU2220115C1 (ru) Способ получения питьевой воды
RU2622132C1 (ru) Способ нейтрализации кислых шахтных вод
JPH06237B2 (ja) 廃水処理方法及びその装置
KR101898123B1 (ko) 과망간산 산화제 및 활성탄을 이용한 조류독소 제거용 수처리장치 및 방법
JPH06246278A (ja) 坑廃水又は温泉水の処理方法
RU2209782C2 (ru) Способ очистки подземных вод
RU2691052C1 (ru) Способ очистки высокоминерализованных кислых сточных вод водоподготовительной установки от сульфатов
JP2004174386A (ja) リン酸含有排水の処理方法
RU2782420C1 (ru) Способ очистки шахтных сточных вод от сульфатов
JPH11319411A (ja) 貝化石を含む水質浄化剤及びそれを用いた水質浄化方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190420